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Chapter 1

Introduction

Strongly Correlated Systems

One of the greatest successes of the quantum mechanical description of solids

certainly was the development of band structure theory and the classification

of crystalline solids into conductors and insulators. Roughly speaking, within

this approach every electron is assumed to feel an effective periodic potential

produced by the positive ions and the other electrons, and any other electron-

electron correlation is neglected. The eigenstates of the one-particle prob-

lem are classified according to their crystal momentum and the corresponding

eigenvalues form dispersing bands. If the number of electrons in the crystal is

such that there is a finite energy gap between the last occupied state and the

lowest unoccupied one, the crystal is an insulator, otherwise it is a metal.

Even if this treatment seems oversimplified, it has been very successful,

especially to describe solids with very wide bands. However, soon after the

introduction of band theory, examples were shown that could not be under-

stood within this framework. In 1934, de Boer and Verwey [19] reported that

many properties of some transition-metal oxides were in disagreement with

band-structure calculations. These materials are insulators whereas they are

expected to be conductors because of their partially filled d-band. Mott and

Peierls [92, 93] suggested that the reason for the failure of conventional band

structure theory might be its poor mean-field-like treatment of the repulsive

electron-electron Coulomb interaction. Indeed, if the electrons were moving

slowly, they would be spending more time on every atomic site and hence expe-

rience a strong interaction with the other electrons present on the same atom.

If the energy cost of this interaction is too big, it might become favorable for

the electrons to stop moving at all and form what is now universally called a

Mott insulator.

With these considerations, the solids can be further classified. In those with

large conduction bands, the electrons are delocalized and move fast over the

whole crystal. They do not interact strongly and are well described by Bloch

1



2 Introduction

waves. Other solids, instead, have narrower bands with the consequence that

the electrons move slower and remain for a longer time at a given lattice site.

Typical candidates are transition metal oxides where the hopping between the

partially filled d-shells of the transition metal ions is bridged by the oxygen cage

and can hence become comparable with the d-shell Coulomb repulsion or the

metal-oxygen charge transfer gap. Other candidates are for instance molecular

conductors, where the large separation between neighboring molecules makes

the inter-molecular hopping very small. As a result, the energy scale coming

from the electronic interaction becomes of the same order as the band energy

gain. These systems are said to be strongly correlated and the rather localized

electrons are not anymore well characterized by the purely Bloch wave-like

picture provided by band theory. In some cases, correlations are so strong to

stabilize a Mott insulator where a description in terms of localized Wannier

orbitals is the most appropriate. In less extreme situations, the correlated

material is still metallic but the competition between the two energy scales,

and hence between a wave-like against a particle-like behavior, leads to very

interesting physical phenomena.

Over the past decades, many novel materials displaying unusual behaviors

that are poorly described by conventional techniques have been discovered

and together with these, new theoretical methods have been developed. The

behavior of magnetic impurities diluted in a metallic host and the subsequent

introduction of the Kondo and Anderson impurity models are just one example

of these phenomena. It is however surely the discovery of high-temperature

superconductivity [16] in doped Mott insulator cuprates that triggered today’s

great interest in strongly correlated materials.

Experimental Results

Let us consider some particular examples where strong electronic correlations

play a relevant role. A very interesting experimental opportunity arises when

it is possible to control the bandwidth by varying external parameters, like the

pressure, that modify the structure of the crystal and increase or decrease the

overlap between neighboring orbitals. For some materials, it is then possible

to induce a Mott transition from a metal to a Mott insulator, or vice versa,

as a function of external parameters. This is the case for (V1−xCrx)2O3 [83]

whose phase diagram is shown in the left panel of Fig. 1.1. At temperatures

above ∼ 200 K a Mott transition between a paramagnetic insulator and a
metal is observed. It is interesting to note that, at low temperatures, the

insulator develops an antiferromagnetic ordering, signaling that other energy

scales besides the Coulomb repulsion/charge transfer gap and the band energy

gain, come into play: in this example, the Coulomb exchange, the super-

exchange and the coupling to the lattice.

Another example is the organic compound κ-(BEDT-TTF)2Cu[N(CN)2]Cl
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Figure 1.1: Left: Phase diagram for the metal-insulator transi-

tion in (V1−xCrx)2O3 as a function of doping with Cr or Ti and

as a function of pressure [83]. Right: Phase diagram of κ-(BEDT-

TTF)2Cu[N(CN)2]Cl as a function of pressure [76].

showing unconventional superconductivity at low temperatures. Its phase di-

agram [76] is shown in the right panel of Fig. 1.1. An observation strikes

the eye: There are many similarities between this phase diagram and that

of (V1−xCrx)2O3 although the energy scales are very different. This sug-

gests that the mechanisms behind the Mott transition have a universal char-

acter. Here too, the paramagnetic insulator becomes magnetically ordered

below ∼ 20 K.
Signals of strong correlations are also found in the spectroscopic properties

of many compounds. In Fig. 1.2 (left panel) we show the photoemission

spectra for several d1 transition metal oxides. In these systems, the lattice

distortion changes the overlap between neighboring d-orbitals such that the

compounds range from a Mott insulator to a paramagnetic metal [39]. It is

clear from the data that the lower band seen at ∼ −1.5 eV (called the lower
Hubbard band) in the insulating YTiO3 is already preformed in the metallic

phase, e.g. of SrVO3. Such a feature is not at all captured by standard band-

structure calculations. In the metallic phase there is also a visible separation

between a quasiparticle peak and the Hubbard band as one gets closer to the

Mott transition. Although in this early data the the quasiparticle peak is not

very visible, later experiments allowed to have a higher definition, as shown in

the right panel of Fig. 1.2. In this experiment [89], the photoemission spectra is

shown for different photon energies. When the latter increases, thus sampling

the solid deeper in the bulk, the quasiparticle peak gets higher and sharper.
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Figure 1.2: Left: Photoemission spectra of different perovskite-type

transition metal oxides in the d-band region [39]. Right: Photoemis-

sion spectra of V2O3 taken with various photon energies hν [89].

Let us finally show some experimental results about the single-layered

ruthenates Ca2−xSrxRuO4 that are pertinent to the study of Chapter 3. The

basic crystal structure of this compound is shown in the left panel of Fig. 1.3.

The ruthenates have lately attracted a lot of interest because of the uncon-

ventional spin-triplet superconductivity observed in Sr2RuO4 [80]. Curiously,

while Sr2RuO4 is a well-defined Fermi liquid, the substitution of Ca
2+ for Sr2+

produces a Mott insulator, Ca2RuO4, with a staggered moment S = 1. Be-

tween these two extremes [95], a series of correlated metallic states are found,

see the phase diagram in Fig. 1.3 (right panel). At low temperature, for dop-

ings 0.5 . x < 2, the system is a paramagnetic metal. As x → 0.5, the
characteristic Curie-Weiss temperature approaches zero. The most unusual

properties are found at the critical concentration x = 0.5, where the magnetic

susceptibility shows a free Curie form with a spin S = 1/2, coexisting with

metallic transport properties. The region 0.2 . x . 0.5 is characterized by
antiferromagnetic correlations, still coexisting with metallic properties. Finally,

for Ca concentrations x . 0.2, an insulating behavior is stabilized.

In these ruthenate alloys, the relevant 4d-orbitals are split by the crystal

field into an essentially threefold degenerate t2g subshell that hosts 4 electrons
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Figure 1.3: Left: Layered perovskite-like structure of the alloy series

Ca2−xSrxRuO4. Right: Phase diagram as a function of the concen-

tration x [95].

and a doubly degenerate empty eg subshell that is lying at higher energy and

does not participate in the conduction properties. While the transition at

x ∼ 0.2 to a Mott insulator can be understood by the narrowing of the d-
bands because of modifications in the crystal structure, the exotic behavior

near the critical concentration x ∼ 0.5 calls for a more detailed analysis.
Anisimov et al. [12] proposed that the behavior could be a consequence of

the different bandwidth of the (xz,yz)-bands with respect to the xy-bands.

Indeed, the xy-orbitals hybridize with four in-plane oxygen neighbors while the

(xz,yz)-orbitals only hybridize with the two oxygens along the x,y axis. The

resulting xy-band is about twice as large as the (xz,yz)-bands. In their scenario,

as the concentration in Ca is increased, the bands get narrower and a first

Mott transition is proposed to occur within the (xz,yz)-bands, which trap

3 electrons because of Hund’s rules, while the xy-band is still conducting.

The xy-band eventually becomes insulating for a higher concentration of Ca.

This would explain the coexistence for 0.2 . x . 0.5 of localized moments
S = 1/2 formed by the three localized spins in the (xz,yz)-orbitals and metallic

properties due to the itinerant xy-band. The proposal to have two distinct Mott

transitions has lead to both experimental [15, 109] and theoretical controversy,

as we will see in Chapter 3.

Effective Theoretical Models

The examples above are only a very limited selection of the extensive exper-

imental work that has been devoted to strongly correlated materials. How-
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ever, they show features, like the coexistence of delocalized quasiparticles and

localized atomic-like excitations, or the presence of anomalous phases close

to a Mott transition, that are common to many other compounds. From a

theoretical standpoint, these similarities motivated the introduction of simple

and quite universal models designed such as to contain the minimum number

of ingredients able to uncover the physics of strong correlation. The most

known example is the single-band Hubbard model, which is believed to be rep-

resentative of many materials, including cuprates and the organic quasi-two

dimensional compounds of Fig. 1.1. In this model, a single valence orbital

per site is assumed. An electron on this orbital feels a Coulomb repulsion

from another electron sitting the same orbital. In addition, electrons can hop

from one lattice site to another. Even if very simplified, the Hubbard model

contains the main ingredient of strong correlation, namely the competition

between localization induced by the electronic repulsion and itineracy favored

by the hopping term. Since this competition arises when both the Coulomb

repulsion and the band-energy gain are comparable in magnitude, it lacks any

small expansion parameter and it is very difficult to study, even in the simple

case of the single-band Hubbard model. In spite of that, a lot of progresses

have been achieved thanks to the development of the so-called dynamical

mean-field theory [42]. Within this theory, a lattice model is mapped onto an

effective single-site problem, which amounts to assume that spatial fluctua-

tions are frozen, while full time dynamics is retained. This mapping is exact

in infinite coordination lattices, but yet, it is assumed to remain a sensible

approximation even beyond that limit. The resulting single-site model is easier

to study and intense analytical and numerical studies over the past 15 years

have shown that it captures many of the features observed experimentally. For

instance, this method allowed to show that the coexistence of delocalized and

localized single-particle excitations on well separated energy scales, as seen

in photoemission spectroscopy, is a generic feature of the above-mentioned

competition between the short-range Coulomb repulsion and the hopping en-

ergy. In other words, if one neglects all complications like magnetism or other

symmetry breakings that may intervene at very low temperature and only con-

siders the transition from a non-symmetry-breaking metal into an ideal non-

symmetry-breaking Mott insulator, this transition is indeed characterized by

the disappearance of a quasi-particle peak within well preformed Hubbard-side

bands, which are almost insensitive to the transition.

However, on the insulating side of the transition, new energy scales come

into play at low temperature, whose role is to rid the ideal non-symmetry-

breaking Mott insulator of its residual entropy. As a result, a realistic in-

sulating phase is eventually established, which is usually accompanied by a

phase transition into some symmetry-broken phase, for instance a magnetic-

ordered phase. These additional energy scales include, for instance, the on-site

Coulomb exchange, responsible for the Hund’s rules, the inter-site direct- or
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super-exchange, the coupling to the lattice or the crystal field. Obviously, these

processes do exist also in the metallic side of the transition, hence one may

wonder what is going to happen when the characteristic energy scale of the

quasiparticles becomes comparable with them. We are going to argue that this

situation uncovers a new type of competition which emerges before a metal-

to-insulator Mott transition and which is as generic as the main competition

between the Coulomb repulsion and the hopping energy.

The Thesis

In order to have further insight, let us assume that, among all these additional

low-energy scales, a single one dominates, denoted as J. It can be regarded

as the temperature at which the entropy of the residual degrees of freedom

of the ideal Mott insulator start to be quenched. This is in contrast to re-

cent research activities that focus on the possibility that different symmetry

broken phases may compete in the insulating phases, leading to exotic phe-

nomena [88]. We will discard this event and concentrate on the metallic phase

adjacent the Mott insulator. Here, the quenching of the entropy is due to the

formation of a Fermi sea of quasiparticles and takes place below the quasipar-

ticle effective Fermi temperature, T ∗F , which might be much smaller than the

bare TF due to strong correlations. Since Landau quasiparticles carry the same

quantum numbers as the electrons, the entropy quenching involves all degrees

of freedom at the same time, including the charge. However, the presence of

J provides the metallic phase with an alternative mechanism to freeze spin and

eventually orbital degrees of freedom, independently of the charge ones, and

becomes competitive with the onset of a degenerate quasiparticle gas when

T ∗F ' J. Unlike the competition between different symmetry-broken Mott-

insulating phases, which requires fine tuning of the Hamiltonian parameters

and may only accidentally occur in real materials, this new type of competition

should be accessible whenever it is possible to move gradually from a Mott

insulator into a metallic phase, for instance by doping or applying pressure.

Clearly, a single-site, single-band model is not suited to study this issue.

However, over the past years a large effort has been devoted to account for

these extra ingredients like the exchange-splitting, the crystal-field splitting,

the inter-site magnetic exchange and so on. They have for example lead to

multi-band generalizations or to extensions of the dynamical mean-field theory

that account for short-range spatial interactions by mapping the lattice model

onto a small cluster of sites. Nevertheless, most of these efforts have not

put much emphasis on the competition induced by these additional ingredi-

ents which, we believe, may be the key to understand the emergence of the

anomalous phases observed in many strongly-correlated materials close to a

Mott transition.

In this thesis, we intend to investigate the effects of this competition in
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two different generalizations of a single-band model. Let us briefly outline our

work:

In Chapter 2, we present some of the theoretical methods and models

that have been developed to study the physics of strongly correlated materials

and that will be used in the thesis. We follow the example of the single-

band Hubbard model for which the formalism is easiest to write, introducing

generalizations for some techniques when it proves necessary.

This will provide all the necessary background to investigate, in Chapter 3,

the role of the bandwidth difference in a two-band Hubbard model in infi-

nite dimensions. Such a model could be relevant to understand the physics

of compounds like the ruthenates described above. In particular, we explore

the possibility to have a so-called orbital-selective Mott transition, for which

distinct Mott transitions appear in the two bands at different values of the

on-site Coulomb repulsion. We show that for a ratio small enough between

the bandwidths, two distinct transitions can occur and that particular features

appear in the low-energy properties of the system.

