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1 Sharp paradifferential calculus

For any function u € H*(T% C) we define the Sobolev homogeneous norm

lallfye = D> Ik Jaxl® (1)

kez4\{0}

Definition 1.1 (Symbols). Given p > 0 and m € R, we say that a(z,§) € N* = N;”(Td) if
there exist p(z) € HP(T?) and d(¢) € S™ (classical symbols on R?), such that

a(x, &) := p(z) d(§). (2)

If a € N7, we define the seminorm

@l .0 = o sup sup | © e ggage)| -, (3)

la|<n

where a(r, €) = @(x)d(€). Here we put [l¢ll, = [lel sz

Remark 1.2. Given a € N}, the functions p(z) and d(§) are defined up to a multiplicative
constant.

Let 0 < € < 1 and consider a smooth function y: R — [0, 1] such that

_ 1ol =g _ (e
x(f)—{o sy o =x(H).

Consider the associated paradifferential operator

0p™ = 3 (3 (5~ 5 x(p) ) g

jeEZT  kezZd

where a(j,) is the Fourier transform of a with respect to the first variable, i.e. a(j,&) :=
Jpaa(z, &) e da.

Remark 1.3. For a symbol a € N[ of the form , we have that

Jj+k j+k
(kQ)J’“d(z) 5)
Note that 1fxe( )#Othen
k=il <eli+k) (6)
and therefore, for € € (0, 1),
1—¢ . 1+e¢ . d
STk < i) < Sk, Yk ezl 7
Ll NV el L P (7)

This relation shows in particular that Op®"W sends a constant function into a constant function
and therefore that OpBW sends homogenous spaces into homogenous spaces.
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Lemma 1.4. Let e € (0,1/4). Ifxe<%) # 0 then

I <1j+k <3ljl, VikezZ’. 8)

Proof. The second inequality in follows by . Let us prove the first one. By , ifj=0
then & = 0. Then we suppose that j # 0, and therefore also k # 0. Moreover we also have that
j+ k # 0. If otherwise j + k = 0 then, by @, we get |27] < e which implies j = 0. By @ we
have

1 1 € 1 5
< =|j—kl+=lj+Ekl <=|J+Ekl+=lj+Ekl<=|j+Ek
Il < Sl =kl + 5l + k< gl7+ Kl + 517+ k< 2li + &l
which implies . O
Fix an arbitrary

_d
S —.
079

Lemma 1.5. If a(z,§) = m(x)d(§) € NJI' and for any a € N* we define the sequence

aj, = sup ‘@ﬁ (j)’ (7)™, (9)

then aj, € Y with estimate
a5, [l < C(d, s0)|alm,s, |- (10)

Proof. We note that thanks to the structure of the symbols we have that

a$, = |y, | sup |0gd(j)| ()~
J

Defining the constant
C(d; s0) == [[{j1) "> lle» < 400,
and applying Holder inequality we obtain
125 lex = sup |9g ()] ()" |77| 2
J

< O(d, so) sup [9gd(7)] (7)1 (1)l 2 = C(d, 50)lalm,s0 o
J

O

Theorem 1.6. (Continuity) Let a € N with m € R. Then Op”" (a) extends to a bounded
operator H® — H*™™ for any s € R with the quantitative estimate

BW
10p™" (@) ull gre-m < Cmdyso [0l g0,0 lull o (11)
Proof. We have that

10p"W (a) [u]|[%,._.. < Z ‘le(s—m)( Z

JE€ZN{0} l7—k|<e(j+k)

> (X G-m

JEZN{0} |j—FK|<e(j+k)

ofi = k5 )

@.®
S
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where k # 0 and k + j # 0, since j # 0 and by 7 . Using Cauchy-Schwartz

. sol - ( JHENP, . —2m s 1
100" @) Ll £ 30 30 G- Rfa(i - kI )[R T P Y
FE€Z\{0} kezZ4\{0} k
2\7.128 ~ 250~ ( JHEN?, —2m
S 2 PN G-Rla(i- kIS0 G+ R
kezd\{0} JEZN{0}
In conclusion, for a symbol a of the form we have
S —m 2
10p"" (@) ()1 Soo Y, PR [l sup (1d(€)[(€)™)
kezd\ {0} £ER?
< C(so)llully. lal .0
which proves ([11)). O

