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AMO

• coherent control on single quantum level >> dissipation
• fundamental aspects & applications

- quantum information processing / communication / 
simulation

- quantum metrology
- quantum technology

• … behind quantum memory, gates, read out etc.

common goals:

common concepts:

Hybrid Quantum Systems

solid state
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AMO

• Answer 1:

what is “hybrid”?

Hybrid Quantum Systems

solid state

quantum interface
(“quantum bus”)
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Hybrid Quantum Systems

• hybrid quantum processor

quantum interface:

• solid state traps / elements for AMO physics
- benefit from nanofabrication / integration (scalability)

- new physics ... AMO

AMO

solid 
state• nanotraps / scalable

• mediated interactions

• ...

AMO
memory

solid state 
quantum 
processor

read / write via bus

whatever
example:
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Hybrid: Atom - Opto-Nanomechanics

LETTERS

Strong dispersive coupling of a high-finesse cavity to
a micromechanical membrane
J. D. Thompson1, B. M. Zwickl1, A. M. Jayich1, Florian Marquardt2, S. M. Girvin1,3 & J. G. E. Harris1,3

Macroscopic mechanical objects and electromagnetic degrees of
freedom can couple to each other through radiation pressure.
Optomechanical systems in which this coupling is sufficiently
strong are predicted to show quantum effects and are a topic of
considerable interest. Devices in this regimewould offer new types
of control over the quantum state of both light and matter1–4, and
would provide a new arena in which to explore the boundary
between quantum and classical physics5–7. Experiments so far have
achieved sufficient optomechanical coupling to laser-cool mech-
anical devices8–12, but have not yet reached the quantum regime.
The outstanding technical challenge in this field is integrating
sensitive micromechanical elements (which must be small, light
and flexible) into high-finesse cavities (which are typically rigid
and massive) without compromising the mechanical or optical
properties of either. A second, and more fundamental, challenge
is to read out the mechanical element’s energy eigenstate.
Displacement measurements (no matter how sensitive) cannot
determine an oscillator’s energy eigenstate13, and measurements
coupling to quantities other than displacement14–16 have been dif-
ficult to realize in practice. Here we present an optomechanical
system that has the potential to resolve both of these challenges.
We demonstrate a cavity which is detuned by the motion of a 50-
nm-thick dielectric membrane placed between two macroscopic,
rigid, high-finesse mirrors. This approach segregates optical and
mechanical functionality to physically distinct structures and
avoids compromising either. It also allows for direct measurement
of the square of the membrane’s displacement, and thus in prin-
ciple themembrane’s energy eigenstate.We estimate that it should
be practical to use this scheme to observe quantum jumps of a
mechanical system, an important goal in the field of quantum
measurement.

Experiments and theoretical proposals aiming to study quantum
aspects of the interaction between optical cavities and mechanical
objects have focused on cavities in which one of the cavity’s mirrors is
free to move (for example, in response to radiation pressure exerted
by light in the cavity). A schematic of such a setup is shown in Fig. 1a.
Although quite simple, Fig. 1a captures the relevant features of nearly
all optomechanical systems described in the literature, including
cavities with ‘folded’ geometries, cavities in which multiple mirrors
are free to move5, and whispering gallery mode resonators14 in which
light is confined to a waveguide. All these approaches share two
important features. First, the optical cavity’s detuning is proportional
to the displacement of a mechanical degree of freedom (that is, mir-
ror displacement or waveguide elongation). Second, a single device
must provide both optical confinement and mechanical pliability.

In these systems, optomechanical coupling can be strong enough
to laser-cool their brownian motion by a factor of 400 via passive
cooling13. But the coupling has been insufficient to observe quantum

1Department of Physics, Yale University, 217 Prospect Street, NewHaven, Connecticut, 06520, USA. 2PhysicsDepartment, Center for NanoScience, andArnold Sommerfeld Center for
Theoretical Physics, LudwigMaximilians University, Theresienstrasse 37, 80333, Munich, Germany. 3Department of Applied Physics, Yale University, 15 Prospect Street, NewHaven,
Connecticut 06520, USA.
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Figure 1 | Schematic of the dispersive optomechanical set-up.
a, Conceptual illustration of ‘reflective’ optomechanical coupling. The cavity
mode (green) is defined by reflective surfaces, one of which is free to move.
The cavity detuning is proportional to the displacement x. b, Conceptual
illustration of the ‘dispersive’ optomechanical coupling used in this work.
The cavity is defined by rigid mirrors. The only mechanical degree of
freedom is that of a thin dielectric membrane (orange) in the cavity mode
(green). The cavity detuning is periodic in the displacement x. The total
cavity length is L5 6.7 cm. c, Photograph of a SiN membrane
(1mm3 1mm3 50 nm) on a silicon chip. d, Schematic of the optical and
vacuum setup. The vacuum chamber (dotted line) is ion-pumped to
,1026 torr. The membrane chip is shown in orange. The optical path
includes an AOM for switching the laser beam on and off, and a
proportional-integral (PI) servo loop for locking the laser to the cavity. The
reflected laser power is recorded by a data acquisition system (DAQ).
e, Calculation of the cavity frequency vcav(x) in units of vFSR5pc/L. Each
curve corresponds to a different value of the membrane reflectivity rc.
Extrema in vcav(x) occur when the membrane is at a node (or antinode) of
the cavity mode. Positive (negative) slope of vcav(x) indicates the light
energy is stored predominantly in the right (left) half of the cavity, with
radiation pressure force acting to the left (right).
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nanomechanical
quantum oscillator

single / many atom
• internal state
• motional state

quantum interface
• photons as bus
• [or: direct interaction]

cavity



“Opto-nanomechanics”

• system: High-quality mechanical oscillators coupled to high-quality, high-
finesse optical cavities

• goal: see quantum effects & applications in quantum technologies
- ground state cooling of the oscillator
- entanglement …
- why? … fundamental / applications
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MicromembranesMicromirrors Microtoroids
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photonic & phononic cyrstals

… also: electro-nanomechanics
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AMO

• Answer 2:

what is “hybrid”?

Hybrid Quantum Systems

solid state

concepts developed / successful 
in atomic quantum optics

… translated / adapted to 
solid state



Examples & Overview: 
Hybrid AMO - Nanomechanical Systems
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• AMO concepts →  solid state

✓Nanomechanics with Levitated Objects

• AMO - solid state quantum interfaces

✓Electro- and Optomechanical Transducers for Quantum 
Computing and Quantum Communications



Example: Levitation

• trapping of atoms, molecules and ions

• laser cooling

9



1a) Levitated Nanomech Oscillators: “AMO approach”
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from a high tensile stress !1200±50 MPa, measured with a
wafer bow technique" LPCVD silicon nitride, deposited on
silicon dioxide. After fabrication, devices were mounted on a
piezoelectric buzzer for resonant actuation, placed in a room
temperature vacuum chamber, and pumped down to a pres-
sure below 10−6 Torr. The high vacuum eliminates viscous
damping effects on string resonance. Figure 1 shows scan-
ning electron micrographs of a silicon nitride string with
thickness of 120 nm, width less than 200 nm, and length of
15 !m.

