Exam of "Pseudodifferential operators, dynamics and applications"

A. Maspero

May 22, 2020

The goal of the exam is to develop some paradifferential calculus for the Bony-Weyl quantization. You will work with a special class of symbols, defined as the product of a function in $H^{s}\left(\mathbb{T}^{d}\right), d \geq 1$, and a symbol which depends only on ξ.

Definition 0.1 (Symbols). Given $\rho \geq 0$ and $m \in \mathbb{R}$, we say that $a(x, \xi) \in \mathcal{N}_{\rho}^{m} \equiv \mathcal{N}_{\rho}^{m}\left(\mathbb{T}^{d}\right)$ if there exist $\varphi(x) \in H^{\rho}\left(\mathbb{T}^{d}\right)$ and $d(\xi) \in \mathcal{S}^{m}$ (classical symbols on \mathbb{R}^{d}), such that

$$
a(x, \xi):=\varphi(x) d(\xi)
$$

If $a \in \mathcal{N}_{\rho}^{m}$, we define the seminorm

$$
\begin{equation*}
|a|_{m, \rho, n}:=\|\varphi\|_{\rho} \sup _{|\alpha| \leq n} \sup _{\xi}\left\|\langle\xi\rangle^{-m+|\alpha|} \partial_{\xi}^{\alpha} d(\xi)\right\|_{L^{\infty}}, \tag{1}
\end{equation*}
$$

where $a(x, \xi)=\varphi(x) d(\xi)$. Here we put $\|\varphi\|_{\rho} \equiv\|\varphi\|_{H^{\rho}\left(\mathbb{T}^{d}\right)}$.
Next we define the Bony-Weyl quantization. Let $0<\epsilon_{1}<\epsilon_{2} \ll 1$ and consider a smooth, even function $\chi: \mathbb{R} \rightarrow[0,1]$ such that

$$
\chi(\xi)=\left\{\begin{array}{ll}
1 & \text { if }|\xi| \leq \epsilon_{1} \\
0 & \text { if }|\xi| \geq \epsilon_{2}
\end{array} .\right.
$$

Given $a \in \mathcal{N}_{\rho}^{m}$, the Bony-Weyl quantization of a is the operator

$$
\begin{equation*}
\mathrm{Op}^{B W}(a)[u]:=\sum_{j \in \mathbb{Z}^{d}}\left(\sum_{k \in \mathbb{Z}^{d}} \widehat{a}\left(j-k, \frac{j+k}{2}\right) \chi\left(\frac{|j-k|}{\langle j+k\rangle}\right) u_{k}\right) e^{\mathrm{i} j \cdot x}, \tag{2}
\end{equation*}
$$

where $\widehat{a}(j, \cdot)$ is the Fourier transform of a with respect to the first variable, i.e. $\widehat{a}(j, \xi):=$ $\int_{\mathbb{T}^{d}} a(x, \xi) e^{-\mathrm{i} j \cdot x} \mathrm{~d} x$.

Fix an arbitrary

$$
s_{0}>\frac{d}{2}
$$

You are asked to prove the following statements:

1. The seminorm (11) is well defined (note that the choice of $\varphi(x)$ and $d(\xi)$ is not unique), so is the operator in (22).
2. Continuity: For any $a \in \mathcal{N}_{s_{0}}^{m}, \mathrm{Op}^{B W}(a)$ extends to a bounded operator from $H^{s} \rightarrow H^{s-m}$ with the quantitative bound

$$
\left\|\mathrm{Op}^{B W}(a) u\right\|_{s-m} \lesssim|a|_{m, s_{0}, 0}\|u\|_{s} .
$$

Hint: prove that if $\chi\left(\frac{|k-j|}{\langle k+j\rangle}\right) \neq 0$ then

$$
\begin{equation*}
|j| \sim|j+k| \sim|k|, \quad \forall j, k \in \mathbb{Z}^{d} . \tag{3}
\end{equation*}
$$

3. Bony paraproduct formula: $u \in H^{s}\left(\mathbb{T}^{d}\right), v \in H^{r}\left(\mathbb{T}^{d}\right)$ with $s+r \geq s_{0}$. Then one has

$$
u v=\mathrm{Op}^{B W}(u) v+\mathrm{Op}^{B W}(v) u+R(u, v)
$$

where the bilinear operator $R: H^{s} \times H^{r} \rightarrow \dot{H}^{s+r-s_{0}}$ fulfills the estimate

$$
\|R(u, v)\|_{s+r-s_{0}} \lesssim\|u\|_{s}\|v\|_{r}
$$

Hint: decompose

$$
1=\chi_{\epsilon}\left(\frac{|j-k|}{\langle j+k\rangle}\right)+\chi_{\epsilon}\left(\frac{|k|}{\langle 2 j-k\rangle}\right)+\theta_{\epsilon}(j, k) .
$$

and show that if $\theta_{\epsilon}(j, k) \neq 0$ then

$$
|j| \leq C_{\epsilon} \min (|j-k|,|k|), \quad \forall j, k \in \mathbb{Z}^{d}
$$

4. Symbolic calculus (at first order): Let $a \in \mathcal{N}_{\rho+s_{0}}^{m}, b \in \mathcal{N}_{\rho+s_{0}}^{m^{\prime}}$ with $m, m^{\prime} \in \mathbb{R}$ and $\rho>0$. Then one has

$$
\begin{equation*}
\mathrm{Op}^{B W}(a) \mathrm{Op}^{B W}(b)=\mathrm{Op}^{B W}\left(a b+\frac{1}{2 \mathrm{i}}\{a, b\}\right)+R^{m+m^{\prime}-\rho}(a, b) \tag{4}
\end{equation*}
$$

where the linear operator $R^{m+m^{\prime}-\rho}(a, b): H^{s} \rightarrow H^{s-\left(m+m^{\prime}\right)+\rho}, \forall s \in \mathbb{R}$, with the quantitative estimate

$$
\begin{equation*}
\|R(a, b) u\|_{s-\left(m+m^{\prime}\right)+\rho} \lesssim\left(|a|_{m, \rho+s_{0}, 2}|b|_{m^{\prime}, s_{0}, 2}+|a|_{m, s_{0}, 2}|b|_{m^{\prime}, \rho+s_{0}, 2}\right)\|u\|_{s} . \tag{5}
\end{equation*}
$$

