Non-equilibrium transport through double quantum dot devices: A non-Fermi liquid critical point

Ian Affleck
University of British Columbia

<u>OUTLINE</u>

- Critical point in 2 impurity Kondo model
- Experimental realizations
- Exact critical behaviour
- Non-equilibrium transport and noise

Critical Point in 2-Impurity Kondo Model

Single Impurity Case:

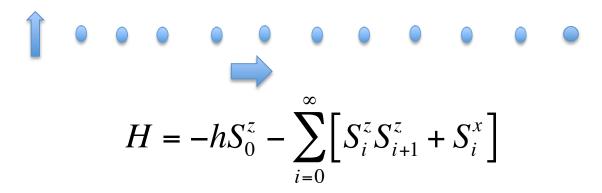
- A single S=1/2 impurity (at r=0) has an exchange interaction with a single channel of conduction electrons: $H_{int} = J\vec{S} \cdot \psi(0)^{\dagger} \bar{\sigma} \psi(0)/2$
- J renormalizes to infinity at low energies
- Low energy ($E < T_K$) Fermi liquid fixed point corresponds to one electron from the Fermi sea forming an entangled singlet state with impurity
- Other electrons suffer $\pi/2$ phase shift to stay orthogonal to entangled electron

When 2 impurities couple independently to 2 channels and also have exchange coupling with each other there is frustration:

$$H_{\rm int} = J \left[\vec{S}_1 \cdot \psi_1(0)^+ \vec{\sigma} \psi_1(0) / 2 + \vec{S}_2 \cdot \psi_2(0)^+ \vec{\sigma} \psi_2(0) / 2 \right] + K \vec{S}_1 \cdot \vec{S}_2$$

- •When K<K_c, each spin forms singlet with a conduction electron, with a $\pi/2$ phase shift in each channel
- •When K>K_c, 2 impurities form singlet together and there are no phase shifts
- •K_c is of order T_K

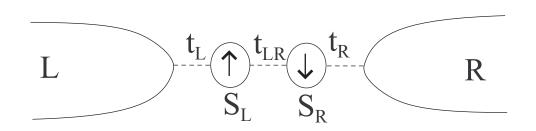
- Phase shifts are a sort of trivial conformally invariant boundary condition (BC)
- •At quantum critical point, K=K_c, a non-trivial
- conformally invariant BC occurs
- Singlet and triplet states of 2 impurities are
- degenerate at this point
- •Behaviour near Quantum Critical Point (QCP) at K=K_c, is equivalent to that of critical quantum Ising chain with boundary field (IA, A.W.W. Ludwig, 1992)



NB: bulk chain is tuned to critical transverse field

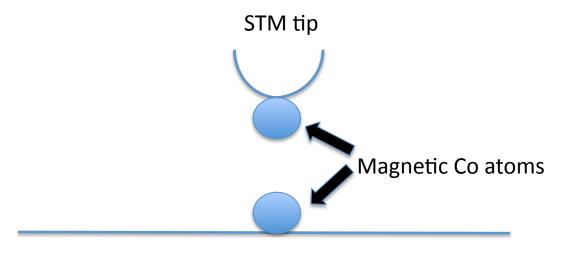
- •At h=0, 2 states of "impurity" at i=0 are degenerate
- •h is a relevant boundary perturbation that leads to renormalization group (RG) flow to fixed spin boundary condition at i=0
- Spin up or down state of boundary spin correspond to singlet or triplet in 2 impurity Kondo model
- An exact correspondence near QCP

Experimental Realizations



2 gated semi-conductor quantum dots in series between 2 leads
K~t_{LR}²/U where U is dot charging energy
System has been studied experimentally as a 2-qubit realization

System was recently realized in STM experiment (K. Kern, private communication) with one magnetic atom picked up by STM tip and one on surface



Metallic surface (Au 111)

Exact Critical Behaviour

- Connection with Ising model can be used by mapping to 8 Majorana fermions
- •First bosonize, then refermionize introducing charge, spin, flavour and "spin-flavour" fermions
- •Each of these 4 Dirac fermions can then be split into 2 Majorana fermions

- Various fixed points correspond to various simple BC's on Majorana fermions
- •At zero Kondo coupling: $\chi_{out}^{i} = \chi_{in}^{i}$
- QCP corresponds to a sign change in BC for
- 1 Majorana component of spin-charge fermion:
- $\chi_{out}^{1} = -\chi_{in}^{1}$, other BC's unchanged
- •Relevant (K-K_c) interaction at QCP can be written in terms of χ_1 at origin after transforming to scattering basis: $H_{int} = \lambda_1 \chi_1(0)a$
- •Here $\lambda_1 \prec (K-K_c)$
- •a is an extra Majorana fermion that lives at x=0 only and flips impurities between singlet and triplet

- •In series double dot set-up there is generally another relevant operator which transmits charge between 2 leads ("channels") $\delta H = V_{LR}[\psi_1^+(0)\psi_2(0) + h.c.], \ V_{LR} \prec t_L t_{LR} t_R / U^2$
- •At QCP this becomes linear in a <u>flavour</u> Majorana fermion, $\delta H = \lambda_2 \chi_2(0)$ a with $\lambda_2 \prec V_{LR}$
- Both relevant interactions have RG scaling dimension ½
- Related to each other by SO(8) rotation

Non-equilibrium transport and noise

This series double dot system is amenable to exact calculations in critical region since:

- ✓ Perturbations are harmonic in χ^i and a-fermions
- ✓ Current operator is quadratic in χ^i 's
- •H_{eff} maps onto one studied earlier as a special (and highly unrealistic) limit of single dot model by Schiller-Hershfeld and Komnik-Gogolin, as does current operator
- We may simply borrow their results

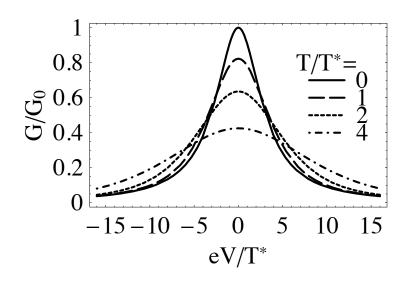
- Current and noise can be calculated close to critical point
- •Distance from critical point determined by 2 parameters: K-K_c and V (L-R tunneling)
- •Crossover scale is:

$$T^* = \lambda^2 = \lambda_1^2 + \lambda_2^2 \text{ where } \lambda_1 = c_1(K - K_c) / \sqrt{T_K} , \quad \lambda_2 = c_2 v V_{LR} \sqrt{T_K}$$

•Here ν is density of states; c_i are constants of order 1

Must have $T^* << T_K$ for theory to apply

Conductance at source-drain voltage, V and temperature T: $G=(2e^2/h)(T^*_{LR}/T^*)^2F(T/T^*,eV/T^*)$ Here T^*_{LR} is part of crossover scale due to V_{LR} : $T^*_{LR}=\lambda_2^2=(c_2vV_{LR})^2T_K$ and: $F(t,v)=Re\ \psi_1(1/2+1/4\pi t+iv/2\pi t)/4\pi t$ where ψ_1 is the trigamma function



- At T=0, a very narrow resonance at Fermi energy of width T*<<T_K
- •Peak height is 2e²/h at K=K_c
- •NB: at larger V~K, presumably get split peaks as predicted earlier and seen in experiments

"full counting statistics", as defined by Levitov and Lesovik also determined exactly: Letting P(Q) be the probability of transmitting charge Q in waiting time T, the generating function defined by

function defined by $\sum_{\infty}^{\infty} P(Q)e^{i\mu Q} \equiv \chi(\mu) \text{ is given by } \frac{\ln \chi(\mu)}{T} = \int_{-\infty}^{\infty} \frac{d\varepsilon}{4\pi} \ln \left[1 + \sum_{n=-2}^{2} A_n(\varepsilon)(e^{i\mu n} - 1)\right]$

 $Q = -\infty$

$$A_{1}(\varepsilon) = \frac{2\lambda_{1}^{2}\lambda_{2}^{2}}{4\varepsilon^{2} + \lambda^{4}} \left[n_{F}(\varepsilon)(1 - n_{L}(\varepsilon)) + n_{R}(\varepsilon)(1 - n_{F}(\varepsilon)) \right]$$

with

$$A_2(\varepsilon) = \frac{\lambda_2^4}{4\varepsilon^2 + \lambda^4} n_L(\varepsilon) (1 - n_R(\varepsilon))$$

With A_{-n} obtained from A_n by switching L and R; $n_F(\epsilon)=1/(e^{\epsilon/T}+1)$, $n_{R/L}(\epsilon)=n_F(\epsilon\pm eV)$

From $\chi(\mu)$ the current, I, noise, S and higher cumulants can be extracted:

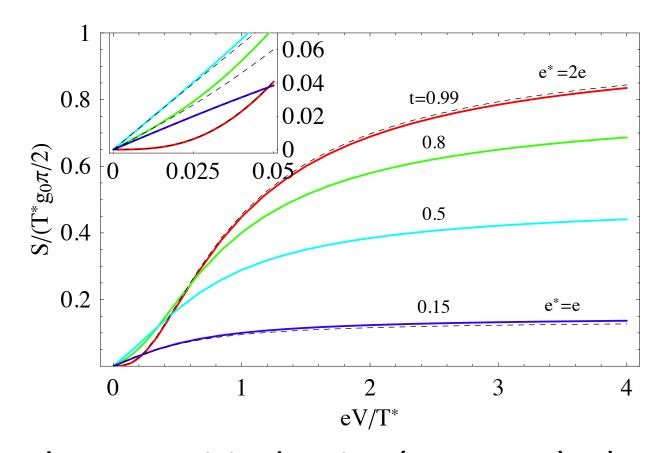
$$I = -ie \frac{\partial \ln \chi}{\partial \mu} \bigg|_{\mu=0} / T \qquad S = -2e \frac{\partial^2 \ln \chi}{\partial \mu^2} \bigg|_{\mu=0} / T$$

Effective charge, e*, is often defined by:

$$S_{fit} = 2e^* \frac{2e^2}{h} \int_{0}^{V} t(V')[1 - t(V')]dV'$$

where $t(V)=(h/2e^2)dI/dV$.

 This definition is motivated by noise for non-interacting electrons



Close to critical point (K≈K_{c,} t≈1) e*=2e gives good fit except at very small V
 This reflects cross-over from NFL fixed point at higher energies to FL at low energies

Collaborators

Andreas Ludwig: UBC→UCSB

Barbara Jones: IBM Almaden

Eran Sela: UBC - U. Köln

Justin Malecki: UBC

CONCLUSIONS

- •Competition between Kondo screening and inter-impurity singlet formation leads to a non-Fermi liquid quantum critical point
- •In series double quantum dot device, induced tunnelling amplitude between leads destabilizes this QCP but it determines higher E physics
- •Exact crossover from NFL to FL critical points has been calculated by mapping to free Majorana fermions