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Entanglement is:

Why ?
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How a classically correlated (separable) state looks like ?

R. F. Werner, Phys. Rev. A 40, 4277 (1989)

A bipartite density operator        is classically correlated 
(separable) if it admits a convex combination of product states:
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Classical communication

Alice
Bob
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LOCC:  Local Operations and Classical Communication 

Alice and Bob have two independent devices which prepare the state            and       . 
Independent measurements in terms of      

ρ(A) ρ(B)

ρ = ρ(A) ⊗ ρ(B)

    Charlie calls Alice and Bob by phone, and ask Alice and Bob to create 
    the states            and        , respectively, with probability          . 

   This creates correlations between the results of measurements obtained 
   by Alice and Bob. The state of this process is classically correlated by LOCC. 
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Entanglement is:

J. Bell: … a correlation stronger than any classical correlation

P. Shor: … a global structure that allows for faster   algorithms

C. Bennett: … a resource that enables quantum teleportation

A. Ekert: … a tool for secure communication

A. Peres: … used by quantum magicians to do tricks that cannot
               be imitated by classical magicians
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Entanglement is:

J. Bell: … a correlation stronger than any classical correlation

P. Shor: … a global structure that allows for faster   algorithms

C. Bennett: … a resource that enables quantum teleportation

A. Ekert: … a tool for secure communication

A. Peres: … used by quantum magicians to do tricks that cannot
               be imitated by classical magicians

... high distinguishability of quantum states 
 -> ultra-sensitive interferometry, 
      quantum Zeno dynamics, ecc. 

this talk:
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Can we distinguish two quantum states? 

R. F. Werner, Phys. Rev. A 40, 4277 (1989)

A bipartite density operator        is classically correlated 
(separable) if it admits a convex combination of product states:

ABρ
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Classical communication

Alice
Bob

……. ……. ……. …….

R. F. Werner, Phys. Rev. A 40, 4277 (1989)

A bipartite density operator        is classically correlated 
(separable) if it admits a convex combination of product states:

ABρ

( ) ( ) 1,10;)( =≤≤⊗= !!
i

ii
i

B
i

A
i

i
sep

AB PPP !!!!!!!!! ρρρ

1P 2P kP 1P 2P kP

( )1
Aρ ( )2

Aρ ( )k
Aρ ( )1

Bρ ( )2
Bρ ( )k

Bρ

Classical communication

Alice
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Entangled states can be more distinguishable than classically correlated states.
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A bipartite density operator        is classically correlated 
(separable) if it admits a convex combination of product states:
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has the state 
been changed ? ??

Alice and Bob play 
with the state    .ρ̂

ρ̂(θ) = e−iĤθ ρ̂ eiĤθ

the witch steals and shifts the state by a secret amount    . 
Then she gives the state back to Alice and Bob.

θ



1) Statististical distinguishability 
    of quantum states

|ψ0�How much different are                                  |ψf � = e−iĤθ|ψ0�and ?



The simplest example: two Gaussian states

∆θ ∼ σ√
m

θ > ∆θ0 + ∆θf
Wooters (1981)

the states are distinguishable if  their “distance” is larger than their “noise”

The “noise”        decreases with the number of measurements 
and increases with quantum fluctuations σ

∆θ m

θ

σ

ψ0 ψf

θ1 θ2θm
.....

|ψ|2

|ψ0�How much different are                                  |ψf � = e−iĤθ|ψ0�and ?



In general, the “noise” is given by the Cramer-Rao lower bound: 

∆θ ∼ σ√
m

θ > ∆θ0 + ∆θf
θ

σ

ψ0 ψf

θ1 θ2θm
.....

|ψ|2
the states are distinguishable if  their “distance” is larger than their “noise”

e.g., with pure states and optimal measurements: F = 4 ∆2
Ĥ

∆θ ≥ 1√
m

1√
F

Fisher information
the larger is the Fisher the more 
the states are distinguishable

|�ψ0|ψδθ�|2 = 1− F

4
δθ2distance and scalar product:



2) Multi particle Entanglement

N particles in two modes (N qbits) are entangled 
if their state cannot be written as a 
convex combination of product states 

ρ̂ �=
�

k

pk ρ̂(1)k ⊗ ρ̂(2)k ⊗ ...ρ̂(N)
k

Can we give
i) a simple criterion to recognize multiparticle entanglement and 
ii) recognize “useful” entanglement for distinguishing states ?



sum of Pauli matrices along arbitrary directions rotating locally each qbit

Consider an Hermitian operator: Ĥ =
N�

k=1

σ̂i

If the Fisher information >  the number of q-bits,
the state is entangled (sufficient condition)