III. CHARACTERIZATION

Resonances of silicon nitride strings with thicknesses
near 100 nm and widths ranging from 100 to 700 nm de-
fined by electrospun masks were measured with an optical
detection technique similar to that described in the
literature.3,15 To determine the dependence of resonance pa-
rameters f0 and Q on string geometry, we employed a scan-
ning electron microscope !SEM" to determine the dimen-
sions of a number of strings of different resonant frequencies
and quality factors. The results from such measurements on
strings made from the same 120 nm thick silicon nitride film
are shown in Fig. 2. Each point represents a measurement
made on a single string, with multiple representative strings
measured for each principle size range. Resonant frequency
was found to vary as the inverse of the length #Fig. 2!a"$,
hence the term “string” instead of “beam” used in reference
to these structures. From standard beam theory,16 the reso-
nant frequencies of a doubly clamped beam of arbitrary ten-
sile force S !assuming for simplicity that the ends are simply
supported" are given by

f i =
i2"

2l2%EI

#A
%1 +

Sl2

i2EI"2 , !1"

where i is an integer mode index, and l, E, I, #, and A are
length, Young’s modulus, cross sectional inertia, density, and
cross sectional area, respectively. In the limit of low stress,
this yields the familiar beam frequency dependence on the
inverse of length squared #the mode index for beam fre-
quency in the case of fixed ends is not really an integer
index, and must be solved for numerically, yielding an index
closer to i+ !1/2"$. In the limit of high stress we find

f i =
i

2l
% S

#A
, !2"

which is simply the equation for the frequencies of a
stretched string, with tensile force S, and linear density #A.
Thus the frequency-length relationship of our structures has
been tailored through the choice of a high stress film. From
the fit shown in Fig. 2!a" and an assumed silicon nitride
density of 3180 kg/m3 !theoretical value given in Pierson17"
a string tensile stress !S /A" of 1410±60 MPa can be calcu-
lated. This value is slightly greater than the tensile stress
measured in the film with the wafer bow technique, probably
indicating that we are achieving a density less than the the-
oretical value assumed. A density of 2700 kg/m3, closer to
that measured for lower stress LPCVD silicon nitrides,18

would be consistent with the measured tensile stress of
1200 MPa.

Quality factor was found to scale with inverse frequency,
as shown in Fig. 2!b", and therefore also with length. It is
worth noting that the 40 MHz resonance point included in
Fig. 2!a" is not present in !b". This is due to the poor signal-
to-noise ratio attained for this resonance, resulting from the
exceedingly low response of the piezoactuator at such a high
frequency. The measured signal was sufficient to allow for a
determination of resonant frequency, but prevented an ac-
ceptable Lorentzian fit for quality factor determination.

In Figs. 3!a" and 3!b" we show the optically measured

FIG. 1. SEM images of a 15 !m long silicon nitride nanostring, with thick-
ness of 120 nm, and width less than 200 nm. A 300 nm scale bar is shown.

FIG. 2. !a" Length dependence of frequency, with a linear fit, demonstrating
the approximate 1/ l stretched string equation for resonant frequency f0. !b"
Quality factor as a function of inverse frequency, for several sets of strings,
with similar frequencies within a given set. These symbol coded sets, from
low to high quality factor, correspond to length ranges of 11–13, 16–17,
21–26, 31–34, and 40–43 !m.

124304-2 Verbridge et al. J. Appl. Phys. 99, 124304 !2006"

Downloaded 29 Jun 2006 to 129.187.254.47. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Fig. 1. a) Illustration of dielectric sphere trapped in optical cavity. The large trapping
beam intensity provides an optical potential Uopt(x) that traps the sphere near an anti-
node. A second more weakly driven cavity mode with a non-vanishing intensity gradient at the
trap center is used to cool the motion of the sphere. b) Energy level diagram of mechanical
motion (denoted m) and cavity cooling mode (ph). The mechanical mode has frequency ωm,
while the optical mode has frequency ω2 and linewidth κ. Photon recoil induces transitions
between mechanical states |nm�→|(n±1)m� at a rate Rn→n±1 (R0→1 shown by dashed
gray arrow). The cooling beam, with effective opto-mechanical driving amplitude Ωm, induces
anti-Stokes scattering that cools the mechanical motion and allows for quantum state transfer
between motion and light. This beam is also responsible for weaker, off-resonant heating via
Stokes scattering. c) Mechanical frequency ωm as a function of trapping beam intensity. For
all numerical results, we take λ = 1 µm, ρ = 2 g/cm3, and � = 2. d) Optical trap depth
U0 (in K) as functions of trapping beam intensity and sphere radius r.

Table 1. Example cooling parameters for a fused silica sphere of radius r = 50 nm at λ = 1 µm

Cavity Beam Cavity Total cavity decay κ/2π, Mech. freq. Intra-cavity intensities: Internal Photon scattering Phonon
length waist finesse F scattering contribution κsc/2π ωm/2π trapping, cooling beams heating ∆Tint rate Rsc (both beams) number �nf �
1 cm 25 µm 3×105 5×104, 100 Hz 0.5 MHz 0.1, 0.05 W/µm2 80 K 1.6×1013 s−1 0.01

Fig. 2. a) Mean phonon number �nf � (black curve) versus cavity finesseF (F = πc/κL)
under optimized cooling conditions. The system parameters are given in Table 1. The red curve
denotes ñf,min, the fundamental limit of cooling imposed by sideband resolution. b) Solid
blue curve: optimized EPR variance between two levitated spheres, as a function of squeezing
parameter e−2R. System parameters are identical to a). Dashed curve: EPR variance in
limit of perfect state transfer, ∆EPR = e−2R. Green curve: cavity finesse corresponding
to optimal EPR variance. c) Optimized variance (∆X2

+,out)min (in dB) of squeezed output
light from an ideal cavity, as a function of sphere size.

Footline Author PNAS Issue Date Volume Issue Number 7

✓clamping ~ damping = Q
✓thermalization with support

Remarks: “classical” trapping of dielectric spheres:
low damping (Ashkin)

“quantum” tweezer:
• @ room temperature
• self-cooling to ground state
• approach fundamental damping limit
• here: center-of-mass

?

• Instead of “solid-state cryogenic 
setup” ...

• … atomic physics like: e.g. optical 
levitation

• Challenges
- minimize coupling to (thermal) environment [& strong coupling regime]

… get rid of supporting structures
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Fig. 1. a) Illustration of dielectric sphere trapped in optical cavity. The large trapping
beam intensity provides an optical potential Uopt(x) that traps the sphere near an anti-
node. A second more weakly driven cavity mode with a non-vanishing intensity gradient at the
trap center is used to cool the motion of the sphere. b) Energy level diagram of mechanical
motion (denoted m) and cavity cooling mode (ph). The mechanical mode has frequency ωm,
while the optical mode has frequency ω2 and linewidth κ. Photon recoil induces transitions
between mechanical states |nm�→|(n±1)m� at a rate Rn→n±1 (R0→1 shown by dashed
gray arrow). The cooling beam, with effective opto-mechanical driving amplitude Ωm, induces
anti-Stokes scattering that cools the mechanical motion and allows for quantum state transfer
between motion and light. This beam is also responsible for weaker, off-resonant heating via
Stokes scattering. c) Mechanical frequency ωm as a function of trapping beam intensity. For
all numerical results, we take λ = 1 µm, ρ = 2 g/cm3, and � = 2. d) Optical trap depth
U0 (in K) as functions of trapping beam intensity and sphere radius r.

Table 1. Example cooling parameters for a fused silica sphere of radius r = 50 nm at λ = 1 µm

Cavity Beam Cavity Total cavity decay κ/2π, Mech. freq. Intra-cavity intensities: Internal Photon scattering Phonon
length waist finesse F scattering contribution κsc/2π ωm/2π trapping, cooling beams heating ∆Tint rate Rsc (both beams) number �nf �
1 cm 25 µm 3×105 5×104, 100 Hz 0.5 MHz 0.1, 0.05 W/µm2 80 K 1.6×1013 s−1 0.01

Fig. 2. a) Mean phonon number �nf � (black curve) versus cavity finesseF (F = πc/κL)
under optimized cooling conditions. The system parameters are given in Table 1. The red curve
denotes ñf,min, the fundamental limit of cooling imposed by sideband resolution. b) Solid
blue curve: optimized EPR variance between two levitated spheres, as a function of squeezing
parameter e−2R. System parameters are identical to a). Dashed curve: EPR variance in
limit of perfect state transfer, ∆EPR = e−2R. Green curve: cavity finesse corresponding
to optimal EPR variance. c) Optimized variance (∆X2

+,out)min (in dB) of squeezed output
light from an ideal cavity, as a function of sphere size.
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✓clamping ~ damping = Q
✓thermalization with support

Remarks:

• Instead of “solid-state cryogenic 
setup” ...