We now prove the Bony-paraproduct decomposition

Lemma 1.7 (Bony paraproduct decomposition). for any functions u,v € H*(T?), s > so, one

has
uv = Op®W (u) v + OpPW (v) u + R(u,v)

where the bilinear operator R(u,v) fulfills, VO < p < s — sg, the estimate
[R(w, v)lls+p < llulls [[0]lso+5

The composition of paradifferential operators is a paradifferential operator plus a regularizing
remainder. We treat first the case of paraproducts, namely when the symbols are simply functions
in Sobolev space. Then we treat the case of general symbols.

In both cases an important role is played by the function

¢: (Z7)° >R, ®(j1; g2, 33) = x(J1, g2 + J3)x(J2, J3) — x(J1 + Ja, J3) (12)
Lemma 1.8. Consider the function ¢ defined in . Then on its support:

(i) the maximum frequency among them has modulus comparable with the second largest fre-
quency; in formula

max(|j1], ljal; |7al) ~ max(|71]; [72], 7sl), Vi1, J2, 3 € supp (12). (13)

(7i) Let 2e2(1 + €2) < § < 1, where €3 defined in (?77?); then

j1 +jal <6ljsl, Vi1, ja, 3 € supp (14)
and
(1=10)|gs] < g1+ g2 + sl < (1 +6) 53], Vj1,j2, js € supp (12) (15)

Proof. Let us prove first item (z).

o If 1] > |j2l, 73], then x(j1,j2 + j3) = x(j1 + j2,j3) = 0, so there are such interactions in
9.
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o If |jo| > |11, 73], then x(j2,43) = x(j1 + Jo,J3) = 0, so no such terms.

o If |j3| > |j1|7 |j2|a then X(jhj? +J3) = X(jQuj3) = X(jl +j27j3) = 17 50 again there are no
such terms.

Of course one can make (13) quantitative in terms of €;,e2, but this is not required.
We come to item (i7). To prove it, we show the implication

lj1 + 2| > 6ljs] = &(j1,J2.3) = 0. (16)

So first note that |j; + ja| > d|js| > e2|js| implies that x(j1 + j2,43) = 0.
There are two cases: either

. S
(@) lja] > 5lJs]
or
(b) Izl > sl
otherwise |j1 + jo| < |j1| + |j2| < d|j3| contradicting the assumption (|16]).
In case (b), [ja| > $|js| > €2[j3| which implies x(j2, j3) = 0, proving (L6
In case (a), assume that both 1| < e2]j2 + j3| and |ja| < e]js]; then

0, . . . . 2\
§|J3| < 71| £ e2lj2 + j3| < (2 + €3)]73]

which contradicts the assumption 2e3(1 + €2) < d. Then either |j1] < e2|j2 + 73] or |j2| < €2|jsl;
in both cases x(j1, jo + j3)x(j2,j3) = 0 and follows.

We are ready to prove a result of paraproducts.

Theorem 1.9 (Composition of paraproducts). Let a,b € HPt50 with p > 0. Then
Op”(a) Op” (b) = Op”(ab) + R(a,b) (17)
where the linear operator R(a,b): H® — H*TP Vs € R, with the quantitative estimate
1R (@, B)ullssp < Co (10l0,000 1P ts0.0 + 10105000 Plo o) Nl (18)

Proof. Using (??) and the fact that a,b are functions (so are symbols independent of £), we get

Op”(a) Op” (b)u = Z X (i1, g2 + 33)x (2, J3) @j, by, Uj, €01 FI2Fd2)
J1,J2,J3 €LY
and ~ -
OpP(ab)u= > x(j1+ ja, js) @y, by, Uy, €0 H2H) 7,
J1,J2,33€Z*

therefore we obtain that

R(a,b)u = Op®(a) Op? (b) u — Op® (ab) u
= > (XGdz +ds)XUizsds) = XUt + s ) ) Wy by g, €102 F2 )
J1.J2,j3 €LY
= D 02 da) B, by Ty € TR (19)
J1,J2,33€Z*
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We exploit the property of the function ¢, described in Lemma to estimate the norm of the
operator R(a,b).
First, using (15]), we have that Vs € R,