In the second part of the thesis, presented in Chapter 4, we focus on the

properties of two clusters made of three and four impurities. These clusters

appear in extensions of the dynamical mean-field theory and we discuss them

in this context. We show that the competition between conventional Kondo

screening and inter-impurity couplings reveals a very interesting physics and

that the presence of anomalous bulk phases close to the Mott transition might

be traced back to instabilities that are already present at the impurity level.



Chapter 2

The Mott Transition: Models
and Methods

We expose the main techniques that we use in Chapters 3 and 4. Even though

we will be investigating more complicated models, we consider the prototypical

example of the single-band Hubbard model and show the connection between

different methods that have been developed to understand its physics. The

first approach we introduce is the Gutzwiller variational technique and the so-

called Gutzwiller approximation to evaluate average values over the variational

wave function. We then present the dynamical mean-field theory, in which the

original Hubbard model is mapped onto a single-site problem, and emphasize

the important role played by impurity models to describe the Mott transition.

In particular, the Kondo and the Anderson impurity models are introduced as

well as Wilson’s numerical renormalization group that enables to study impurity

models in detail. We conclude the chapter with an overview of conformal

field theory, a powerful tool to analyze and classify the fixed points of the

renormalization group applied to impurity models.

2.1 The Hubbard Model

From a theoretical perspective, the search for an understanding of strongly

correlated systems has lead to the introduction of simplified models that cap-

ture the main features of strongly correlated electrons. Essentially simultane-

ously, Hubbard [54], Gutzwiller [45] and Kanamori [63] proposed a very simple

model that contains the minimum ingredients to account for both band-like

and localized behavior. Their model is obtained by neglecting fully-occupied

and unoccupied bands. It is more careful to say that the degrees of freedom

provided by these bands have been “integrated out”, leading to renormalized

parameters in the Hamiltonian. The remaining Wannier orbitals are those close

to the Fermi level (the valence bands) and, in the most elementary form of

the model, there is just one such orbital. This could represent materials in

9



10 The Mott Transition: Models and Methods

which the orbital degeneracy has been lifted completely by a crystal field. The

resulting Hamiltonian reads

H = H0 +Hint = −
∑
i jσ

ti j f
†
i ,σfj,σ +H.c.+ U

∑
i

ni↑ni↓, (2.1)

where f †i ,σ creates an electron in the Wannier orbital with spin σ and niσ = f
†
iσfiσ

is the occupation number. The first part of the Hamiltonian H0 expresses,
through ti j , the possibility of an electron hopping between neighboring sites i

and j . Another approximation is to neglect the long-range tail of the Coulomb

interaction which is assumed to be local. This is encoded in Hint and U is the
energy cost for having two electrons on the same orbital. Changing the ratio

U/t emulates the effect of varying external parameters like the pressure.

What makes the Hubbard model so interesting is that it combines two

drastically different behaviors: On one hand, H0 is a tight-binding Hamiltonian
leading to the formation of bands that are delocalized and on the other hand,

Hint is a purely local term that tends to form atomic states. In other words, if
U = 0 the Hamiltonian describes a metal and if ti j = 0 it describes an insulator.

The basic question of what the behavior between these two limits might be

has given the physics community a real challenge, and many techniques and

approximation schemes have been developed. Despite its apparently simple

form, the Hubbard model has an exact solution only in 1 dimension so far.

The scenario for the Mott transition proposed by Hubbard assumes that

the density of states in the Mott insulator is concentrated in two subbands: a

lower and an upper Hubbard band, representing states with empty and doubly

occupied sites. As U is decreased, the two bands move towards the chemical

potential to finally get back to the non-interacting density of states for U = 0,

see Fig. 2.1. In this picture, which is close to the original ideas of Mott [92],

the transition is driven by the closing of a gap between the Hubbard bands in

the density of states and should occur for a U of the order of the bandwidth

of the conduction band. This interpretation is clearly based on the atomic

limit and gives a rather good description of the case of large U. For that limit,

effective models that describe the low-energy physics of the Hubbard model

have been developed and gave birth to the Heisenberg and t − J model.
Brinkman and Rice [20], building on previous works by Gutzwiller, gave a

description of the Mott transition starting from the non-interacting limit. The

idea is to start from the solution of the non-interacting Hamiltonian H0 and
construct a variational wave function that accounts for electronic correlations.

Let us describe this technique that will be used in Chapter 3.

2.2 Gutzwiller Wave Functions

Originally interested in the possibility of a ferromagnetic transition in narrow-

band conductors, Gutzwiller [45, 46, 47] developed a variational approach
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ρ(ε) ρ(ε)

εε
µµ

Figure 2.1: The Mott transition as seen by Hubbard. The two sub-

bands merge into each other as the Coulomb repulsion U is decreased.

to include electronic correlations in an otherwise uncorrelated wave function.

Gutzwiller’s technique has later received a lot of interest, mostly for its success

to describe the phenomenology of normal 3He.

2.2.1 Original Formulation

Let us consider the ground state of H0 in the Hubbard model (2.1). In this
Fermi-sea state, the occupation of an orbital by an up-spin electron is inde-

pendent of its occupation by a down-spin electron. In the half-filled case, the

probability to have an up-spin is the same as for a down-spin electron and is

given by 1/2. This means that the probability to have a doubly occupied site

is 1/4, which reflects the presence of important charge fluctuations. Clearly,

as we start to give U a non-zero value, these doubly occupied states have a

high energy cost. To be specific, the average value of the energy in the Fermi

sea goes like U/4 and would eventually grow larger than that of a wave func-

tion corresponding to disconnected sites with one electron sitting on them. In

order to avoid a too large energy as U is increased, it is necessary to reduce

the number of double occupancies.

Gutzwiller’s idea was to construct a trial wave function starting from |Ψ0〉,
the uncorrelated ground state ofH0, and applying a projector on it that reduces
the number of doubly occupied sites. In practice, the variational wave function

|Ψ〉 is written as

|Ψ〉 = PG |Ψ0〉 =
∏
i

[1− (1− g)ni↑ni↓]|Ψ0〉,

where PG is the Gutzwiller projector and g a variational parameter. If g = 1
the projector has no effect and we obtain the original uncorrelated state for

U = 0. When g 6= 1, the effect of PG is to lower the contributions of those
states that have two electrons on the same site. In the extreme case g = 0,

these states are completely removed and we have a good ground state for

U →∞. Note that, in going from |Ψ0〉 to |Ψ〉, only the absolute value of the
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coefficients of the real space configurations with doubly occupied sites have

been diminished. The relative phases of the configurations are still the same

and insure that even after the projection there is still a sharp Fermi surface, so

that |Ψ〉 describes a metal for any g 6= 0. In order to have the best approximate
ground state for a given value of U, the parameter g has to be tuned such as

to minimize the ground-state energy

E(g) =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 .

Unfortunately, computing E(g) is still a very complicated task and, to make

progress, Gutzwiller introduced an approximation (now called the Gutzwiller

approximation) to evaluate the variational energy. Let us define

d =
1

L
〈Ψ|

∑
i

ni↑ni↓|Ψ〉,

which is the average number of doubly occupied sites in the correlated state.

d is some function of g and we can use it as variational parameter instead of

g. The average value of the local interaction in terms of d is trivial

1

L
〈Ψ|Hint|Ψ〉 = Ud.

The evaluation of the average value of the kinetic term is a lot more diffi-

cult and involves computing a sum of configuration-dependent determinants.

In the Gutzwiller approximation, these determinants lose their configuration

dependence and the computation of the kinetic term boils down to mere com-

binatorics. Skipping all the details of this derivation, we just state the result.

The variational ground-state energy is

E/L = Z↑ε̄↑ + Z↓ε̄↓ + Ud, (2.2)

where the reduction factors Zσ are the height of the discontinuities in the

momentum distribution at the Fermi energy. Their expression reads

Zσ =

(√
(nσ − d)(1− nσ − n−σ + d) +

√
(n−σ − d)d

)2
nσ(1− nσ)

.

Here, nσ is the average number of σ-electrons in the uncorrelated Fermi sea

and ε̄σ their average kinetic energy

ε̄σ =
1

L
〈Ψ0| −

(∑
i j

ti j f
†
i ,σfj,σ +H.c.

)
|Ψ0〉.

The variational problem is solved by minimizing the ground-state energy (2.2)

with respect to d .
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Brinkman and Rice [20] realized that such an approximate solution could

describe a metal-insulator transition in the case of half-filled bands, preventing

any kind of symmetry breaking. In this case, by SU(2) spin symmetry, n↑ =

n↓ = 1/2, Z = 8d(1− 2d) and the ground-state energy is minimized by

d =
1

4

(
1−

U

8ε̄

)
,

which yields

Z = 1−
( U
8ε̄

)2
.

Therefore, the Gutzwiller approximation predicts a transition to an insulator

when U = Uc = 8ε̄. Above this value, Z is pinned to 0. The existence of a

Mott transition in the Gutzwiller approximation is rather surprising because if

a numerical evaluation of the Gutzwiller variational wave function is performed

for a finite-dimensional lattice, it describes a metallic state for any value of U

and the Mott transition does not exist [113]. It is the Gutzwiller approximation

that induces the presence of a Mott transition for a finite U. Another important

point is that the insulator described by the Gutzwiller approximation is not

realistic: It is completely featureless, with zero energy for any U > Uc .

It is interesting to note that in the previous expressions the lattice enters

only through ε̄, which is also defined in continuous systems. It turns out that

using the Gutzwiller approximation to compute the parameters of Landau’s

Fermi-liquid theory leads to results that are in surprisingly good agreement with

experiments on 3He [108]. This agreement was initially the only justification for

what seemed to be a very crude approximation. The question of the reliability

of the Gutzwiller approximation was finally settled in the late ’80s by Metzner

and Vollhardt [85, 86] who devised a method for carrying out the Gutzwiller

variational procedure exactly. In their treatment, closed-form results can be

obtained for spatial dimension d = 1 and d → ∞. It was shown that the
Gutzwiller approximation is actually exact when d →∞ and this ensured that
the approximation itself is indeed a sensible one.

The limit of infinite dimensionality brought a lot of excitement. It allowed

to bring systematic corrections in 1/d in the Gutzwiller approximation [40],

but more importantly set a firm ground on which more general Gutzwiller

wave functions could be constructed. As we will be interested in multi-band

systems, the Gutzwiller projector needs to be modified to account for these

additional degrees of freedom.

2.2.2 A Word About the d →∞ Limit

What is so special about the limit d → ∞? Let us consider the example of
the Hubbard model (2.1) on an hybercubic lattice in d dimensions. In that

case, every site has 2d neighbors. When the dimensionality goes to infinity

the number of these neighbors grows and the possible hopping events grow.
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i j

Figure 2.2: A term in a typical diagrammatic expansion. The operator

Ai is represented by the left vertex and Bj by the right one. Because
three independent fermionic lines connect the vertices, this diagram

gives a vanishing contribution unless i = j .

If the prefactors ti j do not scale correctly, the kinetic term would grow huge

leading to a trivial physics. It was shown [112] that a finite density of states

is recovered only if ti j = t/
√
2d
|i−j |
. The local Coulomb repulsion, on the

contrary, is not aware of the increasing number of neighbors and does not

need any special treatment. As a consequence of the scaling of the ti j , the

hopping matrix elements also behave like

〈Ψ0|c†i cj |Ψ0〉 ∼ 1/
√
2d
|i−j |

, (2.3)

where |Ψ0〉 is the ground state of H0 and local indices that do not matter
here are neglected. This property brings in very important simplifications in

the diagrammatic evaluation of average values. Generally, in a perturbation

expansion one is lead to compute quantities of the form

〈Ψ0|Ai
∑
j

Bj |Ψ0〉,

where Ai and Bj are generic operators on the lattice sites i and j . In the
diagrammatic computation of this quantity, the operators can be represented

as vertices connected by a certain number of fermionic lines given by (2.3).

The simplifications [87, 94] arise when there are three or more independent

lines that connect i and j , see Fig. 2.2. In that case, for a given Manhattan

distance R between the sites, the fermionic lines bring a factor scaling at

most as 1/(2d)3R/2. The eventual summation over j , instead, brings a factor

(2d)R. As d →∞ the overall factor (2d)−R/2 goes to zero except when i = j
(because then R = 0). In conclusion, any two vertices that are connected by

three or more independent paths must correspond to the same site. This will

be very useful in constructing multi-band Gutzwiller wave functions and within

the dynamical mean-field theory.

2.2.3 Generalized Multi-Band Gutzwiller Wave Functions

The goal is to construct a variational wave function for models that have more

than a single band and to find an approximation to evaluate average values
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in this variational state. There are, in principle, many ways to do this and it

is not easy to figure out which ones provide a sensible physics. The works

by Metzner and Vollhardt [85, 86] have shown that part of the success of

the Gutzwiller approximation lies in the fact that there is a limit in which it

is exact, that of infinite dimensionality. Therefore, it seems natural to follow

the route d → ∞ in order to have a controlled approximation and we follow
Ref. [13, 22, 23] to show how this can be done. Let us consider a general

k-orbital Hamiltonian H = H0 +Hint that contains, beside the hopping term

H0 = −
∑
i jσσ′

k∑
a,b=1

tσσ
′

i j,ab f
†
i ,aσfj,bσ′ +H.c., (2.4)

an on-site interaction of the general form

Hint =
∑
i

∑
n,Γ

U(n, Γ )Pi(n, Γ ), (2.5)

where Pi(n, Γ ) = |i ; n, Γ 〉〈i ; n, Γ | is the projector onto the site-i state Γ with
n electrons. Clearly, the |i ; n, Γ 〉 are eigenvectors of the interaction Hamil-
tonian. Hereafter, we use Greek letters to label the eigenvectors of (2.5)

whereas Roman letters denote the natural basis of the Hilbert space of atomic

configurations: |i ; n, I〉 = f †i ,aσ . . . f
†
i ,bσ′ |0〉. In terms of these, the eigenvectors

are

|i ; n, Γ 〉 =
∑
I

AΓ I |i ; n, I〉,

so that the interaction Hamiltonian in the natural basis is written as

Hint =
∑
i

∑
n,Γ,I,J

U(n, Γ )AΓ IA
∗
ΓJ Pi(n, I, J), (2.6)

where Pi(n, I, J) = |i ; n, I〉〈i ; n, J| is a generic off-diagonal projector. The
natural generalization for the Gutzwiller wave function |Ψ〉 is obtained from the
Fermi-sea Slater determinant of the non-interacting Hamiltonian |Ψ0〉 through

|Ψ〉 = PG |Ψ0〉 =
∏
i

Pi G |Ψ0〉,

where the operator Pi G acts on site i and is given by a sum over the projectors
that appear in (2.6)

Pi G =
∑
n,I,J

λnIJ Pi(n, I, J).

Here, the λnIJ are the variational parameters that need to be optimized such

as to minimize the variational energy E = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉. Unfortunately,
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exactly computing E analytically is a very difficult problem and we want to de-

rive an approximation scheme that would become exact in infinite dimensions.