• … atomic physics like: e.g. optical 
levitation

• Challenges
- minimize coupling to (thermal) environment [& strong coupling regime]

… get rid of supporting structures

✓ here: center-of-mass
? internal modes of composite structures
? coupling to internal two-level atoms

impurity



12

Cavity opto-mechanics using an optically
levitated nanosphere
D. E. Changa, C. A. Regalb, S. B. Pappb, D. J. Wilsonb, J. Yeb,c, O. Painterd, H. J. Kimbleb,1, and P. Zollerb,e

aInstitute for Quantum Information and Center for the Physics of Information, California Institute of Technology, Pasadena, CA 91125;bNorman Bridge
Laboratory of Physics 12-33, California Institute of Technology, Pasadena, CA 91125;cJILA, National Institute of Standards and Technology, and
Department of Physics, University of Colorado, Boulder, CO 80309;dDepartment of Applied Physics, California Institute of Technology, Pasadena,
CA 91125; and eInstitute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria

Contributed by H. Jeffrey Kimble, November 10, 2009 (sent for review October 17, 2009)

Recently, remarkable advances have been made in coupling a num-
ber of high-Q modes of nano-mechanical systems to high-finesse
optical cavities, with the goal of reaching regimes in which quan-
tum behavior can be observed and leveraged toward new applica-
tions. To reach this regime, the coupling between these systems
and their thermal environments must be minimized. Here we pro-
pose a novel approach to this problem, in which optically levitating
a nano-mechanical system can greatly reduce its thermal contact,
while simultaneously eliminating dissipation arising from clamp-
ing. Through the long coherence times allowed, this approach
potentially opens the door to ground-state cooling and coherent
manipulation of a single mesoscopic mechanical system or entan-
glement generation between spatially separate systems, even in
room-temperature environments. As an example, we show that
these goals should be achievable when the mechanical mode
consists of the center-of-mass motion of a levitated nanosphere.

entanglement ∣ optical levitation ∣ quantum information

One of the most intriguing questions associated with quantum
theory is whether effects such as quantum coherence and

entanglement can be observed at mesoscopic or macroscopic
scales. As a first step toward resolving this question, recently
much effort has been directed toward quantum state preparation
of high-Q modes of nano- and micro-mechanical oscillators—in
particular, cooling such modes to their quantum ground state (1).
Reaching a regime in which quantum properties such as entan-
glement (2) emerge is not only of fundamental interest but could
lead to new applications in fields such as ultrasensitive detection
(3, 4) and quantum information science (5, 6). To reach this re-
gime, it is critical that the thermalization and decoherence rates
of these systems be minimized by reducing the coupling to their
thermal reservoirs. Thus far, this has necessitated the use of cryo-
genic operating environments. From an engineering standpoint, it
would also be desirable to reduce the dissipation and thermal-
ization rates of these systems through their clamping and material
supports (7), so that these rates might approach their fundamen-
tal material limits (8).

Here we propose a unique approach toward this problem,
wherein the material supports are completely eliminated by
optically levitating (9) a nano-mechanical system inside a Fabry–
Perot optical cavity. Indeed, since the pioneering work of Ashkin
on optical trapping of dielectric particles (9) (in the classical
domain), it has been realized that levitation under good vacuum
conditions can lead to extremely low mechanical damping rates
(10, 11). We show that such an approach should also facilitate
the emergence of quantum behavior even in room-temperature
environments, when the particles are of subwavelength scale such
that the effects of recoil heating due to scattered photons become
small. As a specific example, we show that the center-of-
mass (CM) motion of a levitated nanosphere can be optically
self-cooled (12–14) to the ground state starting from room
temperature. This system constitutes an extreme example of
environmental isolation because the CM motion is naturally

decoupled from the internal degrees of freedom in addition
to being mechanically isolated by levitation. In this case, the
decoherence and heating rates are fundamentally limited by the
momentum recoil of scattered photons and can be reduced
simply by using smaller spheres. The long coherence time allowed
by small spheres enables the preparation of more exotic states
through coherent quantum evolution. Here, we consider in detail
two examples. First, we describe a technique to prepare a
squeezed motional state, which can subsequently be mapped onto
light leaving the cavity using quantum state transfer protocols
(15–18). Under realistic conditions, the output light exhibits
up to ∼15 dB of squeezing relative to vacuum noise levels, poten-
tially making this system a viable alternative to traditional tech-
niques using nonlinear crystals (19, 20). Second, we show that
entanglement originally shared between two modes of light (21)
can be efficiently transferred onto the motion of two spheres trap-
ped in spatially separate cavities, creating well-known Einstein–
Podolsky–Rosen (EPR) correlations (22) between themechanical
systems. Our approach of optical levitation mirrors many suc-
cessful efforts to cool (23, 24), manipulate (25) and entangle
(26) the motion of atoms and ions in room-temperature envir-
onments. At the same time, our system has a number of po-
tential advantages, in that it enables direct imaging via strong
fluorescence, exhibits large trap depths, and has a relatively large
mass. We also note recent related experiments involving opto-
mechanical “fluids” (with a continuous excitation spectrum rather
thandiscretemodes) in the formof trapped, ultracold atomic gases
(27, 28).

Beyond the examples presented here, the use of a levitated
device as an opto-mechanical system could provide opportunities
on a diverse set of fronts. For instance, it should allow mechanical
damping to approach fundamental material limits, potentially
enabling the exploration of nanoscale material properties. By
levitating systems with internal vibrational modes, multiple
modes could be optically addressed and cooled. In addition, the
CM oscillation frequency can be tuned through the trapping in-
tensity, allowing for adiabatic state transfer (29) with other modes
or matching spatially separate systems for optical linking and
entanglement generation (30). Furthermore, this paradigm inte-
grates nano-mechanics with many techniques for atomic trapping
and manipulation, which can be further extended by levitating
systems containing an internal electronic transition (e.g., a color
center within a nano-crystal) (31). Finally, as illustrated by
squeezed light generation, engineering mechanical nonlinearities
in conjunction with quantum state transfer yields a unique means
to realize nonlinear optical processes.

Author contributions: D.E.C. and P.Z. designed research; D.E.C., C.A.R., S.B.P., D.J.W.,
J.Y., O.P., H.J.K., and P.Z. performed research; and D.E.C. wrote the paper.
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Abstract. The most striking feature of quantum mechanics is the existence
of superposition states, where an object appears to be in different situations
at the same time. The existence of such states has been previously tested
with small objects, such as atoms, ions, electrons and photons (Zoller et al
2005 Eur. Phys. J. D 36 203–28), and even with molecules (Arndt et al 1999
Nature 401 680–2). More recently, it has been shown that it is possible to
create superpositions of collections of photons (Deléglise et al 2008 Nature
455 510–14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs
(Friedman et al 2000 Nature 406 43–6). Very recent progress in optomechanical
systems may soon allow us to create superpositions of even larger objects,
such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett.
91 130401; Kippenberg and Vahala 2008 Science 321 1172–6; Marquardt and
Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201–5), and
thus to test quantum mechanical phenomena at larger scales. Here we propose a
method to cool down and create quantum superpositions of the motion of sub-
wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse
cavity at a very low pressure. Our method is ideally suited for the smallest
living organisms, such as viruses, which survive under low-vacuum pressures
(Rothschild and Mancinelli 2001 Nature 406 1092–101) and optically behave
as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517–20). This
opens up the possibility of testing the quantum nature of living organisms by
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Figure 1. Quantum optomechanics with dielectric objects trapped inside a high-

finesse optical cavity. (a) A dielectric sphere is trapped by optical tweezers inside

a high-finesse optical cavity. The confinement of the center-of-mass motion

along the z-axis is harmonic with frequency ωt. The driving field generates

a radiation pressure able to cool down the mechanical motion to the ground

state. (b) Experimental set-up for the trapping and cooling of dielectric spheres

using two lasers, one for the driving and one for the trapping. (c) The center-

of-mass motion of a dielectric rod can also be trapped and cooled. In this case

we assume self-trapping achieved by using two laser modes, see appendix D.