(3)° "7 < (1 + 2 +43)° TP < (a)°TP

2
A\ 25+2 . oA T A
| R(a,b)ull?,, < Z ) Z B(j1, 42, J3) @j, bj, Uj,
jEZA Ji+je+is=j
2
o S
SO 160l ) ) [Bi] Us)” fl

J o |Jiti2+is=j

Now we split the internal sum according to which frequency is the largest: denoting

f(jlaj27j3) = |¢(j1,j27j3)| <j3>p |ajl‘ ‘bjz <j3>3 |aJ3|7

we put

Ry = Z ( > f(jl,j27j3))27 Ry:=) ( > f(j17j27j3))2

j1+iz2+iz=i 7 Jj1+i2+iz=i
l711=1i21=143] 711213312152
Z Z . 2 _ 2
R3 = ( f(.]lv]Qa]?))) ) R4 = E ( E f(jlv.]27j3)>
7 Jji1t+iz2+iz=i 7 Jj1t+i2+iz=i
lizl=li1l=1igl ligl=ligl=li1l
. . . 2 . . . 2
Rs:=) ( > f(]h]m]s)) . Re:=) ( > f(]17]27.73)>
J Jj1+i2+iz=j J J1+i2+iz=i
li31=l1i21=1511 liz|=1i11=1521

Clearly we have
”R(a7 b)“”i-&-p ,S Rl +...+ R67

so we proceed estimating each term. Let us first consider Ry. For this term |[j3| is the smallest
frequency, so we have

(d3)” I, | (20)

£, d2.ds) < [ag,| (a)” ‘bb
and conclude by Young’s convolution inequality

D S G DI A REAE S
J

Jitje+is=j

() i)

@) % () Bs)5 % () )i 1% ey
< N@);sl17 zay 16D 05)3 117 zay 1001)° @) 1172z
< (lallso 1Bl p+so lulls)? (21)

One proceeds similarly for Ry, R3, R4, getting

Ry, R3 < (

2 2
|allptso [Bllso llulls)™s Ra < (llallso 10l p4so lulls)” - (22)
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We come to Rs. In this case we exploit that the largest frequency is comparable with the
second largest frequency according to (13]). Thus, for this term, we have that |j3| < C|j2] for C
sufficiently large. So again f(ji, ja,j3) is estimated as in (20)), and thus Rs fulfills an estimate
as in . One proceeds analogously for Rg, proving that it fulfills an estimate as the first one
of ([22). Now recall that ||, = laly ..o and collect all the estimates to get (18). O

Next we consider the case when a, b are symbols depending in a nontrivial way from &.

Theorem 1.10 (Composition of paradifferential operators). Let a € N, . b € N_HU with

pt+so?
m,m’ € R and p > 0. Define the symbol ’

1 "
aftpbi=>" —02a(w, &) Db(, €) e Yy ik, (23)
lal<p k<p
Then one has )
Op”(a) Op” (b) = Op”(a#,b) + R™*™ ~*(a,b) (24)

where the linear operator R™t™ =P(a,b): HS — Hs=(m+tm)tr s e R, with the quantitative
estimate

IR@ )l s syt S (18lmprsny Bl oo + 1@hnsgp Pl o) Tulls:— (25)

Proof. Because H*(T?) is an algebra for s > sg, we first note that

+
GENT, beNT, = abeNTHM.
Now, for |a| < p
m—|c| m+m’ —|al
dac NI DIheNT . = OfaDibeNTITI

This proves that a#,b (defined in (40)) is a symbol in > h<p ./\/'7:‘_‘:;" X ok

Next we compute Op®(a)Op?(b). Using formula (??) for Op”(a) and formula (??) for
Op?(b), we write

1 L o
Op”(a) Op” (b) u = W Z ay (, ja + j3) bj, (j3) X (Ja, j3) Tj, €192773)
J2,J3
(2m)2 Z X(j1s g2 + 33) X(J2: J3) Gjy, (G2 + js) bj, (Js) Ty, €01 H72Hs)
J1,J2,33