Let us consider the average value of a local operator Oi on site i

〈Ψ|Oi |Ψ〉
〈Ψ|Ψ〉 =

〈Ψ0|P†i G Oi Pi G
∏
j 6=i P

†
j GPj G |Ψ0〉

〈Ψ0|
∏
i P
†
i GPi G |Ψ0〉

. (2.7)

To take advantage of the d →∞ limit, it is necessary to derive a diagrammatic
expansion of this quantity. When all the λnIJ = δIJ the projector is just the

identity, so in order to construct a perturbation expansion we write

P†i GPi G = 1 +
∑
n,I,J

(∑
K

λnIKλ
∗
nJK − δIJ

)
Pi(n, I, J) = 1 + P̄i ,

where P̄i is the perturbation around the identity and the prefactors of Pi(n, I, J)
are the small parameters of the expansion. We can now write the product in

the numerator of (2.7) as

∏
j 6=i
P†j GPj G = 1 +

∞∑
k=1

1

k!

∑′

i1,...,ik

ik∏
j=i1

P̄j ,

where the prime on the sum indicates that i 6= i1 6= . . . 6= ik . The generic form
of a term in the numerator of (2.7) is therefore 〈Ψ0|P†i G Oi Pi G

∏
j P̄j |Ψ0〉.

The diagram for this contribution has an external vertex i that represents the

operator P†i GOiPi G and a set of internal vertices j that embody the effect
of P̄j . These vertices are connected by fermionic lines 〈Ψ0|f †i ,aσfj,bσ′ |Ψ0〉. A
typical diagram is shown in Fig. 2.3. An important simplification would arise

if in any diagram there were vertices connected by at least three independent

paths. As we have seen earlier, this would imply that the contribution from

the diagram vanishes unless the vertices are on the same site. Given that

i 6= i1 6= . . . 6= ik , this means that any such diagram would vanish and only the
trivial order would participate in the average value, i.e. 〈Ψ0|P†i G Oi Pi G |Ψ0〉.
However, without imposing further restrictions on the structure of P̄i the

diagrams do not satisfy this property. It is easy to see that the vertices of a

diagram are connected by three independent paths whenever there are at least

three fermionic lines coming out of every vertex. The non-vanishing diagrams

are those that display vertices P̄i that have less than three fermionic lines. It is

therefore necessary to require that these vertices cancel. This can be enforced

by imposing

〈Ψ0|P†i GPi G |Ψ0〉 = 〈Ψ0|Ψ0〉 = 1, (2.8)

〈Ψ0|f †i ,aσfi ,bσ′ P
†
i GPi G |Ψ0〉 = 〈Ψ0|f

†
i ,aσfi ,bσ′ |Ψ0〉. (2.9)

The first equation is equivalent to imposing 〈Ψ0|P̄i |Ψ0〉 = 0. In the diagram-
matic language this means that an isolated vertex P̄i cancels, see panel (A)
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i
i1

i2

Figure 2.3: Typical diagram appearing in the computation of the

numerator of (2.7). The vertex i represents P†i GOiPi G whereas the
vertices i1 and i2 correspond to P̄i1 and P̄i2 .

k k

A B

= 0 = 0

i

j

Figure 2.4: Diagrammatic illustration of the restrictions (2.8)

and (2.9). (A) An isolated vertex P̄k vanishes. (B) When the ver-

tex P̄k is connected to any two operators f
†
i ,aσ and fj,bσ′ it cancels.

in Fig. 2.4. The second equation reads 〈Ψ0|f †i ,aσfi ,bσ′ P̄i |Ψ0〉 = 0. In eval-
uating the left-hand side, there is a first term in which f †i ,aσ and fi ,bσ′ are

contracted and multiply 〈Ψ0|P̄i |Ψ0〉. By equation (2.8) this term vanishes.
The other contribution comes from the diagram in which the two operators

are connected to the vertex P̄i . Therefore, the restriction (2.9) requires that

whenever a vertex P̄i is connected to two operators f
†
i ,aσ and fi ,bσ′ it vanishes.

Note that the two operators connect to the different terms in the Hartree-

Fock decomposition of P̄i . There are (2k)
2 such terms corresponding to the

possible pairs of fermionic operators. Given that (2.9) is also imposing (2k)2

conditions, we expect that all the terms in the Hartree-Fock decomposition

of P̄i cancel. In other words, P̄i vanishes when it is connected to any two

operators, see panel (B) in Fig. 2.4.

We have shown that in infinite dimensions, imposing specific constraints

on the Gutzwiller projector, the average value of a local operator Oi is simply
given by

〈Ψ|Oi |Ψ〉
〈Ψ|Ψ〉 = 〈Ψ0|P

†
i G Oi Pi G |Ψ0〉.
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Indeed, with the considerations made above, it is clear that the denominator

on the left-hand side is 1. Similar arguments show that the average value of

the kinetic term is reduced to

〈Ψ|f †i ,aσfj,bσ′ |Ψ〉
〈Ψ|Ψ〉 = 〈Ψ0|P†i G f

†
i ,aσ Pi GP

†
j G fj,bσ′ Pj G |Ψ0〉

=
∑
αα′uv

√
Zuαaσ Z

vα′
bσ′ 〈Ψ0|f

†
i ,uαfj,vα′ |Ψ0〉,

where the reduction factors are given by√
Zuαaσ = 〈Ψ0|P

†
i G f

†
i ,aσ Pi G fi ,uα|Ψ0〉 − 〈Ψ0|fi ,uα P

†
i G f

†
i ,aσ Pi G |Ψ0〉.

One can always express the original variational parameters λnIJ through P (n, I, J),

the correlated probabilities of the on-site projector

P (n, I, J) = 〈Ψ|Pi(n, I, J)|Ψ〉.

Putting everything together, the Gutzwiller variational energy is given by

E =
〈Ψ|H0 +Hint|Ψ〉

〈Ψ|Ψ〉

= −
∑
i jσσ′

k∑
a,b=1

∑
αα′uv

tσσ
′

i j,ab

√
Zuαaσ Z

vα′
bσ′ 〈Ψ0|f

†
i ,uαfj,vα′ +H.c.|Ψ0〉

+
∑
i

∑
n,Γ,I,J

U(n, Γ )AΓ IA
∗
ΓJ P (n, I, J).

(2.10)

Here E is understood as being a function of the correlated probabilities P (n, I, J)

and one needs to minimize it with respect to these parameters.

2.2.4 Example: The Single-Band Hubbard Model

Let us review here the single-band Hubbard model (2.1) using the general

formalism presented above and show that one indeed recovers the result (2.2)

obtained by Gutzwiller.

There are four atomic states, an empty site, two states with one spin and

a doubly occupied state. These states are all eigenvectors of the interaction

Hamiltonian and therefore the Gutzwiller projector is a sum over diagonal

projectors only

PG =
∏
i

Pi G =
∏
i

∑
n,I

λnI Pi(n, I, I).

Instead of using the variational parameters λnI , we use P (n, I) = 〈Ψ|Pi(n, I, I)|Ψ〉.
They are related through

λ2nI =
P (n, I)

P (0)(n, I)
,
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where P (0)(n, I) = 〈Ψ0|Pi(n, I, I)|Ψ0〉 is the uncorrelated probability of the
configuration I. In this example, we will denote the correlated probabilities of

the four atomic configurations by P (0), P (↑), P (↓), and P (2). Clearly, the
variational energy for the on-site interaction is simply given by UP (2). The

restrictions (2.8) and (2.9) read

P (0) + P (↑) + P (↓) + P (2) = 1

P (↑) + P (2) = n(0)↑
P (↓) + P (2) = n(0)↓ .

A simple calculation shows that the reduction factors are given by√
Zσ

′
σ = δσσ′

1

n
(0)
σ

(√
P (0)P (σ)

√
P (0)(σ)

P (0)(0)

+
√
P (−σ)P (2)

√
P (0)(2)

P (0)(−σ)

)

= δσσ′

(√
P (0)P (σ) +

√
P (−σ)P (2)

)
√
n
(0)
σ (1− n(0)σ )

,

which, upon using the restrictions above and defining d = P (2), can be written

as

Zσ
′
σ = δσσ′

(√
(1− n(0)σ − n(0)−σ + d)(n

(0)
σ − d) +

√
(n
(0)
−σ − d)d

)2
n
(0)
σ (1− n(0)σ )

.

This is the same result as the the variational energy (2.2).

In conclusion, average values on the Gutzwiller wave function can be com-

puted analytically in d → ∞ and the results coincide with the Gutzwiller
approximation. However, as we previously mentioned, the Gutzwiller wave

function leads to an unrealistic structureless insulator. Hence, it is not at all

clear to what extent it is a faithful representation of the actual ground state.

Novel techniques are therefore needed to have a more complete picture. In

that respect, the development of dynamical mean-field theory over the past

15 years has brought important insights.

2.3 Dynamical Mean-Field Theory

As we have seen above, the difficulty that one faces in trying to understand

the physics of the Mott transition is that it occurs in a region where U ∼ t.
Most of the techniques that had been developed before the ’90s were, in one

way or another, designed around U/t � 1 or U/t � 1. The introduction of
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dynamical mean-field theory (DMFT) provided a new approach to the Mott

transition that overcame part of these difficulties. The theory was born in

the beginning of the ’90s, when there was a growing interest in the limit

of infinite dimensionality (see [42] for a review). We will describe DMFT in

more detail in this section, but let us briefly summarize some of its important

aspects that have allowed significant advances in understanding the physics

of strongly correlated materials. The theory can be thought of as a quantum

version of classical mean-field theory. It maps a lattice model onto a single-

site problem and, whereas the spatial degrees of freedom are frozen and lead

to a simplified treatment of the lattice model, dynamical fluctuations instead

are fully retained. In the limit d → ∞, this mapping is exact. Yet, DMFT is
assumed to be a sensible approximation for any finite-dimensional systems. A

central aspect is that, within DMFT, quasiparticle excitations and high-energy

incoherent excitations are treated on equal footing.

2.3.1 Mapping to a Single-Site Model

DMFT can in principle be used on a variety of models but we will focus here

on the simple example of the single-band Hubbard model. Generalizations to

more complicated models, like the multi-band Hubbard model of Chapter 3,

are usually straightforward. Let us consider the Hubbard Hamiltonian (2.1)

H = −
∑
i ,j,σ

ti j (c
†
iσcjσ +H.c.) + U

∑
i

ni↑ni↓,

where we recall that U implements the local Coulomb repulsion of two elec-

trons sitting on the same site and ti j describe the hopping of nearest-neighbor

sites. As we will be interested in the limit of infinite dimensions d (which is

equivalent to the limit of infinite coordination number z), it is important that

the hopping coefficients scale like ti j ∼ (1/
√
d)|i−j | in order to give a finite

kinetic energy [87]. The partition function for this model can be written as a

path integral

Z = Tr e−βH =

∫ ∏
i ,σ

Dc
†
iσDciσe

−S,

where β = 1/kBT and with

S =

∫ β
0

dτ

[∑
i ,σ

c
†
iσ(τ)(

∂

∂τ
− µ)ciσ(τ) +H(c

†
iσ, ciσ)

]
.

Following up on the idea of a classical mean-field theory, one would like to

reduce this to a single-site problem (see Fig. 2.5) with an effective action Seff
defined by

1

Zeff
e−Seff(c

†
0,c0) =

1

Z

∫ ∏
i 6=0,σ

Dc
†
iσDciσe

−S.
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Therefore we want to integrate out the contribution from all sites i 6= 0 and
keep the full dynamics for the site 0. In order to achieve this, let us rewrite

the action as the sum of three terms S = S0 + ∆S + S
(0), where

S0 =

∫ β
0

dτ

[∑
σ

c
†
0σ(τ)(

∂

∂τ
− µ)c0σ + Un0↑(τ)n0↓(τ)

]

∆S = −
∫ β
0

dτ

[∑
i ,σ

ti0c
†
iσ(τ)c0σ(τ) + t0ic

†
0σ(τ)ciσ(τ)

]

S(0) =

∫ β
0

dτ

∑
i 6=0,σ

c
†
iσ(τ)(

∂

∂τ
− µ)ciσ(τ)−

∑
i 6=0,j 6=0,σ

ti jc
†
iσ(τ)cjσ(τ) +

∑
i 6=0

Uni↑(τ)ni↓(τ)

 .

S0 is the action of the site 0, decoupled from the rest of the lattice. S
(0) is

the action of the lattice with the site 0 removed. Finally, ∆S is the action

connecting the site 0 with the lattice. With these definitions, the partition

function can be rewritten as

Z =

∫
Dc
†
0σDc0σe

−S0
∫ ∏
i 6=0

Dc
†
iσDciσe

−S(0)−∆S

=

∫
Dc
†
0σDc0σe

−S0Z(0)〈exp
∫ β
0

dτ
∑
i ,σ

(
c
†
iσ(τ)ηiσ + η

+
iσciσ(τ)

)
〉(0),

where 〈•〉(0) denotes a thermal average over the action S(0), Z(0) is the par-
tition function of the lattice without the site 0, and the sources ηiσ = ti0c0σ.

The last term in the thermal average is recognized as the generating functional

of the cavity Green’s function G(0). It follows that

A = 〈exp
∫ β
0

dτ
∑
i ,σ

(
c
†
iσ(τ)ηiσ + η

+
iσciσ(τ)

)
〉(0)

=

∞∑
n=1

∑
i1,...,jn,σ

∫ β
0

dτi1 · · · dτjn η
†
i1σ
(τi1) · · · η

†
inσ
(τin)

G̃
(0)
i1...jn
(τi1 . . . τin , τj1 . . . τjn) ηj1σ(τj1) · · · ηjnσ(τjn),

(2.11)
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Figure 2.5: Mapping from the lattice model to a single-site problem.

where the G̃
(0)
i1...jn

are 2n-point Green’s functions of the lattice with the site 0

removed. We now have an expression for the effective action Seff

Seff = S0 − lnA+ const

= S0 −
∞∑
n=1

∑
i1,...,jn,σ

∫ β
0

dτi1 · · · dτjn ti10 · · · t0jn c
†
0σ(τi1) · · · c

†
0σ(τin)

G
(0)
i1...jn
(τi1 . . . τin , τj1 . . . τjn) c0σ(τj1) · · · c0σ(τjn) + const,

(2.12)

where, by the linked cluster theorem, G
(0)
i1...jn

are the connected Green’s func-

tions of the lattice with a missing site. So far, we have obtained a single-site

formulation of the problem, where the dynamics is described by the above

effective action.

