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Outline

Power-low behavior of electron transport in single-walled
carbon nanotubes
Experimental data:
1. Photoemission spectra of carbon nanotubes
2. Differential conductance
Known results - (1+1)D models of strongly interacting many-body
systems
1.The Luttinger model
2.The Hubbard model
3.The XXZ spin-1/2 Heisenberg chain or the model of spinless
fermions with the density-density interaction
Unknown results - exact solvable (1+1)D model of spinless fermions
with hard-core interaction
calculations of the critical exponents
the state of strongly interacting Luttinger liquid state
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Known results

The Luttinger model for spinless fermions
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the momentum distribution function
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K, =1 corresponds fo free spinless fermions

the case K, <1 characterizes repulsion interaction between fermions,

K f <1 attractive interaction
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The Hubbard model H = —'I'Z (cJGcJ+16 + CJ+1G Jc5) + UZ n.n,

t is the hopping integral, U is the constant of the on-
site repulsive (U>0) interaction
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Spin-1/2 XXZ Heisenberg chain
_ZZ(SX +1 _|_5}’ J+1)+JZSZ J+1

S/ =c¢c; exp(—/7z > n;),
the Jordan-Wigner transformation Ny
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or model of spinless fermions
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the hopping integral is equal to unity, J is the constant of the
density-density interaction
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Unknown results

The exact solution of the model Hamiltonian with hard-core interaction

The Hamiltonian of the chain of spinless fermions with density-density
intferactions

+ +
H=->(ccy+c/uc))+ T D nn +3, D> nn, +..3, > nn,
J J J j
here  J, > J,...>J,

The case J, — o0, J, > o, J, ;= 0,J, is reduced to the
Hamiltonian with hard-core interaction, where hard-core radius is
equal to /2

The model has exact solution for arbitrary values of the hard-core
radius I/2 and coupling constant J,
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the Bete equations have the following form
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k.2, are the momenta and charge rapidities of spinless fermions
integral equation for the distribution function p(A)
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with the kernel being for' J, <1

K (l) sin(nn)

27r coshi cos(nn)
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Critical exponents for J, <1,J, =cosy

as a function of the density of fermions for n =0.1(solid lines),n=n/4 (dashed); n=n /3
(dashed with points) and /=0,1,2,3. Result for /=0 is plotted (dotted line) for
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Critical exponents for J, >1J, =coshy

as a function of the electron density for n =0.1 (solid lines), 0.5 (dashed); 1
(dashed with points) and ~0,1,2,3, result for /=0 is plotted (dotted line) for
comparision
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The leading asymptotics of the density-density correlation
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The long-distance asymptotic of the one-particle
correlation function
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1 the state of strongly interacting

0>1 Luttinger liquid state
the singularity vanishes

kF :k

the state of strongly interacting Luttinger liquid state is characterized by
anomalously strong density-density correlations in the many-body system and
a disappearing residual Fermi surface




Conclusions

The photoemission experiments, obtained on the organic conductors,
show much larger value of © =1.25 than in carbon nanotubes where
©=0.46. Such large values of the critical exponent © are explained in
the framework of state strongly interacting Luttinger liquid, that is
realized in 1D systems with a hard-core repulsive interaction.

T hope, that I answered on the question What is the interaction that
leads to large values of the critical exponents ?

*And to propose the family of the integrable (1+1)D models that
describe the behavior of strongly interacting Luttinger liquid state

» Open question about the nature (realization) of a hard-core in
carbon nanotubes
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