Now we consider a;, (jz + j3) and perform a Taylor expansion around js with increment js up to
order n < p, getting

~ . . | N, L
aj, (j2 +Js) = Z 535 aj,(J3)j3 + Ro(a; j1, g2, js) (26)
lel<p
. . . a «
R, (a;j1, J2,J3) = | ‘/ )11=102a;, (js + tj2)dt (27)
|a\—LPJ+1

Consider now the product @;, (j2 + j3)3j2 (j3); substituiting the Taylor expansion of @;, (j2 + j3)
and using that

o — ~ —

9¢aj,(ja) = (0ga), (a), 7z by (da) = (Dgb)y, (ja),
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we write
N 1 == \7an s NN
aj, (J2 + js) bj, (J3) = Z a(ag a)j1 (Js) (Dxb)jz(j3) + Ru(a; j1, 2, J3)bjs, (J3)
lal<p

and finally get

Op”(a )OPB( ) u
G 2 a2 XUrda+ ) i da) (05a), () (D), () By 1012400
|a|<p " j1.d2.d3 (28)
27r —— > XU, g2+ Js) X2, 33) Ro (@ 1, G2, J3) j, (js) Ty, €101 T9279)
J1,J2,73

We come to the term Op? (a#,b) u. We compute

(a#p d Z a#,b)(x, j3) U; 6”3 x

m)d ZX J>Ja) (a#,b ) (j3) T, €0 F98) 2
J»j3

27T “oNad Z > XU+ da, s) (Oga), (73) (Dgb);, (j3) Uy, ellirtiztis)e

|oz\<p " J1.d2,Js

where in the last passage we used that, by the definition ,

(a#,b), (j @i Z 3 @2a) (js) (D2D),, (s).

\a|<p Jl+]2 =Jj

Therefore we found that, with ¢(j1, j2, j3) defined in ,

(Op”(a) Op” (b )— B(a#p )) u = Ri(a,b)u+ Rrr(a,b)u

—

Ri(a,b)u )2d Z Z B (j1; g2, 33)( 6 a) ( 3) (D x(,)ﬁ@g)ﬂjg el tia+is) -«
\O¢|<P " j1,d2,8 (29)
Rii(a,b)u := (2m)2d Z x(J1, 42 + 73) x(J2. J3) Rp(a; jl,j2,j3)3j2 (js) G, il +iatis)-a

J1,92,73

We show now that the opeartors Ry and Ry fulfills estimate . We begin with Ry(a,b)u.
Using Lemma (i), we have that

||R[(CL b)uHe (m4+m/)+p

2
SO D@ ST (1, g, ) (B2a), (s) (Dgh),, () s,
la|<p jEZ2 Jiti2+is=J
2
(15) — —m | 7= = . =m0\ 8~
S| 16l Ga)” |O2a), G| )™ |D2B), )| ) () il

e |Jitjet+js=j
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We split the internal sum according to which frequency is the largest: denoting

—

£ dasda) 1= 10 2. o)l ) @), ()| (i) ™ | (D), (i) (i)™ (i) [l (30)

we put

Ry 1=Z( > fa(j1,j27j3))27 Ry ?ZZ( > fa(j1,j2,j3))2

Jj1+iz2+iz=i a,j Jj1+iz2+iz=i
li11=1i21=153] 711213312152l

2 2

Rj3 = E ( E f (31,32’]3)) ) Ry = E ( E f (,71,]2,33))
a,j Jj1t+iz2+iz=J a,j Jj1t+i2+iz=i
li21=1311=153] li21=1331=1311

2 2

— afy: g L Qs . -

Rs =) ( > f (317J2,J3)) . Re:=) ( > f (thm]:ﬁ))
a,j J1+i2+iz=j a,] J1+i2+iz=i
li31=121=1511 li31=1i11=1521

Clearly we have
”Rl(a” b)””i—(m-&-m’)-}-p /S Rl +...+ R67

so we proceed estimating each term. Let us first consider R;. For this term |j3| is the smallest
frequency, so (js)” = (ja)”~'* (j3)!*1 < (j2)? 71 (j5)!*!, and we get