Luca Pezze`, AS, PRL 102, 100401 (2009)                        

The upper bound is F ≤ N2

if F [Ĥ] > N → ρ̂ �=
�

k

pk ρ̂(1)k ⊗ ρ̂(2)k ⊗ ...ρ̂(N)
k

classically 
correlated

if ρ̂ =
�

k

pk ρ̂(1)k ⊗ ρ̂(2)k ⊗ ...ρ̂(N)
k → F [Ĥ] ≤ N



Physical meaning ? 

|ψ0�How much different are                                  |ψf � = e−iĤθ|ψ0�and ?
remember the original question:

Entangled states can be more distinguishable 
along a path in the Hilbert space than 
classically correlated states 

Entangled states can evolve faster than separable states 
under unitary transformations |�ψ0|ψδθ�|2 = 1− F

4
δθ2



What this entanglement can be useful for ? 

Zeno dynamics

Interferometry
E.g. :



What is interferometry ?



L. Zehnder, Zeits. f. Instr. 11, 275 (1891)
L. Mach, Zeits. f. Instr.12, 89 (1892)

Mach-Zehnder

with pure states and 
optimal measurements :

Highest sensitivity allowed by Quantum Mechanics

Cramer-Rao lower boundThe sensitivity depends on: 
i)      number of measurements  
ii)     quantum fluctuations
    (Fisher information)

m

∆θ ≥ 1
2

1√
m

1
∆Ŝy

F ∆θ ≥ 1√
m

1√
F

|ψout� = e−iŜyθ|ψinp�

Ŝy =
1
2i

(â+b̂− b̂+â) =
1
2

N�

i=1

σ̂y,i



separable states

entangled states

1√
m

1√
N

> ∆θ ≥ 1√
m

1
N

shot-noise        sub shot-noise -> Heisenberg limit

Putting together 
entanglement and distinguishability:

F ≤ N F ≤ N N < F ≤ N2

∆θ ≥ 1√
m

1√
N
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Pezze'  &  Smerzi, PRA 2006

Ψinp ≈
N
2

+1,N
2
−1 +

N
2
−1,N

2
+1

€ 

Pezze'  &  Smerzi, PRL 2007
Squeezed vacuum ⊗  coherent state
Number squeezed ⊗  coherent state (to be sub.)

€ 

€ 

Yurke, McCall, Klauder, PRA 1987

Ψinp ≈
N
2

+1,N
2
−1 +

N
2

,N
2

€ 

Holland &  Burnett,   PRL 1993

Ψinp =
N
2

,N
2

€ 

Wineland et al.
Spin -Squeezing, PRL 1994
ΨBS ≈ N, 0 + 0 , N ,  PRA 1995 

A few input states for Heisenberg limit:

Suggest your own state !!!

Recent related theory by Giovannetti, Maccone, Lloy, Dowling, Paris, ...

Examples: a few input states for 
Heisenberg limit with Mach-Zehnder

Spin-squeezed states

ξ =
N∆2Sz

�Ŝx�2
< 1

Wineland et al. 1994, Kitagawa & Ueda, 1993

Spin squeezing is also a sufficient condition to 
recognize useful multi-particle entanglement

Sorensen, Duan, Cirac, Zoller (2001)

Experiments in Munich, Heidelberg, Florence, (atoms), Munich (photons)



the Fisher information criterion 
includes all spin-squeezed states

no squeezing squeezing

useful entanglement (            )

ξ ≥ 1 ξ < 1

Spin squeezing vs. Fisher

F > N

but spin-queezing is easier to measure



splitter beam

splitter beam

shift phase

tmeasuremen

time
€ 

€ 

ˆ a 

€ 

ˆ b input

Mach-Zehnder interferometry with Bose-Einstein condensates 
trapped in a double well potential (or in two hyperfine levels): 

interatomic
interaction

tunneling

energy off-set

Ĥ = Ec(t) Ŝ
2
z −K(t) Ŝx + ∆E(t) Ŝz

Ŝz =
1
2
(N̂a − N̂b)

Ŝ2
z =

1
4
(â+â− b̂+b̂)2 =

1
4
(N̂a − N̂b)2

Two-modes Hamiltonian of a BEC tunneling 
trough the barrier of a double well potential

Ŝx =
1
2
(â+b̂ + b̂+â)



a protocol for creating entanglement with BEC:

|ψ0� ∼ (|1a, 0b�+ |0a, 1b�)N

Spin-coherent state
(Poisson distribution) 

