Topological Quantum Codes: a model with physical realizability

Beni Yoshida (Physics, MIT)

joint work with Prof. Isaac Chuang June 8, 2010 @ Obergurgl, Austria

Importance of quantum coding theory

Importance of quantum coding theory

In quantum information science,
Protecting a qubit is essential in realizing quantum information theoretical ideas.

Importance of quantum coding theory

In quantum information science.

Protecting a qubit is essential in realizing quantum information theoretical ideas.

In condensed matter physics,
Several models of correlated spin systems can be considered as quantum codes.

Lack of physical realizability in quantum codes

Lack of physical realizability in quantum codes

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

Lack of physical realizability in quantum codes

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Lack of physical realizability in quantum codes

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Hamiltonian must have only local interactions.

Lack of physical realizability in quantum codes

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Hamiltonian must have only local interactions.
Hamiltonians must have some physical symmetries such as translation symmetries.

Lack of physical realizability in quantum codes

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Hamiltonian must have only local interactions.
Hamiltonians must have some physical symmetries such as translation symmetries.

Quantum code

Lack of physical realizability in quantum codes

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Hamiltonian must have only local interactions.
Hamiltonians must have some physical symmetries such as translation symmetries.

Quantum code + physical realizability

In this talk...

In this talk...

A model which covers a large class of physically realizable quantum codes, supported by local and physically symmetric Hamiltonians defined on a 2 D lattice.

A model which covers a large class of physically realizable quantum codes, supported by local and physically symmetric Hamiltonians defined on a 2 D lattice.

The model is exactly solvable, meaning that logical operators can be easily computed.

A model which covers a large class of physically realizable quantum codes, supported by local and physically symmetric Hamiltonians defined on a 2 D lattice.

The model is exactly solvable, meaning that logical operators can be easily computed.
"Most" of the models have topological order, and are good quantum codes.

Review of stabilizer codes

Review of stabilizer codes

The Hamiltonian

$$
H=-\sum S_{j} \quad\left[S_{j}, S_{j^{\prime}}\right]=0 \quad \text { Pauli operators }
$$

Review of stabilizer codes

The Hamiltonian

$$
\begin{array}{r}
H=-\sum S_{j} \quad\left[S_{j}, S_{j^{\prime}}\right]=0 \quad \text { Pauli operators } \\
S_{j}|\psi\rangle=|\psi\rangle \text { Ground states }
\end{array}
$$

Review of stabilizer codes

The Hamiltonian

$$
\begin{gathered}
H=-\sum S_{j} \quad\left[S_{j}, S_{j^{\prime}}\right]=0 \quad \text { Pauli operators } \\
S_{j}|\psi\rangle=|\psi\rangle \text { Ground states }
\end{gathered}
$$

Review of stabilizer codes

The Hamiltonian

$$
\begin{array}{cc}
H=-\sum S_{j} \quad\left[S_{j}, S_{j^{\prime}}\right]=0 \quad \text { Pauli operators } \\
S_{j}|\psi\rangle=|\psi\rangle & \text { Ground states }
\end{array}
$$

energy

$|\tilde{1}\rangle$ Qubits in the degenerate ground state space

Physically Realizable Code (STS model)

Physically Realizable Code (STS model)

Local interactions

Physically Realizable Code (STS model)

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Physically Realizable Code (STS model)

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Scale symmetries: the number of degenerate ground states does not depend on the system size.

Physically Realizable Code (STS model)

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Scale symmetries: the number of degenerate ground states does not depend on the system size.

Stabilizer code with Translation and Scale symmetries

Physically Realizable Code (STS model)

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Scale symmetries: the number of degenerate ground states does not depend on the system size.

Stabilizer code with Translation and Scale symmetries

STS model

Physically Realizable Code (STS model)

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Scale symmetries: the number of degenerate ground states does not depend on the system size.

Without scale symmetries, most codes are trivial...
(ex) array of 1D ferromagnet...

Properties of STS model

1, Exactly solvable

= logical operators can be easily computable.

2, Topological deformation of logical operators

Properties of STS model

1, Exactly solvable
$=$ logical operators are easily computable.