P Girsdzsgs) < [@2a), Ga)| Gis) ™1 (G2)" 1 Db, (i) | i)™ () [l
< a?l bjo'; <j3>s |aj’s| (31)

where the sequences a® = (a$); and b* = (b§); are defined by

—

(8?(1)]_1 (Jé)’ <j3>7m+|a‘ ) b, = <j2>n7|a‘ sup
J3

: (Dgh),, ()| (i)™

aj = sup
J3

By Young’s convolution inequality we deduce
Ri S ) 1l # 0%+ () )il ey S D 1127 zay 10% 117 2oy 1) @)illZa ey (32)
« (03

so we need only to show that the sequences a®, b are both in £*(Z%). To prove this, we apply
Lemma [I.5] to a, getting

12%[lerze) S 1l s0,1a) > (33)
and we apply the same Lemma to b, getting
||baH€1(Zd) S |ng‘m’750,0 5 |b‘m’7p+so)0 . (34)
Combining with the estimates , we find
2
By S (1ol ol g o 1l - (35)

Consider now Ro. In this case |ja| < [j3] < |j1]. Moreover by Lemma [I.§] (ii) the largest and
second largest frequency are equivalent, so |js| ~ |j1|. It follows that f®(ji,j2,73) in is
estimated by

1 Gdasds) < ()" [@a), G| Gia) ™10 (i) 710 Db, G| i)™ () il

IN
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where now the sequences a% = (af); and b = (E‘J)‘) ; are defined by

—

(8?“)]-1 (Jé)’ (jz) e bY = (jo) ™1 sup
J3

—

(Dgb),, )| (Gs) ™™

aj = (" sup
J3

Again we need to estimate the £!(Z%) norm of 3 and b®. We apply Lemma , getting

2% ler(ze) < lal

6%l ¢2(zay < 18]

m,p+so,n
m’,s0,0 *

We are ready to estimate Rs. We apply Young’s convolution inequality and obtain that

2
Ra S (10l sgin [Plsoro N1l (37)

The terms R3, R4 are estimated in an analogous way. Concerning R5, Rg, one proceeds similarly
exploiting that, according to , the largest frequency is comparable with the second largest
frequency. Collecting all the estimates one obtains that R;(a,b) fulfills estimate (42)).

We come to Ryr(a,b) defined in . First note that on the support of this term we have

(1) < €2 (j2 + Ja) » (J2) < €2 (js);

in particular we have that

i1+ Ja| < ealjol + 2e2]3| < (€3 + 2€2)] 73]
and provided €2 + 2¢5 < 1 we have that
(J1+ g2+ ja) ~ (Js) -
With this information we compute

HRII(G’7 b)u||§7(m+m’)+p

A\ 2(s— ! . . . .. NN CN A~
<SP EmE L NT (s da + d3) X(2s 3) R (a5 1, 52, 3) by (Js) T,
J Ji+j2+is=j
2

S| Re@ded)l Ga) " (B Ga)| ()T () il
J|Jitietiz=j

Denote

Folgrs g2, ) = X (i1, j2 + Js) X (G2, Js) [Ro(@; 1, g, ds)| (Gs) """ ‘bn(js)’ (7)™ (93)" lugs 5
(38)
now we use that on the support of x(ja,j3) one has |ja| < €3]j3], to estimate

(a) " < () T

s ]3>p—LpJ—1 < >—m+LPJ+1 (j

Ja Jz)p_w_l ;

we also use that, exploiting definition 7

Ry (a; 1, o )| S Jja 1T

1
/ (1 — 1)/1=102;, (js + tja)dt|
jaf=Lp)+1

0
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So we bound
fp(j17j27j3) 5 Tj bjz <JS>S |uj3|

where the sequences r = (r;); and b = (b;); are

o —

/01(1 —t)lel=t (aga)jl (js + tjg)dt'

>*m+LPJ+1

Ty = Z sup x(j2,73) (Js
jal=Lp)+1727

~

bialis)| ()"

bj, 1= <j2>p sup
J3

By Lemma and by the cut-off support on frequencies j3 ~ j3 + tjo one deduces that
||r||£1(Zd) 5 |a’|m,50,n ’
[bllerzay S 10lmr pso.0 -