(d) The rotational motion of a dielectric rod can also be cooled by generating a

standing wave in the azimuthal angle. This can be achieved by superimposing

two counterrotating Laguerre–Gauss (LG) modes.

number of photons inside the cavity and g0 = zmξ0 (ξ0 comes from the resonance frequency

dependence on the position, see appendix E). The enhancement of g0 by a factor of
√

nph has

been used experimentally to achieve the strong coupling regime in recent experiments with

cantilevers [10, 19, 20]. Finally, the total Hamiltonian also includes the mechanical and radiation

energy terms as well as the driving of the cavity. See appendix B for details of these terms as

well as the derivation of equation (1).

Besides the coherent dynamics given by the total Hamiltonian, there exists also a

dissipative part provided by the losses of photons inside the cavity, parametrized by the

decaying rate κ , and the heating to the motion of the dielectric object. Remarkably, our

objects are trapped without linking the object to other mechanical pieces, and hence thermal

transfer does not contribute to the mechanical damping γ . This fact constitutes a distinctive

feature of our proposal, possibly yielding extremely high mechanical quality factors. We have

investigated in detail the most important sources of decoherence (see appendix F). Firstly,

heating due to coupling with other modes, which have very high frequencies, is negligible

when having a quadratic potential. Secondly, the maximum pressure required for ground state

cooling is ∼ 10
−6

torr, which actually corresponds to the typical one used in optomechanical

experiments [13]. The mechanical quality factor of our objects under this pressure is ∼ 10
9
,
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• trapping beam provides a gradient force similar to “optically tweezer” (Ashkin)
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Typical trap depths and oscillation frequencies for a high-index material (
�−1
�+2∼1)

are plotted in Figs. ??c,d. Frequencies of several MHz are achievable using

an intra-cavity intensity of I0∼1 W/µm2. The imaginary component of � charac-

terizes optical absorption, which contributes to internal heating. For a material

with ∼10 dB/km propagation losses in bulk, intensities of I0∼10 W/µm2 can

be sustained without melting the sphere, due to blackbody re-radiation of the

absorbed energy (see Appendix). With this in mind, we assume � is real in

following discussions.
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Optical forces and noise acting on a dielectric sphere

To illustrate our idea, we consider a sub-wavelength dielectric sphere interac-
ting with two standing-wave optical modes of a Fabry-Perot cavity (Fig. 1a). One
resonantly driven mode provides an optical dipole trap for the sphere. The se-
cond mode is driven by a weaker “cooling” beam, assumed to have a non-zero
intensity gradient at the trap center, which provides a radiation pressure cooling
force [?, ?, ?]. We discuss the cooling mechanism in the next section, while here
we focus on the trapping potential and the noise forces acting on the sphere.
The trapping beam provides a gradient force similar to that used to “optical-
ly tweeze” small dielectric particles [?]. Considering a sphere whose radius is
much smaller than the optical wavelength, r!λ, its optical response is like that
of a point dipole with induced dipole moment pind = αindE(x) and optical poten-
tial Uopt(x) = −(1/4)(Re αind)|E(x)|2 (see Appendix). Here x is the CM position
of the sphere, αind = 3ε0V

(

ε−1
ε+2

)

is its polarizability, V is the sphere volume, and
ε is the electric permittivity. Taking a standing wave E(x) = E0 cos kx (k≡2π/λ),
to lowest order near an anti-node the potential corresponds to a harmonic oscil-
lator with mechanical frequency

ωm =

(

6k2I0
ρc

Re
ε− 1

ε+ 2

)1/2

, (1)

where I0 is the field intensity and ρ is the mass density of the sphere. The total
trap depth is U0 = (3I0V/c)Re

ε−1
ε+2 . Typical trap depths and oscillation frequen-

cies for a high-index material ( ε−1
ε+2∼1) are plotted in Figs. 1c,d. Frequencies of

several MHz are achievable using an intra-cavity intensity of I0∼1 W/µm2. The
imaginary component of ε characterizes optical absorption, which contributes
to internal heating. For a material with ∼10 dB/km propagation losses in bulk,
intensities of I0∼10 W/µm2 can be sustained without melting the sphere, due
to blackbody re-radiation of the absorbed energy (see Appendix). With this in
mind, we assume ε is real in following discussions.
Dominant noise forces
• collisions with background gas: λmf >> r

γg/2 = (8/π)(P/v̄rρ)

For a sphere of radius r = 50 nm, ωm/(2π) = 1MHz, and a room-temperature
gas with P = 10−10 Torr, one finds γg∼10−6 s−1, Qg∼6×1012, N (g)

osc∼105.
acting on the sphere are collisions with a background gas and momentum recoil
kicks due to scattered photons. In the Appendix, we show that the contributions
from shot noise, blackbody radiation, and sphere anisotropy are negligible. Fur-
thermore, the CM is de-coupled from the internal degrees of freedom and the
sphere effectively has no internal structure (as opposed to molecules, where
the internal configuration can affect cooling efficiency [?]). In the regime where
the molecular mean free path exceeds r, the background gas leads to a mean

damping force dp/dt = −γgp/2 with damping rate γg/2 = (8/π)(P/v̄rρ), where
P, v̄ are the background gas pressure and mean speed, respectively [?]. The
random nature of the collisions also thermalizes the motional energy, at a rate
given through the fluctuation-dissipation theorem by dE/dt = −γg(E − kBT ),
where T is the gas temperature. In particular, the characteristic time for the sys-
tem to heat by one phonon starting from the ground state is τg∼!ωm/γgkBT .
Note that τ−1

g does not necessarily reflect the actual collision rate between the
sphere and gas molecules, Rcoll≈πP v̄r2/kBT (it is possible for a single col-
lision to be quite rare, Rcoll$τ−1

g , and to impart several phonons at once).
We define a mechanical quality factor Qg = ωm/γg due to the background
gas, and a number of coherent oscillations N (g)

osc ≡ ωmτg/2π expected before
the energy increases by a single phonon. For a sphere of radius r = 50 nm,
ωm/(2π) = 1 MHz, and a room-temperature gas with P = 10−10 Torr, one finds
γg∼10−6 s−1,Qg∼6×1012, N (g)

osc∼105, indicating that the levitated sphere can be
essentially de-coupled from its thermal environment.

• Photons scattering out of the cavity lead to heating via momentum re-
coil kicks: compare trapped ions

γsc = (2/5)(ωr/ωm)Rsc

recoil frequency : ωr = !k2/2ρV

photon scattering rate: Rsc = 48π3 I0V
2
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2
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2πγsc
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5

8π3

ε+ 2
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λ3

V

Recoil heating dominates Nosc for sphere sizes r!5 nm.
Rem.: Rsc can be very large (Rsc∼1015 s−1 for I0 = 1W/µm2 and r = 50 nm)
compared to atoms or ions, which enables direct imaging.