2, Topological deformation of logical operators

Review of Logical operators

Transform encoded qubits (ground states)

$|\tilde{0}\rangle \quad$ logical operators $\quad|\tilde{1}\rangle \quad H=-\sum S_{j}$

Review of Logical operators

Transform encoded qubits (ground states)

$|\tilde{0}\rangle \quad$ logical operators
 |ĩ \rangle
 $$
H=-\sum S_{j}
$$

Definition

$\left[\ell, S_{j}\right]=0$
$\ell \notin \mathcal{S}=\left\langle S_{1}, S_{2}, \cdots\right\rangle$

Commute with the Hamiltonian
Not a product of interaction terms

Review of Logical operators

Transform encoded qubits (ground states)

$|\tilde{0}\rangle \quad$ logical operators
 |ĩ
 $$
H=-\sum S_{j}
$$

Definition

$$
\begin{array}{ll}
{\left[\ell, S_{j}\right]=0} & \text { Commute with the Hamiltonian } \\
\ell \notin \mathcal{S}=\left\langle S_{1}, S_{2}, \cdots\right\rangle & \begin{array}{l}
\text { Not a product of interaction } \\
\text { terms }
\end{array}
\end{array}
$$

For each encoded qubit...
A pair of anti-commuting logical operators. $\{\ell, r\}=0$

Exact solvability: logical operators in STS

Exact solvability: logical operators in STS

Exact solvability: logical operators in STS

Classical ferromagnet (trivial STS)

Neighboring ZZ interactions

Classical ferromagnet (trivial STS)

Neighboring ZZ interactions

Classical ferromagnet (trivial STS)

Neighboring ZZ interactions

0 dim

Classical ferromagnet (trivial STS)

Neighboring ZZ interactions

0 dim

2 dim

Classical ferromagnet (trivial STS)

As a quantum code, this is useless...

The Toric code (non-trivial STS)

The Toric code (non-trivial STS)

The Toric code (non-trivial STS)

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

The Toric code (non-trivial STS)

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

The Toric code (non-trivial STS)

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

Very good code with topological order

Properties of STS model

1, Exactly solvable

= logical operators can be easily computable.

2, Topological deformation of logical operators

3, Non-trivial STS always has topological
order

Equivalence of logical operators

Equivalence of logical operators

$$
H=-\sum S_{j} \quad S_{j}|\psi\rangle=|\psi\rangle \text { Ground states }
$$

Equivalence of logical operators

$H=-\sum S_{j} \quad S_{j}|\psi\rangle=|\psi\rangle$ Ground states
Interaction terms act trivially on encoded qubits.

Equivalence of logical operators

$H=-\sum S_{j} \quad S_{j}|\psi\rangle=|\psi\rangle$ Ground states
Interaction terms act trivially on encoded qubits.

Logical Operators

$$
\ell
$$

Equivalence of logical operators

$H=-\sum S_{j} \quad S_{j}|\psi\rangle=|\psi\rangle$ Ground states
Interaction terms act trivially on encoded qubits.

Logical Operators

$$
\ell \longleftrightarrow \ell S_{j}
$$

Equivalence of logical operators

$H=-\sum S_{j} \quad S_{j}|\psi\rangle=|\psi\rangle$ Ground states
Interaction terms act trivially on encoded qubits.

Logical Operators

$$
\ell \longleftrightarrow \ell S_{j}
$$

Equivalent

Equivalence of logical operators

$H=-\sum S_{j} \quad S_{j}|\psi\rangle=|\psi\rangle$ Ground states
Interaction terms act trivially on encoded qubits.

Logical Operators

$$
\ell \longleftrightarrow \ell S_{j}
$$

Equivalent

So many equivalent representations...

Topological deformation of logical operators

Topological deformation of logical operators

Deformation Theorem

Shapes of any logical operators in STS model can be deformed while keeping them equivalent.

Topological deformation of logical operators

Deformation Theorem

Shapes of any logical operators in STS model can be deformed while keeping them equivalent.

Topological deformation of logical operators

Deformation Theorem

Shapes of any logical operators in STS model can be deformed while keeping them equivalent.

