Topological Quantum Codes : a model with physical realizability

Beni Yoshida (Physics, MIT)

joint work with Prof. Isaac Chuang June 8, 2010 @ Obergurgl, Austria

Importance of quantum coding theory

Importance of quantum coding theory

In quantum information science,

Protecting a qubit is essential in realizing quantum information theoretical ideas.

Importance of quantum coding theory

In quantum information science,

Protecting a qubit is essential in realizing quantum information theoretical ideas.

In condensed matter physics,

Several models of correlated spin systems can be considered as quantum codes.

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Hamiltonian must have only local interactions.

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Hamiltonian must have only local interactions.

Hamiltonians must have some physical symmetries such as translation symmetries.

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Hamiltonian must have only local interactions.

Hamiltonians must have some physical symmetries such as translation symmetries.

Quantum code

Most quantum codes encode qubits in ground states of highly non-local Hamiltonians.

However...

Hamiltonian must have only local interactions.

Hamiltonians must have some physical symmetries such as translation symmetries.

Quantum code + physical realizability

A model which covers a large class of physically realizable quantum codes, supported by local and physically symmetric Hamiltonians defined on a 2D lattice.

A model which covers a large class of physically realizable quantum codes, supported by local and physically symmetric Hamiltonians defined on a 2D lattice.

The model is exactly solvable, meaning that logical operators can be easily computed.

A model which covers a large class of physically realizable quantum codes, supported by local and physically symmetric Hamiltonians defined on a 2D lattice.

The model is exactly solvable, meaning that logical operators can be easily computed.

"Most" of the models have topological order, and are good quantum codes.

The Hamiltonian

$H = -\sum S_j$ $[S_j, S_{j'}] = 0$ Pauli operators

The Hamiltonian

$H=-\sum S_j \quad [S_j,S_{j'}]=0$ Pauli operators $S_j|\psi angle=|\psi angle$ Ground states

The Hamiltonian

The Hamiltonian

$$H = -\sum S_j \quad [S_j, S_{j'}] = 0 \quad \text{Pauli operators}$$

$$S_j |\psi\rangle = |\psi\rangle \quad \text{Ground states}$$
energy
$$|\tilde{0}\rangle \quad |\tilde{1}\rangle \quad \text{Qubits in the degenerate}$$
ground state space

Local interactions

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Scale symmetries: the number of degenerate ground states does not depend on the system size.

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Scale symmetries: the number of degenerate ground states does not depend on the system size.

Stabilizer code with Translation and Scale symmetries

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Scale symmetries: the number of degenerate ground states does not depend on the system size.

Stabilizer code with Translation and Scale symmetries

STS model

Local interactions

Translation symmetries: the Hamiltonian is invariant under finite translations.

Scale symmetries: the number of degenerate ground states does not depend on the system size.

Without scale symmetries, most codes are trivial...

(ex) array of 1D ferromagnet...

Properties of STS model

1, Exactly solvable

= logical operators can be easily computable.

2, Topological deformation of logical operators

Properties of STS model

1, Exactly solvable

= logical operators are easily computable.

2, Topological deformation of logical operators

Review of Logical operators

Transform encoded qubits (ground states)

$$|\tilde{0}\rangle$$
 logical operators $|\tilde{1}\rangle$ $H = -\sum S_j$

Review of Logical operators

Transform encoded qubits (ground states)

Definition

 $[\ell, S_j] = 0$ $\ell \notin \mathcal{S} = \langle S_1, S_2, \cdots \rangle$

Commute with the Hamiltonian

Not a product of interaction terms

Review of Logical operators

Transform encoded qubits (ground states)

$$|\tilde{0}\rangle$$
 logical operators $|\tilde{1}\rangle$ $H = -\sum S_j$

Definition

$$[\ell, S_j] = 0$$

$$\ell \notin \mathcal{S} = \langle S_1, S_2, \cdots \rangle$$

Commute with the Hamiltonian

Not a product of interaction terms

For each encoded qubit...

A pair of anti-commuting logical operators. $\{\ell, r\} = 0$

Exact solvability: logical operators in STS

Exact solvability: logical operators in STS

Exact solvability: logical operators in STS

Classical ferromagnet (trivial STS)

Neighboring ZZ interactions

As a quantum code, this is useless...

The Toric code (non-trivial STS)

Very good code with topological order

1, Exactly solvable

= logical operators can be easily computable.

2, Topological deformation of logical operators

3, Non-trivial STS always has topological order

$$H = -\sum S_j - S_j |\psi\rangle = |\psi\rangle \text{ Ground states}$$

$$H = -\sum S_j - S_j |\psi\rangle = |\psi\rangle \text{ Ground states}$$

$$H = -\sum S_j - S_j |\psi\rangle = |\psi\rangle \text{ Ground states}$$

$$H = -\sum S_j - S_j |\psi\rangle = |\psi\rangle \text{ Ground states}$$

$$H = -\sum S_j - S_j |\psi\rangle = |\psi\rangle \text{ Ground states}$$

$$H = -\sum S_j - S_j |\psi\rangle = |\psi\rangle$$
 Ground states

Interaction terms act trivially on encoded qubits.

So many equivalent representations...

Deformation Theorem

Deformation Theorem

Deformation Theorem

Deformation Theorem

Deformation Theorem

Deformation Theorem

Deformation Theorem

Deformation Theorem

Shapes of any logical operators in STS model can be deformed while keeping them equivalent.

Topological deformation of logical operators.

- 1, Exactly solvable
 - = logical operators are easily computable.

2, Topological deformation of logical operators

1, Exactly solvable

= logical operators are easily computable.

2, Topological deformation of logical operators

Anyons

Topologic al entropy Stability against quantum fluctuation

1, Exactly solvable

= logical operators are easily computable.

2, Topological deformation of logical operators

Anyons

Topologic al entropy Stability against quantum fluctuation

Exact solvability: logical operators in STS

Exact solvability: logical operators in STS

Exact solvability: logical operators in STS **Non-trivial STS** 1 dim 1 dim dim

Anyons

Non-trivial STS always has topological order.

Stabilizer code

Stabilizer code

— Physical realizability

Future work

Stabilizer code

Physical realizability

Future work

Subsystem code

Future work

Subsystem code

Physical realizability

Future work

Subsystem code

Physical realizability

Complexity of Hamiltonian

Future work

Subsystem code

Physical realizability

Complexity of Hamiltonian

Stabilizer code

Physical realizability

Future work

Subsystem code -----

— Physical realizability

Complexity of Hamiltonian

— Physical realizability

Entanglement entropy

Physical realizability

Future work

Subsystem code

Physical realizability

Complexity of Hamiltonian

Physical realizability

Entanglement entropy

Physical realizability

Future work

Subsystem code

Physical realizability

Complexity of Hamiltonian

Physical realizability

Entanglement entropy

Physical realizability

Area law

Future work

Subsystem code

Physical realizability

Complexity of Hamiltonian

Physical realizability

Entanglement entropy

Physical realizability

Area law

QI theory

Future work

Complexity of Hamiltonian

Physical realizability

Entanglement entropy

Physical realizability

Area law

QI theory

Physical realizability

Back up: Example of non-trivial STS

Z X X X Z on a square lattice. Z 4 encoded qubits

Logical operators

ZZIZZIZZIZZ

X

Х

Х

X

Back up: more precise def of STS model

X

Translation symmetry with qubits

coarse-grain

Scale symmetry : with respect to a coarse-grained lattice.