Photons scattered by the sphere out of the cavity lead to heating via momen-
tum recoil kicks. In analogy with atoms or ions trapped in the Lamb-Dicke re-
gime [?] (when the particle is trapped on a scale ∆x much smaller than λ), the
scattering induces transitions between consecutive harmonic oscillator levels
n→n±1, with rates Rn→n±1 = γsc(n + 1/2±1/2). Second-order perturbation
theory [?] yields

γsc = (2/5)(ωr/ωm)Rsc, (2)

where ωr = !k2/2ρV is the recoil frequency and Rsc = 48π3 I0V
2

λ4!ω (
ε−1
ε+2 )

2 is the
photon scattering rate. A result identical to Eq. (2) holds for a weakly excited,
trapped atom [?]. When photon scattering dominates the heating, the expected
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>>1
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Cooling the center-of-mass motion to the ground state

• optical cooling due to the weaker, second cavity mode
• opto-mechanical coupling strength g = 3V

4Vc

ε−1
ε+2ωi

We now describe the optical cooling effect of the weaker, second cavity mo-
de (denoted mode 2). For concreteness, we assume that the sphere is trapped
near the anti-node x = 0 of cavity mode E1∝ cos k1x, and that the second mo-
de has spatial profile E2∝ cos (k2x − π/4), such that the intensity gradient is
maximized. The total Hamiltonian of the system is given in a rotating frame by

H = −!δ1â
†
1â1 − !δ2â

†
2â2 +

!Ω

2

[

(â1 + â†1) +
√

2ζ′(â2 + â†2)
]

−!g1(cos 2k1x̂− 1)â†1â1 − !g2 cos 2(k2x̂− π/4)â†2â2 +
p̂2

2m
. (4)

Here p̂, x̂ are the momentum and position operators of the CM, âi is the photon
annihilation operator of cavity mode i, and Ω, Ω

√
2ζ′ are the driving amplitudes

of modes 1 and 2, respectively. δi is the detuning between the driving field and
mode frequency when the sphere sits at x = 0. The opto-mechanical coupling
strengths gi = 3V

4Vc,i

ε−1
ε+2ωi characterize the position-dependent frequency shifts

due to the sphere (see Appendix), where Vc,i, ωi are the mode volume and
resonance frequency of mode i. To simplify notation, we assume that modes 1, 2
have similar properties, ω1≈ω2 = ω, etc. In addition to the evolution described
byH , the system also exhibits cavity losses and the mechanical noise described
previously.
Expanding the opto-mechanical coupling term of mode 2 around x = 0, !g cos 2(kx̂−
π/4)â†2â2 ≈ 2!gkx̂â†2â2, one finds a linear coupling in the sphere position, ana-
logous to the effect of radiation pressure on a moving mirror of a Fabry-Perot
cavity [?]. Physically, the motion induces changes in the detuning and thus the
intra-cavity field amplitude, while the lag in the cavity response enables the
field to do work (cooling) on the sphere. To calculate the cooling rate, followi-
ng the techniques of Ref. [?] we first apply shifts to the operators, âi → âi + αi,
x̂ → x̂ + x0, where αi and x0 ≈ ζ/k (ζ ≈ κ2ζ′/(κ2 + 4δ22)) are mean values of
the quantum fields. Here we have defined 2ζ = |α2/α1|2 as the ratio of intra-
cavity intensities of modes 1 and 2, and assumed that mode 1 is driven on re-
sonance (δ1 = 0). To lowest order in ζ, field mode 1(2) is purely responsible for
trapping (cooling). Subsequently tracing out the cavity degrees of freedom yields
equations for the mechanical motion alone. In particular, to lowest order in ζ and
for δ2 < 0, the cooling laser provides a net cooling rate Γ ≡ Ropt,− − Ropt,+ =
κΩ2

m

[

((δ2 + ωm)2 + (κ/2)2)−1 − ((δ2 − ωm)2 + (κ/2)2)−1
]

(see Appendix), whe-
re Ropt,∓ denote the anti-Stokes (cooling) and Stokes (heating) scattering ra-
tes (see Fig. 1b). Here Ωm ≡ 2gkxm|α1|

√
2ζ is the effective opto-mechanical

driving amplitude (see Fig. 1b) and xm ≡
√

!/2mωm. Validity of these perturba-
tive results requires Ωm ! κ,ωm and ζ!1.
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• trapping beam provides a gradient force similar to “optically tweezer” (Ashkin)
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Cooling the center-of-mass motion to the ground state

• optical cooling due to the weaker, second cavity mode
• opto-mechanical coupling strength g = 3V

4Vc

ε−1
ε+2ωi

• ... equivalent to standard laser cooling of a nanomechanical oscillator

We now describe the optical cooling effect of the weaker, second cavity mo-
de (denoted mode 2). For concreteness, we assume that the sphere is trapped
near the anti-node x = 0 of cavity mode E1∝ cos k1x, and that the second mo-
de has spatial profile E2∝ cos (k2x − π/4), such that the intensity gradient is
maximized. The total Hamiltonian of the system is given in a rotating frame by

H = −!δ1â
†
1â1 − !δ2â

†
2â2 +

!Ω

2

[

(â1 + â†1) +
√

2ζ′(â2 + â†2)
]

−!g1(cos 2k1x̂− 1)â†1â1 − !g2 cos 2(k2x̂− π/4)â†2â2 +
p̂2

2m
. (4)

Here p̂, x̂ are the momentum and position operators of the CM, âi is the photon
annihilation operator of cavity mode i, and Ω, Ω

√
2ζ′ are the driving amplitudes

of modes 1 and 2, respectively. δi is the detuning between the driving field and
mode frequency when the sphere sits at x = 0. The opto-mechanical coupling
strengths gi =

3V
4Vc,i

ε−1
ε+2ωi characterize the position-dependent frequency shifts

due to the sphere (see Appendix), where Vc,i, ωi are the mode volume and
resonance frequency of mode i. To simplify notation, we assume that modes 1, 2
have similar properties, ω1≈ω2 = ω, etc. In addition to the evolution described
byH , the system also exhibits cavity losses and the mechanical noise described
previously.
Expanding the opto-mechanical coupling term of mode 2 around x = 0, !g cos 2(kx̂−
π/4)â†2â2 ≈ 2!gkx̂â†2â2, one finds a linear coupling in the sphere position, ana-
logous to the effect of radiation pressure on a moving mirror of a Fabry-Perot
cavity [?]. Physically, the motion induces changes in the detuning and thus the
intra-cavity field amplitude, while the lag in the cavity response enables the
field to do work (cooling) on the sphere. To calculate the cooling rate, followi-
ng the techniques of Ref. [?] we first apply shifts to the operators, âi → âi + αi,
x̂ → x̂ + x0, where αi and x0 ≈ ζ/k (ζ ≈ κ2ζ′/(κ2 + 4δ22)) are mean values of
the quantum fields. Here we have defined 2ζ = |α2/α1|2 as the ratio of intra-
cavity intensities of modes 1 and 2, and assumed that mode 1 is driven on re-
sonance (δ1 = 0). To lowest order in ζ, field mode 1(2) is purely responsible for
trapping (cooling). Subsequently tracing out the cavity degrees of freedom yields
equations for the mechanical motion alone. In particular, to lowest order in ζ and
for δ2 < 0, the cooling laser provides a net cooling rate Γ ≡ Ropt,− − Ropt,+ =
κΩ2

m

[

((δ2 + ωm)2 + (κ/2)2)−1 − ((δ2 − ωm)2 + (κ/2)2)−1
]

(see Appendix), whe-
re Ropt,∓ denote the anti-Stokes (cooling) and Stokes (heating) scattering ra-
tes (see Fig. 1b). Here Ωm ≡ 2gkxm|α1|

√
2ζ is the effective opto-mechanical

driving amplitude (see Fig. 1b) and xm ≡
√

!/2mωm. Validity of these perturba-
tive results requires Ωm ! κ,ωm and ζ!1.
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• steady-state phonon number

〈nf 〉≈
κ2

16ω2
m

+ φ
ωm

κ
(ωm$κ)

with φ = (4π2/5)(V/λ3) ε−1
ε+2 (<< 1)