2.3.2 The d →∞ Limit

We can now use the simplifications generated by the d → ∞ limit. As we
have seen earlier, the ti j scale like (1/

√
d)|i−j |, and so does the 2-point Green’s

function G
(0)
i j . Therefore, the contribution from n = 1 in (2.12) is of order

1. When one considers the contributions from n ≥ 2, it turns out that they
bring in a contribution of order at least 1/d . Hence, in the limit d → ∞ all
contributions from n > 1 vanish and we are left with the following expression

for Seff

Seff =

∫ β
0

dτ1

∫ β
0

dτ2
∑
σ

c
†
0σ(τ1)G

−1
0 (τ1 − τ2) c0σ(τ2)

+

∫ β
0

dτ U n0↑(τ) n0↓(τ) + const,

(2.13)

where the Fourier transform of G−10 is given by

G−10 (iωn) = iωn + µ−
∑
i j

ti0t0jG
(0)
i j (iωn).
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The action (2.13) describes a single site with a local Coulomb repulsion U. The

site can exchange electrons with the external environment. This hybridization

is encoded in G0, that plays the role of the effective Weiss field of classical
mean-field theory. G0 is defined by the properties of the lattice with a missing
site. In order to have a closed set of equations, it is necessary to relate these

properties to those of the single site. In infinite dimensions, and for a general

lattice, one can show that

G
(0)
i j = G

latt
i j −

G latti0 G
latt
0j

G latt00
,

where G latti j is the Green’s function of the full lattice. Using this expression

and taking a Fourier transform, one obtains

G−10 (iωn) = Σ
latt(iωn) +

(∑
k

G latt(k, iωn)

)−1
,

where the lattice Green’s function in k-space is given by

G latt(k, iωn) =
1

iωn + µ− εk −Σlatt(iωn)
, (2.14)

with the non-interacting dispersion relation

εk =
∑
j

ti je
ik(Ri−Rj ).

A crucial point in deriving the above equations is that in the expression of the

lattice Green’s function (2.14), the self-energy Σlatt(iωn) of the lattice has no

k-dependence. This can be proven to be true in the d →∞ limit [87, 94]. It
is also possible to relate Σlatt to G latt via (2.14)∑

k

G latt(k, iωn) =

∫
ρ(ε)

iωn + µ− ε−Σlatt(iωn)
,

where ρ(ε) is the non-interacting density of states, so that Σlatt is given by

Σlatt(iωn) = iωn + µ−R

[∑
k

G latt(k, iωn)

]
,

where R denotes the inverse Hilbert transform. In order to get a closed set
of equations, one needs to impose a self-consistency which relates the lattice

Green’s function to the single-site. Given the translational invariance of the

lattice, this is clearly obtained by imposing

G(iωn) =
∑
k

G latt(k, iωn),
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Figure 2.6: Illustration of the Bethe lattice for z = 3.

where G(iωn) is the Green’s function of the single site. Putting everything

together one gets the following self-consistency equation

G−10 (iωn) = iωn + µ−R [G(iωn)] + G
−1(iωn). (2.15)

In this equation, the lattice structure is encoded in the reciprocal Hilbert

transform R. Before going any further, we describe a particular lattice for
which (2.15) takes an easy form and that will be used in Chapter 3.

2.3.3 The Bethe Lattice

In the above formulation of DMFT, the structure of the lattice enters only in

the reciprocal Hilbert transform, through the non-interacting density of states

ρ(ε). In general, ρ(ε) around the chemical potential is a smooth function.

We exclude particular cases where the chemical potential is right at a van

Hove singularity or in a dip where the density of states vanishes. Therefore,

when one is interested in the generic mechanisms of the paramagnetic Mott

transition, it is enough to consider any regular density of states extending over a

finite interval of energy. A possible choice, that proves useful, is a semi-circular

density of states which is obtained on the Bethe lattice (or Cayley tree). In this

case, the Hilbert transform, and hence the self-consistency equation (2.15),

takes a particularly simple form.

The Bethe lattice with connectivity z is a lattice on which every site is

coupled to z neighbors and for which there is only one path to go from one

site to another on the lattice, see Fig. 2.6. We consider the model for which

there is only nearest-neighbor hopping ti j = t/
√
z . In this case, and when
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z →∞, the non-interacting density of states can be shown to be semi-circular

ρ(ε) =
1

2πt2

√
4t2 − ε2.

Using this expression, the reciprocal Hilbert transform is given by

R [G(iωn)] = t2G(iωn) + G−1(iωn),

and when inserted in (2.15), it yields the following simple form of the self-

consistency equation

G−10 (iωn) = iωn + µ− t
2G(iωn). (2.16)

Hereafter, we will only consider the Bethe lattice and this form for the self-

consistency equation. The physical quantities will be given in units of the

half-bandwidth D = 2t.

The original problem has been mapped onto one of a single site living

in an effective bath, described by G0, which can exchange particles. Using
the limit of infinite dimensions, it was possible to find (2.16) which relates

G0 to the Green’s function of the site. In this limit, the original problem
and the single-site problem are equivalent and the mapping is exact. It is

however important to realize that one can also consider this mapping to be

an approximation for a finite-dimensional problem. The approximation is then

that of freezing the spatial fluctuations, neglecting the k-dependence of the

lattice self-energy. The lattice Green’s function can be recovered using (2.14)

and the dispersion relation of the lattice (obtained by some other technique).

In this way, more quantitative calculations can be realized, and this is for

example the aim of LDA+DMFT. From this standpoint, the limit of infinite

dimensions insures that DMFT provides a consistent set of equations. Finally,

note that whereas the spatial fluctuations are frozen, the full time-dependence

is taken into account and therefore quantum fluctuations are well described.

2.3.4 Implementation by Iteration

In an actual implementation, one usually starts with a guess for G0. This
fully defines the action (2.13) and one can, in principle, solve the problem for

the single site, extracting its Green’s function. Inserting this Green’s func-

tion in (2.16), one gets a new G0, in general different from the one used in
the beginning. This new G0 defines a new action and a new problem to be
solved. This procedure is repeated until convergence, see Fig. 2.7, and is

usually achieved after a few iterations.

The practical difficulty is to extract the physical properties of the single-

site, knowing its effective action. Although there are no spatial fluctuations,

this is still a complicated many-body problem. Thankfully, various techniques

are available to study the single-site problem, both numerical and analytical.
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Figure 2.7: Schematic implementation of DMFT.

We choose to use mainly exact diagonalization with a Lanczos [73] procedure.

Contrary to other techniques, like quantum Monte Carlo [42, 53] that can

directly work with a time-discretized version of the effective action Seff , an

exact diagonalization method requires that the problem be brought to a matrix

form. Hence, it proves very useful to find a Hamiltonian formulation of DMFT

so that exact diagonalization techniques can be used.

Actually, a Hamiltonian formulation of DMFT not only provides a tool to

make practical calculations, but also permits to gain considerable physical in-

sight. What Hamiltonian should then be used to model the influence of the

effective action? DMFT describes the physics of a site embedded in an effec-

tive bath, which strongly resembles that of an impurity embedded in a metal

and exchanging electrons with its conduction electrons. The Hamiltonian that

should therefore naturally arise is that of the Anderson impurity model [41].

2.4 The Anderson Impurity Model

The Anderson Impurity Model [10] appeared in the study of transition metal

magnetic impurities with unfilled 3d shells diluted in a host metal (like Fe in

Cu). In isolation, the ions have a magnetic moment given by the Hund’s rules,

but it is not clear if they retain a fraction of this moment, or none at all, when

placed in a metallic environment. Indeed, experiments have shown that under

certain conditions the impurities do keep a magnetic moment, and in other

cases do not [52]. In order to have insight into this problem, Anderson sug-

gested a very simple model that was able to explain these experimental results.

His idea was that the resonance induced by the scattering off the impurity was
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roughly behaving like an atomic level (hybridized to the conduction electrons).

As such, it would accommodate a certain equilibrium number of electrons and

there would be a cost U for adding or removing an electron on that level. A

difficulty arises because the occupation number in the resonance is a compli-

cated object to deal with. Anderson’s idea was to overcome it by replacing

the resonance by an additional electronic level lying in the conduction band.

The resulting Hamiltonian is

HAM =
∑
kσ

εkc
†
kσckσ + εdnd +

∑
kσ

(
Vkc

†
kσdσ +H.c.

)
+ Und↑nd↓, (2.17)

where ndσ = d
†
σdσ and nd = nd↑+nd↓. The conduction electrons are described

by the creation operators c†kσ and have a dispersion relation εk. The operators

d
†
σ create an electron on the additional electronic level sitting at an energy εd .

The exchange of electrons between the conduction bands and the level is made

possible through a hybridization term. In this context, Vk is the probability

amplitude to have a transition from a conduction state with momentum k

to the level. Finally, the energy cost coming from the Coulomb interaction

between two electrons being on the electronic level is given by U.

Let us first of all make the connection with DMFT. It is necessary to bring

the problem to a single-site one by integrating out the conduction electron

degrees of freedom in (2.17). The resulting action on the electronic level is

Seff =

∫ β
0

dτ1

∫ β
0

dτ2
∑
σ

d†σ(τ1)G−10 (τ1 − τ2) dσ(τ2)

+

∫ β
0

dτ U nd↑(τ) nd↓(τ).

(2.18)

Here, G0 is the non-interacting (U = 0) Green’s function of the Anderson
model and its Fourier transform is given by

G−10 (iωn) = iωn − εd −
∫ ∞
−∞

dε

π

∆(ε)

iωn − ε
,

where ∆(ε) = π
∑
k |Vk|

2 δ(ε−εk). The action (2.18) is exactly the same as the
action (2.13) provided that εd = −µ and that the parameters Vk, εk are tuned
such as to give G0 the shape required by DMFT. In other words, the effective
single-site problem which the original Hubbard model is mapped onto can be

seen as a particular Anderson impurity model. The self-consistency (2.16) now

reads

t2G(iωn) =
∑
k

|Vk|2

iωn − εk
, (2.19)

and relates the parameters of the Anderson model to the Green’s function of

the impurity. Such a Hamiltonian description of the impurity problem allows
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for a straightforward numerical iterative implementation [24]. One starts with

a set of parameters Vk, εk that fully define the Hamiltonian (2.17). The

Hamiltonian is diagonalized using a Lanczos procedure and the properties of

the impurity can be computed. In particular, the Green’s function is extracted.

Then the self-consistency equation (2.19) is used to determine a new set

of parameters for the next iteration. Ideally, there would be an infinite set

of parameters such as to perfectly satisfy the self-consistency. However, a

numerical implementation can only be carried out with a finite number of

orbitals (and therefore a finite number of parameters) and the parameters for

the next iteration are found by a fitting procedure along the imaginary axis.

The reformulation of the single-site problem as an Anderson impurity model

is very useful as it allows to perform practical calculations, but more impor-

tantly this alternative approach provides a bridge between lattice and impurity

models. At the time when DMFT was developed, a lot of work had already

been done on impurity models, that were 40 years older, and many techniques

had been developed. The knowledge about the Anderson model could therefore

be used to know more about the Hubbard model.

When he introduced his impurity model, Anderson studied its properties

within a Hartree-Fock approximation. He could conclude that there was a

transition between a non-magnetic impurity regime and a magnetic one when

Uρ(0)(εd) > 1 (here ρ
(0)(ε) is the non-interaction density of states). It was

later shown that this transition was really a crossover [103] and that the low-

frequency behavior of the Anderson model satisfied Fermi-liquid theory [74] as

well as the Friedel sum rule. In the case of the symmetric Anderson model

(εd = −U/2), the spectral density ρ(ε) for small U has a large Abrikosov-Suhl
resonance. As U is increased, the resonance gets narrower (its width is of

the order of the Kondo temperature TK) and coexists with two high-energy

structures.

These studies have important consequences on the properties of the infinite-

dimensional Hubbard model. With the assumption that ImΣ(i0+) = 0 and

that ReΣ(i0+) is finite, they imply [41] that the paramagnetic phase has a

Fermi-liquid nature, so that the self-energy is expected to have the low-energy

behavior

ReΣ(ω + i0+) = µ+ (1− 1/Z)ω + . . .
ImΣ(ω + i0+) = −Γω2 + . . . ,

where Z−1 = 1 − [∂ReΣ(ω)/∂ω]|ω→0 is the quasiparticle residue, related to
the effective mass by m∗/m = 1/Z. Also, the single-particle spectral density

ρ(ε) is expected to have the same regimes as those that were found in the

Anderson model. In the case of the half-filled Hubbard model the density

of states for very small U has a shape close to the non-interacting one with

some of the spectral weight transferred to the tails. For larger U, ρ(ε) has a

three peak structure made of two bands (recognized as the Hubbard bands)
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Figure 2.8: Local spectral density at T = 0, for increasing values of

U/D. The results were obtained by iterated perturbation theory [114],

on the infinite dimensional Bethe lattice.

at energies of order U and a narrow quasiparticle peak, the counterpart of the

Abrikosov-Suhl resonance. There is therefore a transfer of spectral weight to

the Hubbard bands as U is increased.

Those Fermi-liquid properties are found in a regime for which ∆(0) 6= 0.
This does not need to be true. In particular, the self-consistency within DMFT

provides a mechanism to make ∆(0) vanish after some critical Uc , or in other

words, to bring TK → 0. In the half-filled Hubbard model, it was shown [43, 59,
100] that, assuming ∆(0) = 0, an insulating solution is stabilized. In this case,

the Kondo model (see Section 2.5), obtained from the Anderson model with

∆(0) = 0, scales to weak coupling [111], and the insulator has frozen charge

degrees of freedom and spins that are free to fluctuate. The transition from

the Fermi-liquid to the Mott insulator, obtained by increasing U, is described by

the vanishing of the quasiparticle peak, transferring its weight to the Hubbard

bands, that are already present in the metallic phase.

This picture for the Mott transition in the infinite-dimensional Hubbard

model has later been confirmed by iterated perturbation theory [114], see

Fig 2.8. As is clear from the figure, when U is large but still in the metallic

phase, the quasiparticle peak is well separated from the Hubbard bands and

the low-energy dynamics consists of spin fluctuations between | ↑〉 and | ↓〉,
while the empty and doubly occupied states are decoupled. The physics of the
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Figure 2.9: Double occupancy as a function of U/D. The data

corresponds to QMC simulations (dots), exact diagonalization (bold

line), iterated perturbation theory at T = 0 (dotted line) and the

Gutzwiller approximation (thin line) [42].

resonance is therefore that of a single spin connected to the conduction bath.

We will see that this is described by a particular limit of the Anderson model,

the so-called s-d exchange model.

It is important to note that the insulator obtained by DMFT is not a trivial

one. As can be seen from Fig. 2.9, the double occupancy does not vanish

in the insulator because of the presence of small virtual hoppings. This is in

contrast with the Gutzwiller approximation where the insulator is completely

featureless. Nevertheless, the double occupancy appears to be the sum of

two contributions: a smooth contribution across the Mott transition coming

from the virtual hoppings and a contribution from the quasiparticle Fermi sea

that vanishes at the critical Uc . The latter is actually captured well by the

Gutzwiller approximation. Therefore, the results of the Gutzwiller approxima-

tion can still be very useful, especially in determining the properties related to

the quasiparticle excitations.