Thus we conclude using Young’s convolution inequality that

I Rr1(a, b)ulls—(mamny+n < T xbs () 05)le2zay < lellerzaylbller zayl| () T5) ez (za)

5 |a|m,so,n |b‘m”p+sg,0 ||UH5

This proves the claim. O
A corollary of this result is the following:

Corollary 1.11. Given a(z,§),c(x, &) € N 5 and b(x,£) € N2 5 we have that

Op”" (a) 0 OpPY (b) 0 Op”" (¢) = abe + R'(a, b, ¢) + R°(a, b, ¢), (39)

with R*(a,b,c) = —R(c,b,a) and R°(a,b,c) is a bounded operator in H® for every s € R such
that there exist a constant Cs > 0 depending on s such that

HRO(a,b, C)Hﬁ(Hs,Hs) < Cs|a|0,so+2,2|b|2,s0+2,2|0|o,so+2,2~

Proof. Applying Theorem [[.10] we have that
Op?™ (b) 0 OpP% (¢) = 0p®W (be) + OpZW (;i{b, c}) + R°(b,¢).
Applying Op®" (a) we have
Op”" (a)o0p”" (b)oOp”" (¢) = Op”" (a)oOp”" (bc)+-0p”" (a)oOp”* (211{1% c}) +0p”"Y (a)oR(b, ).
Applying again Theorem we obtain
Op”% (a) 0 OpPW (be) = OpBW (abe) + OpB" (211{@, bc}> + R%a,b,c)

and

0p™Y (@) 0 09" (3 (0.} ) = 5 (0. cha+ BO(asbro)
1 1
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Collecting all the terms we obtain with

RY(a,b,c) = Op®W (21i({a, be} + {b, c}a) = 0p?% (211({@, c}b+ {b,cta + {a, b}c) ,

that satisfies R'(a,b,¢) = —R!(c,b,a). The estimates on the remainder R°(a,b,c) follows from
Theorem [[.10] and Theorem [l O

Corollary 1.12 (Commutator). With the same assumptions of Theorem define the symbol

{a, b}, == i(a#,b — b#,a) (40)
—i Y 5(3?61(,@,5) Dbz, €) — O2b(x,€) Dla(x,6)) € 3 Nk,
1<|al<p 1<k<p

Then one has )
i[0p”(a), Op” (b)] = Op”({a,b},) + R™™ ~*(a,b) (41)
where the linear operator R™™ =P(a,b): H* — Hs~(m+tm)+r s e R, with the quantitative

estimate

|‘R(a7b)u||s—(m+m/)+P 5 (‘a’|m,p+so,n |b|m,so,0 + |a‘m,so,n ‘b|m,p+so,0) ||’LLH5 (42)
We will use the following Moser estimates for composition.

Theorem 1.13 (Moser estimates). Let Q C C? an open and o > 4. Let F € C*(Q;C) a smooth
function in the real sense and such that F(0) = 0 and K C Q compact, then for any function
U € H° (T4 C?) NU such that
Ux) e K, YxeT
we have
IE(U)a- < Co sup [F'(2)[1U] e - (43)

Corollary 1.14. Suppose F € C*(%;C) and U,W € Bl 5([=T,T};r) with § > 0 such that

W(t,z),U(t,x) € K, Y(t,x)€[-T,T] x T

with Q, K like in Theorem |43, Let d(§) € NS’ZH and consider the time dependent symbol
a(U; &) :== F(U(x,t))d(€). Then we have

e ac€ NS’;‘JF(; and there exist a constant C,. > 0 which depends on r and K such that

|a‘m780+6,n < Cy; (44)

o If6 > 2 then Oia € N$+5_2 and there exist a constant C. > 0 which depends on r and K
such that
|8ta|m,so+6—2,n < CT; (45)

o If K is convex then a(U;§) — a(W;&) € N\ s and there exist a constant C,. > 0 which
depends on r and K such that

la(U;€) — a(W§§)|m,SO+6,n S CollU = W goo+s; (46)
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