In the realistic limit that background gas collisions are negligible, the steady-
state phonon number is 〈nf 〉≈ñf + γsc/Γ, where ñf = Ropt,+/Γ is the funda-
mental limit of laser cooling [?]. It is minimized when δ2 = −(1/2)

√

κ2 + 4ω2
m. In

particular, when sideband resolution is achieved (ωm ! κ), ñf,min≈(κ/4ωm)2&1,
indicating that ground-state cooling is possible provided other heating mecha-
nisms are made sufficiently small. Considering the limit ωm$κ and taking the
maximum cooling rate Γ∼κ consistent with the perturbative calculations, using
Eq. (3) one can then re-write 〈nf 〉 as

〈nf 〉≈
κ2

16ω2
m

+ φ
ωm

κ
. (ωm$κ) (5)

The last term on the right corresponds to photon recoil heating and φ = (4π2/5)(V/λ3) ε−1
ε+2

is a dimensionless parameter characterizing the sphere volume. Eq. (5) is mini-
mized for κ/ωm = 2φ1/3, in which case 〈nf 〉min

= 3φ2/3/4∝(r/λ)2&1. Thus, one
sees that ground-state cooling is readily attainable (provided that ζ"1 can be si-
multaneously satisfied). Physically, the optimum value of κ/ωm balances good
sideband resolution and excessive heating when large intensities are used to
increase ωm.

• numbers: r = 50 nm and ωm/(2π) = 0.5 MHz levitated inside a cavity of
length L = 1 cm and mode waist w = 25 µm (Vc = (π/4)Lw2)
cavity finesse F ≡ πc/2κL

To illustrate these results, we consider a sphere of radius r = 50 nm and
ωm/(2π) = 0.5 MHz levitated inside a cavity of length L = 1 cm and mode
waist w = 25 µm (Vc = (π/4)Lw2). In Fig. 2a we plot the minimum obtaina-
ble 〈nf 〉 (black curve) as a function of cavity finesse F ≡ πc/2κL, assuming
negligible gas collisions and subject to the constraints ζ,Ωm/κ,Ωm/ωm < 1/2
and optimized over detuning δ2. For low cavity finesse the cooling is essentially
limited by sideband resolution (ñf,min, red curve) and the ground state regime
〈nf 〉∼1 can be reached with a finesse of F∼3600. A minimum of 〈nf 〉∼0.02 is
reached at a finesse of F∼50000 (with corresponding cooling rate Γ∼106 s−1).
This corresponds to a final temperature of Tf∼6 µK, or a remarkable compres-
sion factor of T/Tf∼5×107 relative to room temperature T .
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This corresponds to a final temperature of Tf∼6 µK, or a remarkable compres-
sion factor of T/Tf∼5×107 relative to room temperature T .

recoil heating
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Motional entanglement and squeezed light generation
using quantum state transfer

• Broadband squeezed light is mapped onto mechanical motion in resolved
side band limit, generating EPR correlations between two spatially separate
spheres

A number of related schemes have been proposed for quantum state transfer
between light and the motion of atoms [?, ?] or nano-mechanical systems [?, ?].
In our system, the small mechanical noise and ease of achieving good side-
band resolution in principle allow state transfer to be realized with almost perfect
efficiency. This might enable light with non-classical properties to be mapped
onto mechanical motion, and as an example, we show that this can be used
to generate EPR correlations between two spatially separate spheres. Moreo-
ver, a complementary process can be realized, where a non-trivial mechanical
state (a squeezed state) is prepared through coherent manipulation and sub-
sequently transferred to light leaving the cavity. The latter case illustrates how
opto-mechanics can yield a novel nonlinear optical system.
First we give a simplified picture of quantum state transfer using a one-sided,
ideal cavity (where all losses are via transmission through one cavity mirror) [?].
Specifically, we consider the Heisenberg equations of motion in a rotating frame
for the cavity cooling mode and the motion (after applying the shifts described
in the previous section), when the cooling mode is driven resonantly on the red
motional sideband (δ2 = −ωm),

d

dt
â2 = −

κ

2
â2 − iΩm

(

b̂ + b̂†e2iωmt
)

+
√
κâ2,in,

d

dt
b̂ = (i/!)[He, b̂]− iΩm

(

â2 + â†2e
2iωmt

)

+ iF̂ (t)eiωmt. (6)

The Hamiltonian He describes any external forces or couplings applied to the
sphere beyond those in Eq. (??), b̂ is the annihilation operator corresponding
to a harmonic oscillator of mass m and frequency ωm, and â2,in is the cavity
input operator associated with losses. F (t) is the (Hermitian) noise due to pho-
ton recoil, which has correlations 〈F (t)F (t′)〉 = φωmδ(t − t′), and we assume
all other noise is negligible. Since the cavity trapping mode (â1) effectively pro-
vides a harmonic potential and can otherwise be ignored, for simplicity we will
omit the subscript 2 as we refer to the cooling mode in future discussions. Tem-
porarily assuming that the non-secular terms (e2iωmt) can be ignored and that
the mechanical motion evolves slowly on time scales compared to 1/κ, one can
adiabatically eliminate the cavity mode to yield â≈ − 2i(Ωm/κ)b̂ + (2/

√
κ)âin,

and db̂/dt≈(i/!)[He, b̂] − (Γ/2)b̂ − i
√
Γâin + iF̂ (t)eiωmt, where Γ≡4Ω2

m/κ is the
cavity-induced cooling rate in the weak-driving limit (Ωm ! κ). The cavity output
is related to the input and intra-cavity fields through âout =

√
κâ − âin [?], or

âout≈ − i
√
Γb̂ + âin, which states that the mechanical motion is mapped onto

the outgoing light. Physically, the cooling process converts phononic excitations
into photonic excitations that leak out of the cavity. Generally, two mechanisms

A B

parametric 
downconversion

Entanglement transfer
• quadrature operators for the input light for each of the two systems j = A,B

〈(X(A)
+,in(ω) +X(B)

+,in(ω))
2〉/2 = 〈(X(A)

−,in(ω)−X(B)
−,in(ω))

2〉/2 = e−2R < 1.

• quadrature operators for the input light for each of the two systems j = A,B

X(j)
+,in = (â(j)in + â(j)†in )

X(j)
−,in = (â(j)in − â(j)†in )/i

• state transfer yields

∆EPR ≡ 〈(X(A)
±,m(t)∓X(B)

±,m(t))2〉/2 = e−2R+
κ2

16ω2
m

(3e2R+2 sinh2R)+
4φωm

κ

• quadrature operators of motion systems j = A,B.

X(j)
+,in = (â(j)in + â(j)†in )

X(j)
−,in = (â(j)in − â(j)†in )/i

Here we describe how EPR correlations shared between two modes of light [?]
can be mapped to the motion of two spheres trapped in spatially separate ca-
vities. Specifically, we define quadrature operators for the input light for each
of the two systems (denoted A,B), given by X(j)

+,in = (â(j)in + â(j)†in ), X(j)
−,in =

(â(j)in − â(j)†in )/i for j = A,B. A similar set of operators X(j)
±,m, X(j)

±,out can be defi-
ned for the motion and output light, by replacing â(j)in →b̂(j), â(j)out, respectively. Of
particular interest is the case where the two input fields exhibit broadband EPR
correlations between them,

〈(X(A)
+,in(ω) +X(B)

+,in(ω))
2〉/2 = 〈(X(A)

−,in(ω)−X(B)
−,in(ω))

2〉/2 = e−2R < 1. (7)

When the variances satisfy e−2R < 1, the two modes exhibit correlations below
vacuum level and are entangled [?] (for concreteness, we assume the other
combinations of quadratures satisfy 〈(X(A)

±,in(ω)∓X(B)
±,in(ω))