2.5 The Kondo Model

The studies on the Anderson model made it clear that a sufficiently large

Coulomb repulsion U with respect to the width of the resonance could induce

a localized moment on the diluted impurities inside a metal. An important
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question that arises is how they might affect the conduction electrons of the

host metal? Experimentally, it is observed that such impurities give anomalous

contributions to many metallic properties, particularly to the transport prop-

erties such as resistivity and thermopower. One notable consequence is the

observation of a resistance minimum occurring at low temperature. This is

a surprising feature as in the case of non-magnetic impurities, with T → 0,
phonon scattering induces a monotonically decreasing resistivity going to a

residual value at T = 0. The resistance minimum is observed at low temper-

atures, where the local moments are believed to be well established.

The model that allowed to explain these features is the s-d model, or Kondo

model, in which the local magnetic moment is already formed and has a spin

S. It is coupled via an exchange interaction JK with the conduction electrons:

H =
∑
kσ

εkc
†
kσckσ + JK s · S,

where s = 1
2V

∑
kk′ c

†
kασαβck′β, V is the volume and S denotes the spin of

the impurity. For S = 1/2, this model can be shown to be obtained from the

Anderson model (2.17) in the limit U → ∞. This is much in the same spirit
as the connection between the Hubbard model and the t − J model. Formally,
the Kondo model is obtained by a Schrieffer-Wolff [104] transformation and

the parameters of both models are related by

JK =
−|Vk|2 U V
εd(εd + U)

.

Note that JK is positive and therefore induces an antiferromagnetic coupling.

By treating this model to third order perturbation theory in the coupling J,

Kondo [68] was able to show that the magnetic interaction leads to singular

scattering of the conduction electrons near the Fermi level and a lnT contri-

bution to the resistivity

R(T ) ∼ S(S + 1)J2Kcimp
[
1 + 2ρ0JK ln

(
T

D

)]−2
,

where cimp is the concentration of impurities, ρ0 the density of states at the

Fermi level and D the bandwidth of the conduction band. Because of the

logarithmic terms, the perturbative approach of Kondo fails at very low tem-

perature and one defines the Kondo temperature

TK = D exp

(
−
1

2ρ0JK

)
,

below which the perturbative results are no longer valid. Indeed for T →
TK , R(T ) → ∞. Kondo’s treatment allowed to understand the resistance
minimum but a different theory was needed to explain the physics of T → 0.
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This turned out to be a very involved issue, known as the Kondo problem,

and it is only in the late ’60s that the key notion of scaling, put forward

by Anderson [11], provided the theoretical framework to understand the low-

energy behavior of the Kondo model.

The idea was that if the higher order excitations were eliminated to give an

effective model valid on a lower energy scale, the effective coupling between

the local moment and the conduction electrons increased. In other words, at

temperatures below TK , the conduction electrons feel a coupling JK to the

impurity spin that flows to infinity, suggesting that the impurity effectively binds

into a singlet with the conduction electrons. The screened impurity behaves

like a non-magnetic impurity which explains the results found experimentally.

Note that the same analysis can be carried by considering a ferromagnetic

coupling (JK < 0) and shows that the effective coupling flows to zero as

T → 0. Shortly later, building on the scaling ideas of Anderson, Wilson

confirmed these results using the numerical renormalization group. This non-

perturbative approach provided definitive results for the spin S = 1/2 model

and can be easily generalized to different impurity models. We will describe

Wilson’s technique more in detail in Section 2.6 and use it in the following

chapters.

Let us relate these findings to the Hubbard model. We have seen earlier

that for U slightly below the critical Uc , the quasiparticle peak is essentially

separated from the Hubbard bands. This represents a regime for which the

Anderson impurity model maps on the Kondo model. The quasiparticle peak

is therefore understood as being the lattice version of the resonance induced

by the screening of the impurity by the conduction electrons. Its width is

roughly given by the Kondo temperature TK . Therefore, getting closer to the

critical value of U of the Mott transition translates into a vanishing Kondo

temperature in the corresponding Kondo model.

Impurity models, together with the techniques that were developed to study

them, provide an important tool in understanding the Mott transition in infinite

dimensions. Above, we focused on the single-band Hubbard model and the

corresponding single-band Anderson and Kondo models. As we will see in

the next chapters, more involved Hubbard models lead to different impurity

models that can include several orbitals or in which the impurities are arranged

in clusters. A careful analysis of these impurity models helps to come to grips

with the underlying physics. An especially important tool that we will use is

Wilson’s numerical renormalization group that allows to have precise results

about the low-energy properties of impurity models.

2.6 Wilson’s Numerical Renormalization Group

The numerical renormalization group (NRG) method has been developed by

Wilson [110] in the ’70s to investigate the Kondo problem. The need for a
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renormalization technique came from the failure of perturbative approaches to

describe the zero-temperature limit of the Kondo model. Indeed, the Kondo

effect depends crucially on the presence of fermionic excitations down to ar-

bitrarily small energy scales and the NRG proved to be a very powerful tool.

Since then, NRG has been used to study a variety of impurity models and to

derive their static and dynamical properties.

2.6.1 One-Dimensional Formulation of the Model

If originally formulated for the Kondo problem, the NRG methods can be

equally well applied on the Anderson model and we present it for this model [70,

71]. In order to keep the notation simple, we will focus on the simplest An-

derson impurity model, defined by the Hamiltonian

H =
∑
kσ

εkc
†
kσckσ + εdnd +

∑
kσ

(
Vkc

†
kσdσ +H.c.

)
+ Und↑nd↓, (2.20)

where c†kσ creates a conduction bath electron with spin σ and momentum

k, d†σ creates a σ-spin on the impurity, ndσ = c
†
dσcdσ and nd =

∑
σ ndσ

are occupation operators. In this Hamiltonian, U implements the Coulomb

repulsion of two electrons sitting on the impurity and Vk the hybridization of

the impurity with the conduction bath. Let us separate the Hamiltonian (2.20)

in two parts, H = Hc+Himp, where Hc is the Hamiltonian for the conduction
band and Himp involves the impurity. The impurity is only connected to one
specific linear combination of conduction bath operators

f0σ =
1√∑
k |Vk|2

∑
k

Vkckσ,

where we have properly normalized f0σ. With this definition, Himp is written
as

Himp = εdnd + Und↑nd↓ +
√∑

k

|Vk|2 f †0σdσ +H.c.

It is then possible to transform the conduction-band part of the Hamiltonian

to a tight-binding Hamiltonian, using a Lanczos procedure. Basically, one

constructs a basis for the Hilbert space starting from f
†
0σ|0〉 and successively

applying the conduction-band Hamiltonian on these states. Expressed in this

new basis, Hc is tridiagonal and defined on a semi-infinite chain

Hc =
∞∑
n=0

[
εnf
†
n,σfn,σ + tn(f

†
n,σfn−1,σ +H.c.)

]
, (2.21)
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Figure 2.10: Logarithmic discretization of the energy interval

[−1,+1].

where t0 = 0, and where the εn and tn are defined by the recursion relations

εn = 〈fn,σ|Hc|fn,σ〉
tn+1 |fn+1,σ〉 = (Hc − εn) |fn,σ〉 − tn |fn−1,σ〉
〈fn+1,σ|fn+1,σ〉 = 1. (2.22)

We used the notation |fn,σ〉 = f
†
n,σ|0〉. Although the discretized problem is

easily implemented numerically, it has the important drawback that the coef-

ficients tn go to a constant value with increasing n. For this reason, there is

little hope to converge by considering a finite-length chain. The solution to

this problem lies in a logarithmic discretization of the conduction band.

2.6.2 Logarithmic Discretization

The conduction band Hamiltonian (2.21) is defined on a one-dimensional semi-

infinite chain. If we diagonalized it, we would obtain a Hamiltonian Hc =∫∞
−∞ ε c

†
εσcεσ, where c

†
εσ creates a conduction-band electron with energy ε. In

terms of these, f0σ has the expression

f0σ =
1√∑
k |Vk|2

∫ ∞
−∞

√
∆(ε)/π cεσ.

This defines the hybridization function ∆(ε) which is a function of the conduction-

band density of states and the parameters Vk. The knowledge of ∆(ε) fully

determines the Anderson model. We will assume that ∆(ε) is a smooth func-

tion around the chemical potential. As we are interested in the low-energy

properties of the system, we model ∆(ε) by a constant ∆0 over the energy in-

terval [−D,D]. The bandwidth is given by 2D and hereafter we use D as our
unit energy. Neglecting the energy-dependence of ∆(ε) around the chemical

potential is not a crucial approximation in the study of the fixed points of an

impurity model. Indeed, small changes in the structure of ∆(ε) will not affect

universal properties at the fixed point. Note, however, that this is no longer

true if the density of states vanishes at the Fermi level, like in pseudo-gap

systems. Also, if one is interested in more quantitative quantities, the details

of ∆(ε) might be important. This is for example the case when NRG is used
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as an impurity solver for DMFT. The self-consistency sets the shape of the

conduction bath density of states and thus the energy dependence of ∆(ε)

is relevant. Note, that NRG can also be written for a general hybridization

function [44].

We then introduce a parameter Λ > 1 and divide up the energy domain

[−1,+1] into a sequence of intervals In = [Λ−(n+1),Λ−n] as shown in Fig. 2.10.
Within a positive (negative) interval In, we define a complete set of annihilation

operators a
(p)
nσ (b

(p)
nσ ), with p = 0,±1,±2, . . . . The associated wave functions

Ψ±np(ε) form an orthonormal set for the functions defined in the interval In

Ψ±np(ε) =

{
Λn/2

(1−Λ−1)1/2 e
±iωnpε if ±ε ∈ In

0 if ±ε /∈ In,

and

ωn =
2πΛn

1− Λ−1 .

The original operators cεσ can be expanded in this basis

cεσ =
∑
np

[
a
(p)
nσ Ψ

+
np(ε) + b

(p)
nσ Ψ

−
np(ε)

]
.

Using these new operators, one sees that the impurity is only connected to

a
(0)
nσ and b

(0)
nσ . Neglecting terms that have p 6= 0 one replaces all the operators

cεσ in a positive energy interval In by a single operator

anσ =
Λn/2

(1− Λ−1)1/2

∫
In

cεσdε,

and similarly in a negative energy interval by bnσ. Now the conduction-band

Hamiltonian reads

Hc/D =
1

2
(1 + Λ−1)

∑
n

Λ−n
(
a†nσanσ − b†nσbnσ

)
,

and

f0σ =

[
1

2
(1− Λ−1)

]1/2∑
n

Λ−n/2(anσ + bnσ).

These new expressions can now be inserted in the recursion relations (2.22).

When particle-hole symmetry holds, εn = 0 and one finds, for the tn,

tn+1 =
1

2
(1 + Λ−1)Λ−n/2ξn,

with

ξn = (1− Λ−n−1)(1− Λ−2n−1)−1/2(1− Λ−2n−3)−1/2.
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We see that using the logarithmic discretization the tn decay like Λ
−n/2 with

increasing n. This is the consequence of separating the electronic energies

into different orders of magnitude that contribute equally to the logarithmic

divergences found at low-temperature in a perturbative approach to the Kondo

model. We also see that the discretization has a bigger effect at high energies.

Instead, energies close to the Fermi level are well sampled. The discretization

ceases to be an approximation when Λ→ 1. On the other hand, the bigger Λ,
the faster the decay of the hopping coefficients tn. This demonstrates that one

has to make a compromise between choosing a small Λ, that does not induce

many discretization errors but requires the use of longer chains, or a large Λ,

for which small chains can be used but discretization errors will become more

important. Typical values for Λ range between 1.5 and 3.0. Putting everything

together, the Hamiltonian (2.20) can be written as

H = D
1

2
(1 + Λ−1)

∞∑
n=0

Λ−n/2ξn

[
f †n,σfn+1,σ +H.c.

]
+ εdnd + Und↑nd↓ +

√
2D∆0
π

(
f
†
0σdσ +H.c.

)
.

(2.23)

2.6.3 Iterative Diagonalization

The Hamiltonian (2.23) represents a chain with an impurity sitting at the first

site. The rest of the chain is made of sites from and on which the electrons can

hop with coefficients that decay with increasing distance from the impurity. It

then seems natural to construct the chain by iteratively adding sites at its end.

Let us therefore define the following Hamiltonian

HN = Λ(N−1)/2
[
N−1∑
n=0

Λ−n/2ξn

(
f †n,σfn+1,σ +H.c.

)
+ ε̃dnd + Ũnd↑nd↓ + ∆̃

1/2
0

(
f
†
0σdσ +H.c.

)]
,

(2.24)

where we have defined

ε̃d =

(
2

1 + Λ−1

)
εd
D

Ũ =

(
2

1 + Λ−1

)
U

D

∆̃0 =

(
2

1 + Λ−1

)2 2∆0
πD

.

The original Hamiltonian is recovered as

H = lim
N→∞

1

2
(1 + Λ−1)DΛ−(N−1)/2HN .
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The prefactor Λ(N−1)/2 in the expression for HN in (2.24) has been introduced
so that the smallest hopping is of order 1. Using the recursion relation

HN+1 = Λ1/2HN + ξN
(
f
†
N,σfN+1,σ +H.c.

)
, (2.25)

one can build up the chain by adding one site at a time. Such a procedure

can be justified because the energy scales that are brought in by the new site

are of order Λ1/2 smaller than the smallest energy scales of the previous chain.

The addition is therefore understood as a perturbation and one hopes to be

able to follow the low-energy physics using such a procedure.

2.6.4 Implementation

In a practical implementation, one starts by computing the eigenvalues and

eigenvectors of H0 as well as the matrix elements of the operators f †0,σ. The
Hilbert space is then increased by adding the states of an additional site. The

Hamiltonian H1 is diagonalized using the recursion (2.25) and the operators
f
†
1,σ are computed. This is repeated until the desired length of the chain is

reached. However, one quickly faces a technical difficulty. The Hilbert space

grows as 4N and it becomes rapidly impossible to diagonalize the Hamiltonian.

The solution, proposed by Wilson, is to keep, at every step, only the Nk lowest

energy states. Nk has to be determined such as to have an affordable com-

putational time. The success of this truncation scheme lies in the exponential

falling down of the matrix elements. Finally, it is very important to use all

the available symmetries of the problem in order to reduce the computational

effort. Typically, spin and isospin symmetries can be implemented.

One of the outcomes of an NRG run, are the eigenvalues of Hn at each
step n. As we have seen earlier, the smallest hopping term in the Hamiltonian

is of order 1, for every n. Therefore the eigenvalues at every step are of the

same order of magnitude and one can show a plot of these eigenvalues as a

function of n. This plot is called a flow diagram and we show a typical example

in Fig. 2.11.

