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The irrotational Euler-Korteweg equation{
∂tρ = −div(ρ∇φ)

∂tφ = − 1
2 |∇φ|

2 − g(ρ) +K(ρ)∆ρ+ 1
2K
′(ρ)|∇ρ|2

(1)

is a modification of the Euler equations for compressible fluids to include capillary effects. The
scalar variable ρ(t, x) > 0 is the density of the fluid, whereas φ(t, x) is a scalar potential function.
They are both real valued. The functions K(ρ), g(ρ) are defined on R+, smooth, bounded
with all their derivatives, g(0) = 0 and K(ρ) is positive. We will consider this system on
Hσ := Hσ(Rd)×Hσ(Rd), σ ≥ 0.

The system is known to admit stationary solutions of the form(
ρ(t, x)
φ(t, x)

)
=

(
a(x)
b(x)

)
(2)

where a(x), b(x) are smooth, real valued functions, bounded with their derivatives, and such that

a(x) ≥ c > 0 for any x ∈ Rd. (3)

The goal of the exam is to prove an energy estimate for the system obtained
linearizing (1) around the stationary solution (2).
This requires to write the linear system in a pseudodifferential form, pass to complex coordinates,
introduce a modified energy equivalent to the norm Hσ, and bound the variation of the modified
energy. You will need to use symbolic calculus in the Weyl quantization. Let’s start.

1. Linearize system (1) around the solution (2), and write it as

∂t

(
ρ
φ

)
= OpW

((
∇b · iξ a|ξ|2
−K(a)|ξ|2 ∇b · iξ

))(
ρ
φ

)
+ OpW (A0)

(
ρ
φ

)
(4)

where A0 is a matrix of symbols in S0 (symbols of order 0). Here and below we use the
notation

OpW
((

a1 a2
a3 a4

))
:=

(
OpW (a1) OpW (a2)

OpW (a3) OpW (a4)

)
.

2. Pass to complex coordinates

(
u
u

)
, obtaining the system

∂t

(
u
u

)
= JOpW (A2 +A1 +A0)

(
u
u

)
(5)

1



2

where J :=

(
−i 0
0 i

)
,

A2 :=

(
a+ a−
a− a+

)
|ξ|2, A1 :=

(
∇b · ξ 0

0 −∇b · ξ

)
and A0 ∈ S0. You need to compute a± and to prove that there are matrices F± such that

F−1 J
[
a+ a−
a− a+

]
F = Jλ(x) , (6)

where λ(x) is positive and bounded away from 0.

Now it is time for the core argument. You need to prove energy estimates for (5). In particular
the goal is to prove that every solution fulfills the estimate

‖u(t)‖2σ ≤ C1‖u(0)‖2σ + C2

∫ t

0

‖u(τ)‖2σ dτ, (7)

for some constants C1, C2 > 0. A direct estimate fails (why?). The strategy is to construct a
modified energy, which is equivalent to the norm Hσ, and bound its time variation. The modified
energy is, for σ > 0

Eσ(U)2 := 〈OpW
(
λσ(x)|ξ|2σ

)
OpW

(
F−1

)
U,OpW

(
F−1

)
U〉, U =

(
u
u

)
(8)

where we introduce the real scalar product

〈V,W 〉 := 2<
∫
Rd

v(x)w(x) dx, V =

[
v
v

]
, W =

[
w
w

]
.

4. Prove that Eσ(U) is equivalent to the Hσ norm, in particular there exists C > 0 s.t.

C−1‖V ‖2σ − ‖V ‖20 ≤ Eσ(V )2 ≤ C‖V ‖2σ, ∀V ∈ Hσ

[Hint: you will probably need to use that OpW (F ) OpW
(
F−1

)
= Id + OpW

(
S−1

)
.]

5. Prove that
d

dt
Eσ(U(t))2 ≤ C‖U(t)‖2σ

and deduce the energy inequality (7).

[Hint: quantizing (6) you get

OpW
(
F−1

)
JOpW (A2 +A1) OpW (F ) = JOpW

(
λ(x)|ξ|2 +∇b · ξ

)
+ OpW (A0) (9)

where F±, A0 ∈ S0 (for the moment just use this)].

6. (Bonus) Prove (9).