1) Splitting

a b

2) Nonlinear dynamics of the two decoupled condensates 

Ĥ = Ec(t) Ŝ
2
z −K(t) Ŝx + ∆E(t) Ŝz

|ψinp� = e−iEcŜ2
zt|ψ0�

Philipp Treutlein et al., Nature 2010
Markus Oberthaler et al., Nature 2010

Ĥ = Ec(t) Ŝ
2
z −K(t) Ŝx + ∆E(t) Ŝz

3) Use the entangled state for sub shot-noise phase 
estimation with the BEC Mach-Zehnder interferometer

Ĥ = Ec(t) Ŝ
2
z −K(t) Ŝx + ∆E(t) Ŝz

Oberthaler et al., Nature 2010 
sub shot-noise Ramsey 



t (Ec

√
N)

N/Fq

ξ

|ψinp� = e−iEcŜ2
zt|ψ0�

N = 100

Spin squeezing                            ξ =
N∆2Sθ

�Ŝx�2
< 1

Kitagawa & Ueda, 1993
Sorensen, Duan, Cirac, Zoller (2001)

shot-noise

Particle entanglement 
persists longer than 
spin-squeezing

∆θ =
1√
m

�
ξ

N



Is entanglement due to symmetrization physical? 

Example: 2 identical bosons in different harmonic traps: twin-Fock states

1st quantization2nd quantization

|1�L |1�R |R1, L2� + |L1, R2�
  separable    entangled

It is sometime claimed that entanglement which 
arises from symmetrization alone is unphysical

xL R



Is entanglement due to symmetrization physical? 

Why ? Because entanglement is often related to local addressability 
(required for quantum computation, violation of Bell inequalities, etc.

Indistinguishable particles are not locally addressable !

xL R

Example: 2 identical bosons in different harmonic traps: twin-Fock states

1st quantization2nd quantization

|1�L |1�R |R1, L2� + |L1, R2�
  separable    entangled



Is entanglement due to symmetrization physical? 

entanglement (e.g. twin-Fock states) which can be created with BEC 
in double wells is due to symmetrization. 
Notice that the spin-squeezing & Fisher entanglement conditions 
require collective operations (not local operations)

xL R

Example: 2 identical bosons in different harmonic traps: twin-Fock states

1st quantization2nd quantization

|1�L |1�R |R1, L2� + |L1, R2�
  separable    entangled



Is entanglement due to symmetrization physical? 

Example: 2 identical bosons in different harmonic traps: twin-Fock states

xL R

Philipp Hyllus, AS, unpublished                       

Particle entanglement due to symmetrization is -useful- 
for distinguishing quantum states 
(e.g.: necessary for sub shot-noise interferometry)
where only collective operations are required

1st quantization2nd quantization

|1�L |1�R |R1, L2� + |L1, R2�
  separable    entangled



What this entanglement can be useful for ? 

Zeno dynamics

Interferometry
E.g. :



Quantum Zeno dynamics

A flying arrow is at rest. At any given moment the arrow is in a space equal to its 
own length, and therefore is at rest at that moment. So, it is at rest at all moments.

Raphael’s School of Athens (Vatican Museums)



Peres, Am. J. Phys. 48, 931 (1980)

Example: spinExample: spin

1 2 m... ... m− 1

e−iσ̂yτ e−iσ̂yτ e−iσ̂yτ e−iσ̂yτ e−iσ̂yτ e−iσ̂yτ

|ψ(t)� = e−iσ̂yτ e−iσ̂yτ ... e−iσ̂yτ |ψ0� = e−iσ̂yt|ψ0�

Consider a spin                    rotated by |ψ0� = | ↑�z Û = e−iσ̂yt =
m�

k=1

e−iσ̂yτ

t = mτ(total time :                 )



Zeno “paradox”: the arrow does not rotate if watched !!! 

1 2 m... ... m− 1

P (yes|t)→ 1m→∞, τ → 0 so that t = mτ = const

P (yes|t) = |�ψ0|ψ(τ)�|2m � 1−m ∆2σ̂y τ2

Π̂ = |ψ0��ψ0|

Consider the projective measurement:
The projective measurement has
eigenvalue “yes”, corresponding 
to the state projected back to 
with probability

|ψ0�
|�ψ0|ψ(τ)�|2



Û = e−iĤtConsider a system living in      with dynamics H

ρ̂0

H

HΠ

Ĥ = Ĥ− Π̂ĤΠ̂

P (yes|t) = Tr[(Π̂Û(τ) Π̂)
m ρ̂0 (Π̂Û†

(τ)Π̂)
m

] � 1−m ∆
2
Ĥ τ2

Effective Zeno Hamiltonian

The effective Zeno Hamiltonian is the Fisher information

F (τ) =

�
P(yes|τ)

∂τ

�2
1

P(yes|τ)[1− P(yes|τ)]
= 4 ∆

2
Ĥ + O(τ

4
)