2.6.5 Fixed Points

The recursion relation (2.25) defines a renormalization group transformation

HN+1 = T [HN ].

As can be seen from Fig. 2.11, there are regions were the spectrum does not

change with increasing steps. This indicates the proximity to a fixed point,

described by a Hamiltonian satisfying

H∗ = T 2[H∗],
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Figure 2.11: Typical flow diagram for an NRG run.

where the square comes from the distinction between odd and even chains. A

fixed point has therefore two associated Hamiltonians, one corresponding to an

even chain, and one corresponding to an odd chain. An important property of

the fixed points is that they describe a theory which is scale invariant. Indeed,

the low-energy spectrum is invariant and depends only on one scale that can

be thought of as the length of the chain. The renormalization transformation

T adds in new degrees of freedom, keeping the length of the chain fixed.
Further applying T , one reaches the continuous limit (corresponding to Λ = 1).
Hence, there is a continuous field theory which describes the physics of the

fixed point. Actually, the corresponding field theory has more than just scale

invariance, it is conformally invariant. This important property will prove very

useful in understanding the fixed point properties as it allows to use the tools

of conformal field theory (see Section 2.7).

2.6.6 Spectral Function

The early applications of the NRG approach were restricted to the calculation

of static properties, like the specific heat or the magnetic susceptibility. The

increase of computational resources made it possible to compute dynamical

quantities as well. In particular, we will be interested in the single-particle

spectral function of the impurity. As the calculations are made with a discrete

version of the conduction band, the spectral function is given by a set of

δ-peaks. For a chain made of N sites it is given by

A(ω) =
1

ZN

∑
nm

∣∣〈n|d†σ|m〉∣∣2 δ(ω − (En − Em)) (e−βEn + e−βEm) ,
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where ZN is the grand canonical partition function. Ideally, one should do

this computation for a large N where the low-energy fixed point has been

reached. However, because of the truncation procedure, at that iteration, the

information about the high-energy spectrum is completely lost. In order to get

the spectral information at all energy scales, one must compute the spectral

function at every iteration and combine [21, 33, 38, 101] it together. The

continuous version of this discrete set is finally obtained by broadening the

δ-peaks with Gaussians on a logarithmic scale

δ(ω − ω̃)→
e−b

2/4

b ω̃
√
π
exp

[
−
(lnω − ln ω̃)2

b2

]
,

where b is the broadening parameter and takes a typical value of 0.5.

2.7 Conformal Field Theory

Over the past 20 years, the methods of conformal field theory have received

significant interest in statistical and condensed matter physics [17, 35]. In

statistical physics, they have allowed to study critical points in the phase di-

agram of two-dimensional classical models like the Ising or the three-state

Potts model. Quantum mechanical models for which conformal field theory

can be used are one-dimensional critical systems, like the spin-1/2 Heisenberg

chain. A common feature of all these models is that they have a diverging

correlation length so that there is no microscopic characteristic length entering

their low-energy description. For statistical systems this means that the lattice

spacing does not enter the low-energy physics. In critical quantum systems,

instead, this is directly related to the presence of gapless excitations. Indeed,

a gap would introduce a microscopic length given by the associated Comp-

ton wavelength. The absence of microscopic length endows these systems

with scale invariance, but they actually often possess a larger symmetry: They

are conformally invariant. As a result, they can be described by an effective

(1 + 1)-dimensional quantum field theory which is invariant under conformal

transformations.

In the beginning of the ’90s, Affleck and Ludwig [1] have shown that the

techniques of conformal field theory can also be applied to impurity problems.

As we have seen in Section 2.6 for the Anderson model, these problems can be

mapped onto a semi-infinite chain. Their corresponding field theory is therefore

defined on part of a (1 + 1)-dimensional space-time plane. The impurity is

sitting at the space coordinate x = 0 and the problem is formulated for x ≥ 0.
Far from the impurity, the theory must be that of free fermions and should

be scale invariant. Indeed, the impurity can not open a bulk gap so that

the theory remains gapless. In fact, the theory should be invariant under

the conformal transformations that leave the x = 0 line fixed. Affleck and

Ludwig argued that it is then natural to assume that the critical properties are



40 The Mott Transition: Models and Methods

described by the free bulk theory with some scale-invariant boundary condition

replacing the dynamical impurity. The different regimes (or fixed-points) of

the impurity model correspond to different boundary conditions. Note that in

some particular cases, like in the Kondo model of a spin-1/2 connected to a

single conduction band, these boundaries are equivalent to imposing specific

boundary conditions on the fermionic fields, but this is not true in general.

The extension of conformal field theory to account for the presence of a

boundary has been developed by Cardy [27, 30] and has provided important

results that can used for the study of impurity models. Let us briefly review

them here.

2.7.1 Boundary Conformal Field Theory

When boundaries are absent, conformal transformations correspond to trans-

formations z → w(z), where z = t + ix is the space-time coordinate on the

complex plane and w is any analytical function. Expanded about the origin,

w(z) =

∞∑
n=0

an z
n,

so that there is an infinite number of generators of conformal transformations.

This is actually why conformal invariance is so powerful in two dimensions (in

dimension bigger than two, the group of conformal transformations is isomor-

phic to SL(2,C) and therefore finite dimensional). With a boundary along the
real axis, the requirement that the transformations leave the boundary fixed

yields w(t) = w∗(t), or equivalently an = a∗n. The number of generators

is reduced by two but is still infinite, though, and the boundary conformal

symmetry remains very powerful.

Let us consider a problem defined on a cylinder of length L in the space

direction x and of circumference β in the imaginary-time t direction. This

would correspond to a quantum mechanical system at temperature 1/β. The

ends of the cylinder have a boundary A at x = 0 and B at x = L, see left

panel of Fig. 2.12. We assume that at the boundaries the holomorphic and

the anti-holomorphic part of the energy-momentum tensor are equal

T (t − ix) = T̄ (t + ix), x = 0, L (2.26)

expressing the fact that there is no current flowing through the boundaries. It

is then possible to regard T̄ as the analytical continuation of T to the negative

axis and x = ±L are identified. The resulting theory is now defined on a
torus of length 2L. It is chiral and has only the symmetry of one of the two

Virasoro algebras of the original theory with no boundaries. We note that T

is not aware of the boundary condition and the conformal towers of T are not

affected. Actually, the boundaries only modify which conformal towers occur.
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Figure 2.12: Two possible geometries to compute the partition func-

tion ZAB. The left geometry has a modular parameter τ = iβ/2L

whereas on the right τ = i2L/β. They are related by a modular trans-

formation τ → −1/τ . The dashed lines indicate the direction of the
time propagation.

To be more specific, the partition function for this theory is

ZAB =
∑
a

naAB

∑
m

e−βE
a
m(2L),

where naAB are non-negative integers giving the multiplicity with which the

various conformal towers appear. Only these integers depend on the bound-

ary conditions. The eigenenergy Eam(2L) corresponding to the field m with

dimension xam in the conformal tower a is given by

Eam(2L) =
π

L
xam −

πc

24L
,

where c is the central charge of the theory. Using the definition of the char-

acters

χa(q) = q
−c/24

∑
m

qxm ,

where q = e2πiτ and τ is the modular parameter, it is possible to write the

partition function as

ZAB =
∑
a

naAB χa(e
−πβ/L). (2.27)

This partition function corresponds to τ = iβ/2L. We emphasize again that

the characters do not depend on the boundary conditions, only the naAB do.

The problem is now to find the multiplicities naAB corresponding to all the
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possible boundary conditions A and B. To make progress, it is useful to

compute the partition function in a different way by performing a modular

transformation x ↔ t (i.e. τ → −1/τ). Now the original problem that
was formulated on a cylinder of time circumference β and space length L is

transformed into a cylinder of time length L with antiperiodic conditions along

the space direction x , as shown in the right panel of Fig. 2.12. The boundary

conditions can be seen as boundary states |A〉 and |B〉 that are connected by
the evolution operator of a Hamiltonian that we denote by H̃. In this case,
the partition function is

ZAB = 〈A|e−LH̃|B〉. (2.28)

Equating this with equation (2.27) will give powerful constraints to determine

the possible conformally invariant boundary conditions. The restriction (2.26)

implies that the boundary states satisfy[
T (x)− T̄ (x)

]
|A〉 = 0.

The most general solution to these constraints is written as

|A〉 =
∑
a

〈a|A〉
(∑
m

|a,m〉 ⊗ |a,m〉
)
,

where the sum is over so-called Ishibashi [56, 57] states, and |a,m〉 form a
basis for the conformal tower a. The prefactors 〈a|A〉 are defined by this
formula. The partition function (2.28) now reads

ZAB =
∑
a

〈A|a〉〈a|B〉
∑
m

e−2LE
a
m(β) =

∑
a

〈A|a〉〈a|B〉χa(e−4Lπ/β).

This expression is very close to (2.27) but the characters are not the same.

Here, they correspond to a modular parameter τ = i2L/β. They are re-

lated [29] through the modular transformation τ → −1/τ so that

χa(e
−πβ/L) =

∑
b

Sba χb(e−4Lπ/β),

where S is the modular S-matrix. Since the two partition functions have to
be the same for all β/L we find Cardy’s formula∑

b

nbAB Sab = 〈A|a〉〈a|B〉. (2.29)

This formula relates the occurrence of the conformal towers with the boundary

states A and B. In general, it is possible to identify some trivial boundaries

and new boundary states can then be obtained by fusion. Imagine we fuse all

the conformal towers of the theory with boundaries A,B with a tower c and
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let us show that the resulting theory can be described by new boundaries A,C.

In other words, the fusion with c replaces the boundary B by C. Clearly, the

new towers appear according to

naAC =
∑
d

Nadcn
d
AB, (2.30)

where Nadc are the fusion coefficients. The boundary state |C〉 then needs to
have the following coefficients in its expansion in Ishibashi states

〈a|C〉 =
Sac
Sa0
〈a|B〉. (2.31)

Indeed, with this definition, we have that the boundary state |C〉 and naAC
satisfy Cardy’s relation (2.29)∑

b

nbAC Sab =
∑
b,d

NbdcSabndAB =
∑
d

SadSac
Sa0

ndAB

=
Sac
Sa0
〈A|a〉〈a|B〉 = 〈A|a〉〈a|C〉,

where we used the Verlinde formula [107] in the second equality. This is

the main result of this section. It shows that the fusion hypothesis originally

proposed by Affleck and Ludwig finds a very natural interpretation within the

framework of boundary conformal field theory. The fusion with a conformal

tower c reshuffles the towers according to (2.30) and the new boundary state

has coefficients given by (2.31). Starting from appropriate known boundaries,

it is believed that a complete set of boundary states will be generated.

Let us also mention that it is possible to find the allowed boundary opera-

tors that are compatible with a boundary C. Indeed, there is a correspondence

between the scaling dimensions of the boundary operators and the conformal

towers that appear in the spectrum on a strip with two identical boundaries

C [28, 29]. In order to obtain the operator content it is therefore enough to

do a double fusion with the tower generating the boundary C. Let us assume

we have identified some trivial boundary A and know naAA. A first fusion with

the tower c produces a boundary C and

naAC =
∑
d

Nadcn
d
AA.

A second fusion then allows to get the boundary operator content for the

boundary C. We get

naCC =
∑
d,b

NabcN
b
dcn

d
AA,

which tells if there are operators with scaling dimensions corresponding to the

conformal tower a.
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2.7.2 Ground-State Degeneracy

One-dimensional quantum systems have a universal ground-state degeneracy

g which only depends on the boundary conditions [4]. Let us consider a system

with boundaries A,B. In general, the logarithm of the partition function for

L� β reads

lnZAB =
πLc

6β
+ ln g + . . . ,

where the first term depends on L/β and represents the bulk contribution.

Instead, the second term does not scale with the system size and depends on

the boundaries: g = gAgB. If we consider the limit L � β in the partition

function (2.28) we see that only the trivial conformal tower with lowest energy

survives

lnZAB =
πLc

6β
+ ln〈A|0〉〈0|B〉+ . . . .

Using Cardy’s formula (2.29) the ground-state degeneracy is found to be

g = gAgB = 〈A|0〉〈0|B〉 =
∑
b

nbAB S0b . (2.32)

Starting from free boundary conditions F for which gF = 1, we can find how g

is modified by the introduction of a boundary A after fusion with a conformal

tower a

g = gAgF =
∑
b

nbAF S0b =
∑
b,d

Nbdan
d
FFS0b =

∑
d

S0dS0a
S00

ndFF =
S0a
S00
.

We used (2.32) in the first and last identity, the Verlinde formula in the third

equality and (2.30) in the second identity. From this equation it is easy to find

the residual entropy of the impurity

S(0) = ln
S0a
S00
.

2.7.3 Scattering Matrix

In Chapter 4, we will use the one-particle components of the scattering matrix

to characterize the different fixed points of the theory. The fermionic fields ψ

that describe the electrons on the chain can be expressed as a product of a

left-moving part ψL (proportional to the holomorphic part of a primary field)

and a right-moving part ψR (proportional to the anti-holomorphic part of a

primary field). In the bulk, we have that the Green’s function

〈ψ†L(z1)ψR(z2)〉 = 0.
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However, as z1 and z2 get close to the boundary, the two fermionic fields are

no longer independent, like the energy-momentum tensor in Section 2.7.1, and

they can acquire a non-zero average value

〈ψ†L(z1)ψR(z2)〉 = 〈ψ
†
L(z1)ψL(z

∗
2 )〉 =

S1
z1 − z∗2

,

where S1 is a one-particle S-matrix element [6]. For a simple periodic boundary

condition S1 = 1, whereas for an antiperiodic condition S1 = −1. In general,
if |S1| = 1, the boundary conserves the Fermi-liquid properties. Indeed, in this
case, there is no multi-particle scattering occurring at the Fermi surface. The

boundary corresponds to imposing ψR(z) = e
2iδψL(z) on the fermionic fields

and δ is the phase shift. However, it is also possible to have |S1| < 1 which
means that there is inelastic scattering at the Fermi surface and Fermi-liquid

behavior is lost. Therefore, S1 indicates if the introduction of the boundary

destroys Fermi-liquid behavior.

The actual computation of S1 can be done using a result by Cardy and

Lewellen [31]. If the boundary of the system is A, then the expectation value

of two primary fields is given by

〈φ(z1) φ̄(z2)〉 =
〈a|A〉
〈0|A〉

1

(z1 − z∗2 )2xa
,

where φ are primary fields of dimension xa and |a〉 and |0〉 correspond to
the conformal tower a and the identity, respectively. Applying this result to

compute the above Green’s function, we have

S1 =
〈f |A〉
〈0|A〉 ,

where we used f to label the conformal tower corresponding the the fermionic

operators ψ. Starting from some reference boundary F , for which S1 = Sfree
is known, we can find the new scattering matrix element for a boundary A,

obtained by fusion with a tower a, using (2.31)

S1 = Sfree
S fa /S f0
S0a/S00

.