2〉/2 = e2R). Such
EPR correlations have been observed with light and in the internal degrees of
freedom of atomic ensembles [?], but have yet to be demonstrated using me-
chanical systems.
To proceed, we solve Eq. (??) in the Fourier domain (including the non-secular
terms) for each of the systems for the correlations given in Eq. (??) and He =
0. Generally, the non-secular terms yield an infinite set of algebraic equati-
ons (coupling frequencies ωm + 2nωm for integer n), which given ωm'Ωm,κ
can be truncated to good approximation at n > 1. For simplicity of analysis,
we assume the two systems have identical properties, and that the cooling rate
Γ ∼ κ. However, we expect our results should qualitatively hold provided that
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Motional entanglement and squeezed light generation
using quantum state transfer

• Broadband squeezed light is mapped onto mechanical motion in resolved
side band limit, generating EPR correlations between two spatially separate
spheres

A number of related schemes have been proposed for quantum state transfer
between light and the motion of atoms [?, ?] or nano-mechanical systems [?, ?].
In our system, the small mechanical noise and ease of achieving good side-
band resolution in principle allow state transfer to be realized with almost perfect
efficiency. This might enable light with non-classical properties to be mapped
onto mechanical motion, and as an example, we show that this can be used
to generate EPR correlations between two spatially separate spheres. Moreo-
ver, a complementary process can be realized, where a non-trivial mechanical
state (a squeezed state) is prepared through coherent manipulation and sub-
sequently transferred to light leaving the cavity. The latter case illustrates how
opto-mechanics can yield a novel nonlinear optical system.
First we give a simplified picture of quantum state transfer using a one-sided,
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input operator associated with losses. F (t) is the (Hermitian) noise due to pho-
ton recoil, which has correlations 〈F (t)F (t′)〉 = φωmδ(t − t′), and we assume
all other noise is negligible. Since the cavity trapping mode (â1) effectively pro-
vides a harmonic potential and can otherwise be ignored, for simplicity we will
omit the subscript 2 as we refer to the cooling mode in future discussions. Tem-
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Γâin + iF̂ (t)eiωmt, where Γ≡4Ω2

m/κ is the
cavity-induced cooling rate in the weak-driving limit (Ωm ! κ). The cavity output
is related to the input and intra-cavity fields through âout =
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Γb̂ + âin, which states that the mechanical motion is mapped onto

the outgoing light. Physically, the cooling process converts phononic excitations
into photonic excitations that leak out of the cavity. Generally, two mechanisms
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• quadrature operators of motion systems j = A,B.
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X(j)
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Here we describe how EPR correlations shared between two modes of light [?]
can be mapped to the motion of two spheres trapped in spatially separate ca-
vities. Specifically, we define quadrature operators for the input light for each
of the two systems (denoted A,B), given by X(j)

+,in = (â(j)in + â(j)†in ), X(j)
−,in =

(â(j)in − â(j)†in )/i for j = A,B. A similar set of operators X(j)
±,m, X(j)

±,out can be defi-
ned for the motion and output light, by replacing â(j)in →b̂(j), â(j)out, respectively. Of
particular interest is the case where the two input fields exhibit broadband EPR
correlations between them,
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+,in(ω) +X(B)

+,in(ω))
2〉/2 = 〈(X(A)

−,in(ω)−X(B)
−,in(ω))
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When the variances satisfy e−2R < 1, the two modes exhibit correlations below
vacuum level and are entangled [?] (for concreteness, we assume the other
combinations of quadratures satisfy 〈(X(A)

±,in(ω)∓X(B)
±,in(ω))

2〉/2 = e2R). Such
EPR correlations have been observed with light and in the internal degrees of
freedom of atomic ensembles [?], but have yet to be demonstrated using me-
chanical systems.
To proceed, we solve Eq. (??) in the Fourier domain (including the non-secular
terms) for each of the systems for the correlations given in Eq. (??) and He =
0. Generally, the non-secular terms yield an infinite set of algebraic equati-
ons (coupling frequencies ωm + 2nωm for integer n), which given ωm'Ωm,κ
can be truncated to good approximation at n > 1. For simplicity of analysis,
we assume the two systems have identical properties, and that the cooling rate
Γ ∼ κ. However, we expect our results should qualitatively hold provided that

recoil heatinganti-Stokes
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• entanglement transfer: EPR correlations shared between two modes of light
are mapped to the motion of two spheres trapped in spatially separate cavities
quadrature operators for the input light, and for j = A,B

X(j)
+,in = (â(j)in + â(j)†in )

X(j)
−,in = (â(j)in − â(j)†in )/i

X(j)
±,m

X(j)
±,out

two input fields exhibit broadband EPR correlations

�(X(A)
+,in(ω) +X(B)

+,in(ω))
2�/2 = �(X(A)

−,in(ω)−X(B)
−,in(ω))

2�/2 = e−2R < 1

• variances in the motion from state transfer

∆EPR ≡ �(X(A)
±,m(t)∓X(B)

±,m(t))2�/2 = e−2R +
κ2

16ω2
m

(3e2R + 2 sinh 2R) +
4φωm

κ
.

Note: Stokes scattering and recoil heating contribute to the variance by (κ/ωm)2

and φωm/κ, respectively. This can be minimized with respect to κ/ωm, yielding
∆EPR,min = e−2R + 3(φ/2)2/3(3e2R + 2 sinh 2R)1/3.

• plot ∆EPR,min as a function of e−2R

Solid blue curve: optimized EPR variance between two levitated spheres,
as a function of squeezing parameter e−2R. System parameters: r = 50 nm,
cavity length L = 1 cm, waist w = 25 µm
Dashed curve: EPR variance in limit of perfect state transfer, ∆EPR = e−2R.
Green curve: cavity finesse corresponding to optimal EPR variance.
For the moderate values of e−2R typically obtained in experiments, EPR corre-
lations in the motion can be achieved with reasonable cavity finesse F < 105.

Solid blue curve: optimized EPR variance between two levitated spheres,
as a function of squeezing parameter e−2R. System parameters: r = 50 nm,
cavity length L = 1 cm, waist w = 25 µm
Dashed curve: EPR variance in limit of perfect state transfer, ∆EPR = e−2R.
Green curve: cavity finesse corresponding to optimal EPR variance.
For the moderate values of e−2R typically obtained in experiments, EPR corre-
lations in the motion can be achieved with reasonable cavity finesse F < 105.



Example: Transducers
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• quantum spin transducer based on nanoelectrical resonator arrays

• … in analogy to trapped ions:

22

the electrostatic energy of this extended circuit we find that forUc =U the coupling gi j for qubits

from different sub-registers is zero, while for Uc = 0, g34 = gc has a finite value. Although the

mode spectrum now consist of 4 frequencies, pulse sequences get only slightly more complicated.

Based on this principle different schemes of achieving large scale quantum computer are possible

but in the present context the concept of a one way quantum computing (OWQC) seems to be best

suited. Here computation is performed in two steps. In a first step a cluster state is generated which

requires Ising interaction between neighboring qubits ordered on a 2D lattice. The second steps

of computation requires only measurements and local spin operations. Figure () show a schematic

version of a potential architecture for OWQC. Each node consists of a dark and a bright control

qubit coupled to the same resonator or being part of a small sub-register as discussed above.

CONCLUSIONS& OUTLOOK

METHODS

l

d

h

a)X b)X

Cw

C1

C2

U

U

FIG. 1: a) Setup: A coupled resonator array ... . b) Electrostatic model used for the estimation of resonator

interaction strength.

[1] P. Rabl, P. Cappellaro, M. V. Gurudev Dutt, L. Jiang, J. R.Maze, and M. D. Lukin, arXiv:0806.3606.

[2] J. Eisert, M. B. Plenio, S. Bose, and J. Hartley, Phys. Rev. Lett. 93, 190402 (2004).

[3] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

[4] J. J. Garca-Ripoll, P. Zoller, and J. I. Cirac, Phys. Rev. Lett. 91, 157901 (2003).