Topological deformation of logical operators

Deformation Theorem

 Shapes of any logical operators in STS model can be deformed while keeping them equivalent.

Topological deformation of logical operators

Deformation Theorem

Shapes of any logical operators in STS model can be deformed while keeping them equivalent.

Topological deformation of logical operators

Deformation Theorem

Shapes of any logical operators in STS model can be deformed while keeping them equivalent.

Topological deformation of logical operators

Deformation Theorem

Shapes of any logical operators in STS model can be deformed while keeping them equivalent.

Topological deformation of logical operators

Deformation Theorem

 Shapes of any logical operators in STS model can be deformed while keeping them equivalent.

Topological deformation of logical operators.

Properties of STS model

1, Exactly solvable
$=$ logical operators are easily computable.

2, Topological deformation of logical operators

Properties of STS model

1, Exactly solvable
$=$ logical operators are easily computable.

2, Topological deformation of logical operators

Topologic al entropy

Stability against
quantum fluctuation

Properties of STS model

1, Exactly solvable
$=$ logical operators are easily computable.

2, Topological deformation of logical operators

Topologic al entropy

Stability against
quantum fluctuation

Exact solvability: logical operators in STS

Exact solvability: logical operators in STS

2 dim

0 dim

Exact solvability: logical operators in STS

Anyons in non-trivial STS
Anyons

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Moving anyons

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Moving anyons

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Moving anyons

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Moving anyons

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Moving anyons

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Moving anyons

Braiding of anyons

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Moving anyons

Braiding of anyons

Phase factor "-1"

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Moving anyons

Braiding of anyons

Phase factor "-1"
I
Anti-commutation between logical operators

Anyons in non-trivial STS

Anyons

Logical operators

Segment of logical operators

Moving anyons

Braiding of anyons
Phase factor " -1 "
I
Anti-commutation between logical operators

Conclusion
Stabilizer code

Conclusion

Stabilizer code \longleftarrow Physical realizability

Conclusion

Stabilizer code \longleftarrow Physical realizability

Future work

Conclusion

Stabilizer code « Physical realizability

Future work

Subsystem code

Conclusion

Stabilizer code \longleftarrow Physical realizability

Future work

Subsystem code \longleftarrow Physical realizability

Conclusion

Stabilizer code \longleftarrow Physical realizability

Future work

Subsystem code Physical realizability

Complexity of Hamiltonian

Conclusion

Stabilizer code \longleftarrow Physical realizability

Future work

Subsystem code \longleftarrow Physical realizability
Complexity of Hamiltonian

Physical realizability

Conclusion

Stabilizer code \longleftarrow Physical realizability

Future work

Subsystem code « Physical realizability
Complexity of Hamiltonian

Physical realizability

Entanglement entropy

Conclusion

Stabilizer code \longleftarrow Physical realizability

Future work

Subsystem code « Physical realizability
Complexity of Hamiltonian

Physical realizability

Entanglement entropy

Conclusion

Stabilizer code \longleftarrow Physical realizability

Future work

Subsystem code \longleftarrow Physical realizability
Complexity of Hamiltonian
\longleftarrow Physical realizability

Conclusion

Stabilizer code \longleftarrow Physical realizability

Future work

Subsystem code \longleftarrow Physical realizability
Complexity of Hamiltonian
\longleftarrow Physical realizability

Entanglement entropy
 « Physical realizability

Ql theory

Conclusion

Stabilizer code \longleftarrow Physical realizability

Future work

Subsystem code « Physical realizability
Complexity of Hamiltonian
\longleftarrow Physical realizability

Entanglement entropy
 « Physical realizability
 Area law

Ql theory
\longleftarrow Physical realizability

Back up: Example of non-trivial STS

$$
\mathrm{X} \times \mathrm{X} \quad \text { on a square lattice. }
$$

4 encoded qubits

Logical operators

ZZIZZIZZIZZI

Back up: more precise def of STS model

Translation symmetry with qubits
coarse-grain

Scale symmetry : with respect to a coarse-grained lattice.