Chapter 3

Different Bandwidths in the
Two-Band Hubbard Model

We investigate the role of the bandwidth difference in the Mott metal-insulator

transition of a two-band Hubbard model in the limit of infinite dimensions, by

means of a Gutzwiller variational wave function as well as by dynamical mean-

field theory. The variational calculation predicts a two-stage quenching of the

charge degrees of freedom, in which the narrower band undergoes a Mott

transition before the wider one, both in the presence and in the absence of

a Hund’s exchange coupling. However, this scenario is not fully confirmed

by the dynamical mean-field theory calculation, which shows that, although

the quasiparticle residue of the narrower band is zero within our numerical

accuracy, low-energy spectral weight still exists inside the Mott-Hubbard gap,

concentrated into two peaks symmetric around the chemical potential. This

spectral weight vanishes only when the wider band ceases to conduct too.

Although our results are compatible with several scenarios, e.g., a narrow gap

semiconductor or a semimetal, we argue that the most plausible one is that the

two peaks coexist with a narrow resonance tied at the chemical potential, with

a spectral weight below our numerical accuracy. This quasiparticle resonance

is expected to vanish when the wider band undergoes the Mott transition. The

work of this chapter has been done in collaboration with M. Fabrizio, F. Becca

and M. Capone and is published in Ref. [37].

3.1 Introduction

Unlike in single-band models, the Mott metal-insulator transition (MIT) in

multi-orbital strongly correlated systems generically involves other energy scales

besides the short-range Coulomb repulsion U and the bare electron bandwidth.

They include, for instance, the Coulomb exchange J which produces the Hund’s

rules, any crystal field or Jahn-Teller effect splitting the orbital degeneracy, and

possibly bandwidth differences between the orbitals. There are many theoret-

47
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ical works making use of dynamical mean-field theory which analyze the role

of the exchange J [50, 64, 96, 99], the crystal field splitting [82], and the

Jahn-Teller effect [25, 26, 48, 49, 51]. All these analyses suggest that these

perturbations, which have the common feature of splitting multiplets at fixed

charge, are amplified near the MIT, leading for instance to an appreciable shift

of the transition towards lower U’s [50, 64, 96, 99] or to the appearance of

anomalous phases just before the MIT [25, 26]. This behavior is not surprising,

since the more the electronic motion is slowed down, i.e., the longer the time

electrons stay localized around a site, the larger the chance to get advantage

of multiplet-splitting mechanisms.

On the contrary, the role of different bandwidths for nearly degenerate

orbitals is less predictable, since the Coulomb charge repulsion only depends

on the total number of electrons at a given site, while it is not concerned with

the orbital they sit in. Recently, this issue has been addressed in a two-band

Hubbard model by DMFT, yet leading to controversial results.

Liebsch has argued, on the basis of a DMFT calculation using quantum

Monte Carlo at finite temperature and iterated perturbation theory as impu-

rity solvers, that for not too different bandwidths (he used a ratio 2 between

the bandwidths) the two orbitals undergo a common MIT at zero tempera-

ture [78, 79]. Other recent developments by Koga and coworkers [67], have

shown, using exact diagonalization instead of quantum Monte Carlo, that if

one considers the full Hund’s coupling there are two distinct MITs: There is

a first transition at which the orbital with smaller bandwidth becomes insulat-

ing, followed at larger values of the interaction by a second transition at which

the other orbital ceases to conduct as well. This two-stage quenching of the

charge degrees of freedom has been named orbital-selective Mott transition

(OSMT) by those authors. Further calculations by Koga and coworkers [66]

also indicate that an Ising-like anisotropy (without pair hopping and exchange

term) in the Coulomb exchange tends to favor a single transition. This might

explain the apparent contradiction between their T = 0 exact diagonalization

results and Liebsch’s quantum Monte Carlo results extrapolated at T = 0.

Indeed, Liebsch used an Ising-like Hund’s coupling to avoid sign problems at

low temperatures in the quantum Monte Carlo algorithm.

Although the coexistence of localized f -electrons and itinerant d-electrons

is not unusual in rare-earth compounds, the conclusions of Ref. [67] are some-

what surprising in the case of degenerate orbitals. Indeed, the Coulomb

exchange-splitting, rather than favoring an OSMT, should näıvely oppose to

it, since J competes against the angular momentum quenching due to the

different bandwidths.

In this work, we attempt to clarify this issue by means of a variational

analysis based on Gutzwiller wave functions, by standard DMFT calculations

as well as by an approximate DMFT projective technique. This chapter is

organized as follows: In Section 3.2, we introduce the two-band model and
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discuss general properties. In Section 3.3, we apply a variational technique

based on Gutzwiller-type trial wave functions to analyze the ground state of

the Hamiltonian. A full DMFT analysis is presented in Section 3.4. As a

guide to interpret the DMFT spectral functions, in Section 3.5, we show the

density of state obtained by Wilson’s numerical renormalization group of the

Anderson impurity model onto which the lattice model maps within DMFT. In

Section 3.6, we present an approximate DMFT solution obtained by projecting

out self-consistently high-energy degrees of freedom, which allow a better low-

energy description. Conclusions are drawn in Section 3.7.

3.2 The Model

We consider a two-band Hubbard model at half-filling described by the Hamil-

tonian

H = −
∑
〈i ,j〉,σ

2∑
a=1

ta f
†
i ,aσfj,aσ +H.c.

+
(U
2
+
J

3

)∑
i

(ni − 2)2 +Hexch,
(3.1)

where f †i ,aσ creates an electron at site i in orbital a = 1, 2 with spin σ, ni a =∑
σ f
†
i ,aσfi ,aσ is the occupation number at site i in orbital a, and ni = ni 1+ni 2 is

the total occupation number. The explicit expression of the Coulomb exchange

Hexch is

Hexch =
J

2

∑
i

(ni 1 − ni 2)2

+
J

2

∑
i

∑
σ,σ′

f
†
i ,1σf

†
i ,1σ′fi ,2σ′fi ,2σ +H.c.

+
J

2

∑
σ,σ′

f
†
i ,1σfi ,2σf

†
i ,2σ′fi ,1σ′ + (1↔ 2) (3.2)

≡ 2J
∑
i

(
T 2i x + T

2
i z

)
,

where

Ti α =
1

2

∑
a,b

∑
σ

f
†
i ,aσ τ

α
ab fi ,bσ (3.3)

are pseudo-spin-1/2 operators, with τα the Pauli matrices, α = x, y , z . Note

that the term J
∑
i(ni −2)2/3 in (3.1) has been introduced so that the center

of gravity of the electronic configurations at fixed charge ni does not depend

on J and is simply U
∑
i(ni − 2)2/2. Hereafter, we always take 0 < t2 ≤ t1.

Let us start by discussing some general properties of this Hamiltonian.
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If U � t1, the model describes a Mott insulator in which two electrons

localize on each site. For J > 0, the atomic two-electron ground state is the

spin triplet, followed at energy 2J by the two degenerate singlets (we drop the

site index) √
1

2

(
f
†
1↑f
†
2↓ − f

†
1↓f
†
2↑

)
|0〉,

√
1

2

(
f
†
1↑f
†
1↓ − f

†
2↑f
†
2↓

)
|0〉,

and finally at energy 4J by the singlet√
1

2

(
f
†
1↑f
†
1↓ + f

†
2↑f
†
2↓

)
|0〉.

Here |0〉 is the vacuum state. Hence, the Mott insulator for very large U,
specifically t21/U � J, is effectively a spin-1 Heisenberg model where, at any

site, each orbital is occupied by one electron, the two electrons being bound

into a spin-triplet configuration. Within the OSMT scenario, below some criti-

cal repulsion, defined in the following as U1, electrons in orbital 1 start moving,

while one electron per site remains localized in orbital 2. Only below a lower

U2 < U1, electrons in orbital 2 delocalize too. In this particular example with

a half-filled shell, the Coulomb exchange does not conflict with the OSMT,

since Hexch favors single occupancy of each orbital. Yet, one may wonder
about the role of the exchange term (3.2) which can transfer electrons from

the delocalized orbital to the localized one.

3.3 Gutzwiller Variational Technique

Let us start by a variational analysis of the ground state of the Hamilto-

nian (3.1). In particular, we are going to use the Gutzwiller variational ap-

proach described in Section 2.2, which is one of the simplest ways to include

electronic correlations into a many-body wave function. We label the different

atomic configurations for the model (3.1) by

|1,+〉σ = f †2σ |0〉 |2,+〉 = f †2↑f
†
2↓ |0〉

|1,−〉σ = f †1σ |0〉 |2,−〉 = f †1↑f
†
1↓ |0〉

|2, 0〉 =
√
1

2
(f †1↑f

†
2↓ − f

†
1↓f
†
2↑) |0〉 |3,+〉σ = f †1σf

†
2↑f
†
2↓ |0〉

|2, 1〉+1 = f †1↑f
†
2↑ |0〉 |3,−〉σ = f †1↑f

†
1↓f
†
2σ |0〉

|2, 1〉0 =
√
1

2
(f †1↑f

†
2↓ + f

†
1↓f
†
2↑) |0〉 |4〉 = f †1↑f

†
1↓f
†
2↑f
†
2↓ |0〉

|2, 1〉−1 = f †1↓f
†
2↓ |0〉,
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where |0〉 is the vacuum state. Together with these states, we define the
associated projectors

P(0) = |0〉〈0| P(2,+) = |2+〉〈2 + |

P(1,+) =
∑
σ

|1+〉σσ〈1 + | P(2,−) = |2−〉〈2− |

P(1,−) =
∑
σ

|1−〉σσ〈1− | P(2, 0) = |2 0〉〈2 0|

P(3,−) =
∑
σ

|3−〉σσ〈3− | P(2, 1) =
∑
s

|2 1〉s s〈2 1|

P(3,+) =
∑
σ

|3+〉σσ〈3 + | A(2,±) = |2+〉〈2− |

P(4) = |4〉〈4| A(2,∓) = |2−〉〈2 + |. (3.4)

It is now possible to rewrite the Hamiltonian (3.1) in terms of these projectors

so that it is brought under the form (2.6) that we used in Section 2.2

H = −
∑
〈i ,j〉,σ

2∑
a=1

ta f
†
i ,aσfj,aσ +H.c.+ 2U

[
P(0) + P(4)

]
+
U

2

[
P(1,+) + P(1,−) + P(3,+) + P(3,−)

]
+ J
[
A(2,±) +A(2,∓)

]
+
2J

3
P(2, 0)−

4J

3
P(2, 1) +

5J

3

[
P(2,−) + P(2,+)

]
.

(3.5)

The solution of the uncorrelated problem (U = J = 0) is the Fermi-sea Slater

determinant |Ψ0〉. The correlated variational wave function |Ψ〉 will be con-
structed from the uncorrelated one by applying a Gutzwiller projector on it.

The explicit form of this projector will be shown in the following sections.

The kinetic term is diagonal in orbital and spin index which brings in some

simplifications. The Fermi sea |Ψ0〉 satisfies

〈Ψ0|f †i ,aσfj,bσ′ |Ψ0〉 = 0 if (a, σ) 6= (b, σ′)

〈Ψ0|f †i ,aσfi ,bσ′ |Ψ0〉 = δσσ′ δab
N

2k
,

where N is the average occupation per site. Let us denote by roman let-

ters the correlated probabilities P (n, Γ ) = 〈Ψ|P(n, Γ )|Ψ〉 and A(n, Γ ) =
〈Ψ|A(n, Γ )|Ψ〉. These variables will be used as the variational parameters that
have to be tuned to minimize the Gutzwiller energy. Given the particle-hole

symmetry of the model, we can identify

P (0) = P (4) P (1,+) = P (3,−)
P (1,−) = P (3,+) P (2,+) = P (2,−)
A(2,±) = A(2,∓).
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Considering these properties, the variational ground-state energy (2.10) per

site takes a simpler form

E = −
1

V

∑
〈i ,j〉,σσ′

2∑
a,b=1

ta Z
bσ′
aσ 〈Ψ0|f

†
i ,bσ′fj,bσ′ +H.c.|Ψ0〉+ 4U P (0)

+ U
[
P (1,+) + P (1,−)

]
+ 2J A(2,±)

+
2J

3
P (2, 0)−

4J

3
P (2, 1) +

10J

3
P (2,+),

and the reduction factors Zbσ
′

aσ are evaluated through√
Zbσ

′
aσ =

2k

N
〈Ψ0|P†i G f

†
i ,aσ Pi G fi ,bσ′ |Ψ0〉. (3.6)

3.3.1 Results for J = 0

Let start with the simpler case where J = 0. The Hamiltonian is written

in terms of diagonal projectors only. We may therefore write the Gutzwiller

projector using the P(n, Γ ) given in (3.4)

P =
∏
i

Pi G =
∏
i

∑
n,Γ

λnΓPi(n, Γ ). (3.7)

The states within a spin multiplet are expected to appear with the same prob-

ability. This is the motivation for defining projectors like P(2, 1) as a sum of
projectors over the different states of the multiplet. Any of these 3 states

will have a correlated probability 13P (2, 1). In the limit d →∞ and when the
Gutzwiller projector has only diagonal components it is easy to relate the λnΓ
to the correlated probabilities P (n, Γ )

λ2nΓ =
P (n, Γ )

P (0)(n, Γ )
,

where P (0)(n, Γ ) is the uncorrelated probability 〈Ψ0|Pi(n, Γ )|Ψ0〉. Clearly
every correlated quantity can now be expressed as a function of the P (n, Γ ).

The restriction (2.8) reads ∑
nΓ

P (n, Γ ) = 1

and, because of particle-hole and spin symmetry, all the restrictions (2.9) are

diagonal and equivalent and impose that∑
nΓ

n P (n, Γ ) = N.
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We will be interested in the half-filled case N = 2. After some simple, but

lengthy algebra, we find that the hopping energy reduction factors (3.6) are

given by Zbσ
′

aσ = δabδσσ′Za with√
Z1 = 2

√
2
√
P (0)P (1,−) + 2

√
2
√
P (1,−)P (2,+)

+
√
2
√
P (1,+)P (2, 0) +

√
6
√
P (1,+)P (2, 1),√

Z2 = 2
√
2
√
P (0)P (1,+) + 2

√
2
√
P (1,+)P (2,+)

+
√
2
√
P (1,−)P (2, 0) +

√
6
√
P (1,−)P (2, 1).

Since J = 0, the two-electron configurations with one electron in each orbital

are equally probable, namely P (2, 1) = 3P (2, 0). Therefore, one can use the

following parametrization

P (1,+) = P (1) cos2 φ,

P (1,−) = P (1) sin2 φ,

P (2, 1) = P (2)
3

4
cos2 θ,

P (2, 0) = P (2)
1

4
cos2 θ,

P (2,+) = P (2)
1

2
sin2 θ.