10

• NV centers as qubits (+ microwave)
• cantilever with magnetic tip

• capacitive coupling of cantilevers:
   phonon bus

R. Blatt

2010Quantum Spin Transducer: “Quantum Piano”
P. Rabl, S. J. Kolkowitz, F.H.L. Koppens, J.G.E. Harris, PZ, M.D. Lukin, Nature Phys 2010



• quantum spin transducer based on nanoelectrical resonator arrays

• resonator array
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Electro-mechanical transducer

24

d ∼ 1− 100 µm

spin qubit 1

+

+

+

+

+

+

+

+

electrostatic
coupling 

+

+

+

+

+

+

+

+
spin qubit 2

long-range spin-spin interactions !

collective phonon modes
& engineering



Phonon-mediated spin-spin coupling
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H =
�

i

Ωi(t)
2

σ
i
x +

�

n

ωna
†
nan +

1
2

�

i,n

λi,n(a†n + an)σi
z

free 
phonons

Polaron transformation 
( ≡ displaced oscillator basis ) 

Ωi(t) = 0

( phonon frequencies,
 mode functions )

long-range spin-spin interactions !



Spin-resonator coupling
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electronic spin qubit

nano-resonator magnetic tip

magnetic coupling:

“Zeeman shift per 
vibrational quanta”

zero point 
motion



Spin-resonator coupling
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electronic spin qubit

h < 50nm

magnetic coupling:

zero point 
motion

“Zeeman shift per 
vibrational quanta”



Spin-resonator coupling
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electronic spin qubit

magnetic tip

h~50nm

spin
dephasing

motional
dephasing

coherent
coupling 

strong coupling conditions !
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Opto-nanomechanical transducers for long-distance 
quantum communications



Quantum communication

30

“Long-distance
quantum communication” ?

L ~ 1 km



Quantum communication

31

L ~ 1 kmatoms,
ions,

...

coherent 
optical transitions !



Quantum state transfer ...
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optical
waveguide

photon

• cascaded quantum network

• adjustable decay rates

perfect 
quantum state transfer 

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, PRL. 78, 3221 (1997)



Quantum state transfer ...
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optical
waveguide

photon

Cascaded Quantum System:

• master equation (with fiber eliminated)

ρ̇ = −i(Heff(t)ρ− ρH†
eff(t)) + Σ†(t)ρΣ(t) + Lnoise(ρ)

• effective Hamiltonian

Heff =
1

2

�

i<j

Jij(t)(σ
i
−σ

j
+ + σi

+σ
j
−)− i

1

2
Σ†(t)Σ(t)

Jij(t) =
�
Γi(t)Γj(t) Σ(t) =

�
i

�
Γi(t)σi

−exchange coupling

jump operator



Quantum state transfer ...
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optical
waveguide

photon

• To achieve ideal transfer

(α|0�i + β|1�i) |0�j → |0�i(α|0�j + β|1�j)

• we require
ρ(t) = |ψ(t)��ψ(t)|

• which can be fulfilled with an appropriate pulse sequence Γ1(t) = Γ2(−t)
etc. and Lnoise = 0

Σ(t) |ψ� = 0 dark state



Quantum communication ...
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L ~ 1 km

coherent 
optical transitions !

- superconducting qubits
 - spin qubits: 
    defect centers
    gate defined QD ...

 - ...



Idea: opto-nanomechanical transducer
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optical
cavity

spin based 
qubits

charge based 
qubits

optical 
(“flying”)
qubits

Indirect cavity QED interactions !



Nano-scale opto-mechanics
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G. Anetsberger et al., Nature Physics 5, 909 (2009).

~20 μm

~20 μm

SiN resonator

whispering 
gallery mode evanescent 

field 

optical
fiber 

‣ high Q optical cavity
‣ low mass mechanical beam
‣ spatially separated qubit and photons

http://arxiv.org/find/quant-ph/1/au:+Anetsberger_G/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Anetsberger_G/0/1/0/all/0/1


Quantum network
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opto-mechanical
transducer (OMT)



Quantum network
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Model

40

Quantum network N>2:



Model

41

qubit-resonator 
interaction [1,2]

[1] charge qubits: exp: Schwab, Cleland, Roukes, ...
     theory: A. Shnirman, L. Tian, G. Milburn, F. Nori, A. Clerk, A. Armour, M. Blencowe, ... 
[2] spin qubits: P. Treutlein et al. PRL 2006, PR. et al. PRB 2009

Quantum network N>2:



Model
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Quantum network N>2:

single photon 
OM - coupling

Reviews:  T. J. Kippenberg, K. J. Vahala, Science 321, 1172 (2008);
                 F. Marquardt, S. M. Girvin, Physics 2, 40 (2009).

coherent 
driving field



Model
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Quantum network N>2:

Reviews:  T. J. Kippenberg, K. J. Vahala, Science 321, 1172 (2008);
                 F. Marquardt, S. M. Girvin, Physics 2, 40 (2009).

laser 
detuning

enhanced
OM coupling 



Model
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Quantum network N>2:

“cascaded” quantum network [1]:

Quantum Langevin equations:

[1] C. W. Gardiner, PRL (1993); H. J. Carmichael, PRL (1993).

intrinsic 
cavity loss 



Model
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Quantum network N>2:

thermal noise:

thermal 
diffusion rate



Adiabatic elimination
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opto-mechanical 
damping rate



Qubit network
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effective QLEs:

in-/out-fields:

qubit 
decay rate

uni-directional
qubit-qubit coupling

added noise



Decay rate

48

effective 
qubit-fiber 
decay rate

time-dependent control ! 

0

0.5



Quantum state transfer
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Example: 
( time symmetric pulse [1] )

Step 1:

[1] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, PRL. 78, 3221 (1997)



Quantum state transfer
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Step 1:

Step 2:

control parameters



Noise
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effective thermal 
occupation number:

“delta-correlated”
noise operator



Noise

• single node

52

thermal
noise

Stokes
heating



Noise

• single node

53

• on resonance

high transfer fidelities
 

ground state cooling
conditions

⇔

☺



State transfer fidelities
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intrinsic
cavity loss

thermal
noise

Stokes
heating

qubit
dephasing

control pulse
shape



Example
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cavity [1]:

SiN resonator:

spin qubit [2]: charge qubit [3]:

[1] S. Spillane, et al. PRA (2005); [2] PR et al., PRB (2009); [3] A. Armour et al., PRL (2002).



Scalable quantum networks
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‣ suppression of laser noise
‣ selective activation of individual nodes  
‣ directed photon emission
‣ ... 



Examples & Overview: 
Hybrid AMO - Nanomechanical Systems
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• AMO concepts →  solid state

✓Nanomechanics with Levitated Objects

• AMO - solid state quantum interfaces

✓Electro- and Optomechanical Transducers for Quantum 
Computing and Quantum Communications



Quantum Inferfaces: Opto-Nanomechanics + Atom(s)

• Strong coupling between a single atom and a membrane

membrane single atom

high-Q cavity

with existing experimental 
setups & parameters :-)

• Free space coupling between nanomechanical mirror + atomic ensemble

atoms
optical lattice

oscillator

• EPR entanglement between oscillator + atomic ensembles

laser

atomsoscillator
measurementEPR

(long distance)
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K. Hammerer, K. Stannigel, C. Genes, M. Wallquist, PZ
P. Treutlein, S. Camerer, D. Hunger, T. W. Hänsch

arXiv 2010

KH, M. Wallquist, C. Genes, PZ,
M. Ludwig, F. Marquardt, P. Treutlein,
J. Ye, H. J. Kimble,
PRL 2009 & PRA 2010

K Hammerer, M. Aspelmeyer, 
E.S. Polzik, PZ,
PRL 2009

cryo UHV

(long distance)