Quite generally,

and a projector      onto the subspace Π̂ HΠ

ρ̂0 = Π̂ρ̂0Π̂The initial state                     is in HΠ

A. Smerzi, arXiv:1002.2760           



Quantum Zeno dynamics

τ = t/m(Interval among measurements:                   )

The small parameter of Zeno depends 
on the Cramer-Rao lower bound τqz = 2 ∆τcrlb =

2
√

m
√

F

when τ/τqz << 1

P (yes|t) � 1− F

4m
t2 = 1−

�
τ

τqz

�2

The Quantum Zeno dynamics is strictly related 
with indistinguishability and entanglement

physical interpretation entanglement affects Zeno



A physical interpretation of Zeno:

τ = t/m(Interval among measurements:                  )

P (yes|t) � 1− F

4m
t2 = 1−

�
τ

τqz

�2

when τ/τqz << 1

The projective measurements bring the state back to 
its initial value (the dynamics is frozen) 
when the two states are statistically 
indistinguishable with -m- measurements 



The number of measurements -m- needed to 
create the Zeno dynamics can be quite larger 
for entangled states that for separable states

Separable states have a Fisher information bounded by F = N
�

τ

τqz

�2

=
t2

4
N

m
<< 1Zeno dynamics when 

F = N2Entangled states have a Fisher information bounded by 
�

τ

τqz

�2

=
t2

4
N2

m
<< 1Zeno dynamics when 

Zeno for separable and entangled states:
Consider a state of N qbits 



This prediction can be tested with QND measurements 
in a three levels atomic system

particle-separable state:

Zeno dynamics with a number of measurements
of the order of the number of particles

(Cook 1988)

Itano, Heinzen, Bollinger, and Wineland 1990

Nagels, Hermans, and Chapovsky 1997

Balzer, Huesmann, Neuhauser, and Toschek, 2000

Wunderlich, Balzer, and Toschek, 2001

Wilkinson, Bharucha, Fischer, Madison, Morrow, Niu, Sundaram, 

and Raizen, 1997.

Fischer, B. Gutierrez-Medina, and Raizen, 2001

P (yes|t) = |�ψ0|e−iŜyθ/m|ψ0�|2m � 1− N

4m
θ2

|ψ0� = |0�a|N�b

Ramsey oscillations

induced
fluorescence

e−iŜyθ

|ψ�a

|ψ�b



This prediction can be tested with QND measurements 
in a three levels atomic system

particle-entangled state 
(twin-Foch):

Zeno dynamics with a number of measurements
of the order of the -square- of number of particles

P (yes|t) = |�ψ0|e−iŜyθ/m|ψ0�|2m � 1− N2

8m
θ2

|ψ0� = |N
2
�a|

N

2
�b

Ramsey oscillations

induced
fluorescence

e−iŜyθ

|ψ�a

|ψ�b



von Neumann,1932

Beskow and Nilsson,1967

Khalfin 1968

Friedman 1972
Misra and Sudarshan, 1977

(Cook 1988)

Itano, Heinzen, Bollinger, and Wineland 1990

Nagels, Hermans, and Chapovsky 1997

Balzer, Huesmann, Neuhauser, and Toschek, 2000

Wunderlich, Balzer, and Toschek, 2001

Wilkinson, Bharucha, Fischer, Madison, Morrow, Niu, Sundaram, 

and Raizen, 1997.

Fischer, B. Gutierrez-Medina, and Raizen, 2001

a few more references...

Kofman and Kurizki, 2000
Facchi and Pascazio, 2002

theory experiments



Summary 
1) Particle entanglement <--> distinguishability of states

2) How to recognize useful entanglement: Fisher information 

     Applications in interferometry: shot noise versus Heisenberg limit

3) Distinguishability, entanglement and the Zeno paradox. 

Zeno dynamics with particle entangled states might require a quite 
smaller measurement intervals than classically correlated states.

The physical time scale is provided by the Cramer-Rao lower bound, which 
measures the distinguishability of states along a path in the Hilbert space.

The Zeno dynamics is the result of projective measurements 
among quantum states which are indistinguishable. 



There are different technologies which are based on efficiently distinguish quantum 
states. For instance:

In quantum control theories, when searching the optimal path to generate a target 
quantum state 

Setting the conditions for adiabatic approximations 

Adiabatic quantum computation 

In the estimation of the speed limits of quantum computation 

1) Particle entanglement <--> distinguishability of states

2) How to recognize useful entanglement: Fisher information 

     Applications in interferometry: shot noise versus Heisenberg limit

3) Distinguishability, entanglement and the Zeno paradox. 

Summary 