The normalization conditions (2.8) and (2.9) now both read

2P (0) + 2P (1) + P (2) = 1, (3.8)

and the Z-reduction factors can be written as√
Z1 = 2

√
2 sinφ

√
P (0)P (1)

+
√
P (1)P (2)

[
2 sinφ sin θ +

√
8 cosφ cos θ

]
,√

Z2 = 2
√
2 cosφ

√
P (0)P (1)

+
√
P (1)P (2)

[
2 cosφ sin θ +

√
8 sinφ cos θ

]
.

If we define

T =
1

V
〈Ψ0|

∑
〈i ,j〉,σ

f
†
i ,1σfj,1σ +H.c.|Ψ0〉

=
1

V
〈Ψ0|

∑
〈i ,j〉,σ

f
†
i ,2σfj,2σ +H.c.|Ψ0〉,

the average value per site of the hopping operator in the Fermi sea, then the

variational energy of the Gutzwiller wave function in infinite dimensions is

E = −t1 T Z1 − t2 T Z2 + U P (1) + 4U P (0). (3.9)
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Here, the Zi are functionals of the probability distribution P (n), n = 0, 1, 2,

with the normalization (3.8), as well as of the two angles φ, θ ∈ [0, π/2].
One can proceed analytically a bit further. It is known [13] that near a

Mott transition and within the Gutzwiller wave function approach, one can

safely neglect P (0) = P (4). Within this approximation, P (2) = 1 − 2P (1)
and √

Z1 =
√
P (1)P (2)

[
2 sinφ sin θ +

√
8 cosφ cos θ

]
,√

Z2 =
√
P (1)P (2)

[
2 cosφ sin θ +

√
8 sinφ cos θ

]
.

We denote P (1) = d/2, hence P (2) = 1 − d , so that the variational en-
ergy (3.9) becomes

E = −T
d (1− d)
2

f (φ, θ) +
U

2
d

where

f (φ, θ) = t1

[
2 sinφ sin θ +

√
8 cosφ cos θ

]2
+ t2

[
2 cosφ sin θ +

√
8 sinφ cos θ

]2
.

The optimal value for d is

d∗ =
T f (φ, θ)− U
2T f (φ, θ)

,

and the variational energy becomes:

E[φ, θ] = −
[T f (φ, θ)− U]2

8T f (φ, θ)
.

At given φ and θ, the Mott transition at which both orbitals localize occurs

when d∗ = 0, namely when

Uc(φ, θ) = T f (φ, θ).

The most stable solution is the one which maximizes f . An OSMT corresponds

to a situation in which the Mott transition occurs with orbital 2 being already

strictly singly-occupied, namely with φ = θ = 0. This solution is an extremum

of f . Yet, one has to check whether it is also a maximum. We find that this

is indeed the case whenever

t2 ≤
1

5
t1. (3.10)

Therefore, within the Gutzwiller variational technique, an OSMT can occur

even in the absence of Coulomb exchange, provided (3.10) is satisfied.
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Figure 3.1: Reduction factors Za for the wide band (dashed line) and

for the narrow band (continuous line) obtained with the Gutzwiller

wave function for different ratios of the bandwidth D2/D1 and J = 0.

We optimized (3.9) numerically, considering an infinite coordination Bethe

lattice at half-filling. The free density of state is given by

ρa(ε) =

√
4t2a − ε2
2πt2a

, (3.11)

and, in this case, T = 8/(3π). The half-bandwidth of each band is Da = 2ta,

and our unit of energy is D1. The reduction factors Z1 and Z2 are shown in

Fig. 3.1, for different ratios D2/D1. The results indeed confirm the analytical

calculation (3.10), displaying two distinct transitions when D2/D1 < 0.20.

Moreover, the transitions are of second order both if an OSMT occurs or not.

3.3.2 Results for J 6= 0

Let us now move to the more complicated case of J 6= 0. As can be seen
from (3.5), the Hund’s rule coupling acts only within the two-electron config-

urations and is not diagonal in the representation which we have used so far.

As a consequence, we generalize the Gutzwiller correlator (3.7) into

Pi G → Pi G + λ2⊥ (A(2,±) +A(2,∓)) .
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We can still relate the λnΓ to the correlated probabilities using

P (2,+) = λ22+ P
(0)(2,+) + λ22⊥ P

(0)(2,−),
P (2,−) = λ22− P (0)(2,−) + λ22⊥ P (0)(2,+).

Since by particle-hole symmetry P (2,+) = P (2,−), as well as P (0)(2,+) =
P (0)(2,−), then λ2+ = λ2− ≡ λ2± and hence

λ22± + λ
2
2⊥ =

P (2,+)

P (0)(2,+)
.

In addition,

A(2,±) = 2λ2⊥ λ2± P (0)(2,+),

so that

λ2± =
1

2
√
P (0)(2,+)

[√
P (2,+) + A(2,±) +

√
P (2,+)− A(2,±)

]
,

λ2⊥ =
1

2
√
P (0)(2,+)

[√
P (2,+) + A(2,±)−

√
P (2,+)− A(2,±)

]
.

We notice that |A(2,±)| ≤ P (2,+). The hopping reduction factors (3.6) are
now modified into Zbσ

′
aσ = δabδσσ′Za with√

Z1 = 2
√
2
√
P (0)P (1,−)

+
√
2
√
P (1,−)

[√
P (2,+) + A(2,±) +

√
P (2,+)− A(2,±)

]
+
√
2
√
P (1,+)P (2, 0) +

√
6
√
P (1,+)P (2, 1),√

Z2 = 2
√
2
√
P (0)P (1,+)

+
√
2
√
P (1,+)

[√
P (2,+) + A(2,±) +

√
P (2,+)− A(2,±)

]
+
√
2
√
P (1,−)P (2, 0) +

√
6
√
P (1,−)P (2, 1).

The average value of the Hund’s coupling is

EJ = 2J A(2,±) +
2J

3
P (2, 0)−

4J

3
P (2, 1) +

10J

3
P (2,+),

and that of the Hubbard repulsion

EU = 4U P (0) + U
[
P (1,+) + P (1,−)

]
.

Thus, the variational energy to be minimized is

E = −t1 T Z1 − t2 T Z2 + EJ + EU . (3.12)
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Figure 3.2: Reduction factors Za for the wide band (dashed line) and

the narrow band (continuous line) obtained with the Gutzwiller wave

function for different ratios of the bandwidth D2/D1 and J/U = 0.10.

With the modified Gutzwiller projector, the restrictions (2.8) and (2.9) still

read

2P (0) + 2P (1) + P (2) = 1,

where P (n) =
∑
Γ P (n, Γ ). By the numerical minimization of the variational

energy, we find that the critical ratio D2/D1 for an OSMT increases when

J 6= 0 from the value 0.2 found for J = 0. In Fig. 3.2, we show Z1 and

Z2 as obtained by numerical minimization of (3.12), for two ratios of D2/D1
and J/U = 0.10. Additional calculations allowed to draw the phase diagram

within the Gutzwiller variational approach, see the left panel of Fig. 3.3. As is

apparent from the inset, the introduction of the Hund’s coupling increases the

value of the critical ratio D2/D1. The right panel of Fig. 3.3 shows how the

phase diagram is modified as J/U is increased. It is clear that both U2, after

which the OSMT is observed, and U1 where the complete Mott transition

takes place, decrease with increasing J, going to zero as J goes to infinity.

We also notice that the Mott transition at which only one band localizes is

second order while the the transition to the complete insulator is first order.

This is different from the case J = 0 where both transitions are second order

and might be a pathology of the Gutzwiller wave function [13].

In conclusion, we find that the Gutzwiller variational technique predicts an

OSMT both for J = 0 and J 6= 0, provided that D1/D2 is smaller than a
critical value which increases with J.

3.4 Dynamical Mean-Field Theory

To have further insights into the quality of the Gutzwiller wave function in

infinite dimensions, we have performed an extensive DMFT calculation (see

Section 2.3) for the same Hamiltonian. For simplicity, we consider an infinite
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Figure 3.3: Left: Phase diagram obtained within the Gutzwiller ap-

proximation in the absence of the Hund’s coupling. Inset: the critical

ratio D2/D1 below which an OSMT is observed as a function of J/U.

Right: Modification of the phase diagram as J/U is increased. The

dashed line shows when the OSMT starts appearing.

coordination Bethe lattice, as in the Gutzwiller variational approach, with a

bare density of states given by (3.11). Again, Da = 2ta is the half-bandwidth

of band a. The Anderson impurity model onto which the lattice model maps

within DMFT is

HAM =
∑
k,a,σ

εkac
†
kaσckaσ +

∑
k,a,σ

Vka

(
f †aσckaσ +H.c.

)
+

(U
2
+
J

3

)
(nf − 2)2 + 2J

(
T 2x + T

2
z

)
, (3.13)

where Tα, α = x, y , z , are the pseudo-spin operators (3.3) for the impurity.

The self-consistency condition relates the impurity Green’s function for orbital

a, Ga, to the parameters εka and Vka through

t2aGa(iωn) =
∑
k

V 2ka
iωn − εka

. (3.14)

We solve the Anderson impurity model using an exact diagonalization

method [24] at zero temperature. The continuous conduction-electron bath

is modeled by a finite number of parameters εka and Vka (k = 1, . . . , ns − 1).
In our calculations, we considered ns = 6 and 4 (not shown). The self-

consistency (3.14) is implemented through a fitting procedure along the imag-

inary axis. To this end, we discretize the axis into Matsubara frequencies

ωn = (2n + 1)π/β, where β is a fictitious temperature that we have set to
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Figure 3.4: Quasiparticle residues Za for the wide band (squares)

and for the narrow band (circles) obtained by the DMFT calculation

for different ratios of the bandwidth D2/D1 and J = 0.

β = 500/D1. Moreover, the smallest frequency ωmin has been determined

by the smallest pole in the continued fraction expansion of the Green’s func-

tion [90]. Frequencies below ωmin are not taken into account in the fitting.

Note that this procedure sometimes leads to different minimum cutoff fre-

quencies for the two bands. In the following, we will work in units of D1.

First, we treat the J = 0 case in which there is no Hund’s coupling. The

metallic or insulating nature of each band is characterized by its quasiparticle

residue Z−1a = 1 − (∂ImΣa(iω)/∂iω) |ω→0. In Fig. 3.4, we show Za as a

function of the Coulomb repulsion U for different bandwidth ratios D2/D1.

When the ratio of the bandwidth D2/D1 ≥ 0.20, the quasiparticle weights
decrease as the Coulomb interaction gets bigger. Even though there is a

stronger initial reduction for the narrow band, the weights eventually vanish

for the same critical value of Uc/D1 ' 3.6. The situation changes when
we further decrease the bandwidth ratio (i.e., D2/D1 = 0.15). In this case,

we find that the weights of the bands vanish for different values of U, in

agreement with the results of the Gutzwiller wave function. Moreover, the

critical ratio D2/D1 = 0.20 that we found earlier seems consistent with the

DMFT calculation.

Let us turn now to the model in the presence of a finite Hund’s coupling,

J/U = 0.10, and perform the same calculations for the following ratios of
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Figure 3.5: Quasiparticle residues Za for the wide band (squares)

and the narrow band (circles) obtained by the DMFT calculation for

different ratios of the bandwidth D2/D1 and J/U = 0.10.
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Figure 3.6: Quasiparticle residues Za obtained with the Gutzwiller

wave function (wide band: dashed line, narrow band: continuous line)

and by DMFT (wide band: squares, narrow band: circles) for the

critical ratio of the bandwidth D2/D1 = 0.66 and J/U = 0.10.

the bandwidths: D2/D1 = 0.80 and 0.40. The results are shown in Fig. 3.5.

We still find evidences for an OSMT, this time, however, below a larger ratio

of the bandwidths. Further calculations show that the critical ratio of the

bandwidth for J/U = 0.10 is D2/D1 ∼ 0.66. That is also what one finds within
the Gutzwiller approximation. In Fig. 3.6, we plot the outcome obtained by

Gutzwiller and DMFT for D2/D1 = 0.66. Again, the two results agree rather

well and display a similar critical U ∼ 2D1.
If we were to confine our analysis to the behavior of the quasiparticle

residues Za, we should conclude that, both in the absence and in the presence

of a Hund’s coupling, the OSMT scenario does occur for a sufficiently small

ratio of the bandwidths, in qualitative and also quantitative agreement with

the variational results of the Gutzwiller wave function. The only difference
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Figure 3.7: Density of states for the wide band (left panels) and the

narrow band (right panels) as obtained by DMFT for different values of

the Coulomb interaction. The ratio of the bandwidth is D2/D1 = 0.15

and J = 0.

may lie in the order of the transition. Even if it is difficult to settle precisely

the order of the transition with exact diagonalization calculations, our results

seem to point towards a second-order phase transition at the MIT U1 with

finite J, contrary to the first-order transition predicted by the Gutzwiller wave

function.

A deeper insight into the above scenario can be gained by analyzing the

spectral properties of the more correlated band, and not just its quasiparticle

residue. Indeed, such an inspection leads to a less clear-cut picture, revealing

features which are not captured by the Gutzwiller wave function. In Fig. 3.7,

we show the density of states (DOS) of both orbitals for various Hubbard U’s

and D2/D1 = 0.15. We notice that, although the DOS of the narrow band

right at the chemical potential becomes zero within our numerical accuracy

above U2, there is still low-energy spectral weight inside the Mott-Hubbard

gap. Due to our discretization procedure, this weight is concentrated in two

peaks located symmetrically with respect to the chemical potential. These

peaks are also present at J = 0, and move linearly away from the chemical

potential when J 6= 0, roughly as 2J, see Fig. 3.8. Their total spectral weight
scales approximately like the quasiparticle residue of the wider band, Z1, both

vanishing at the second MIT, U1. In addition, if J = 0, the distance between

the peaks also scales like Z1, see Fig. 3.7. If we, reasonably, assume that
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The ratio of the bandwidths is D2/D1 = 0.15, and the Coulomb re-

pulsion is set to U/D1 = 2. Lower panel: position of the low-energy

peaks as a function of J/D1.

these two peaks mimic two resonances, one below and the other above the

chemical potential, it becomes much less obvious what might be the actual

value of the DOS right at the chemical potential if we were not constrained

to a small number of levels. Moreover, even if the DOS were strictly zero at

the chemical potential, still we should determine whether band 2 behaves like

a small-gap semiconductor or a semimetal for U2 ≤ U ≤ U1. In other words,
the energy discretization inherent in the exact diagonalization technique might

play a more critical role in this case than in the simplest single-band Hubbard

model.

Therefore, although the numerical evidences we have presented so far point

in favor of the existence of an OSMT with zero or finite J below a critical

bandwidth ratio, there are several aspects which still need to be clarified. We

will consider a deeper investigation of such aspects in the following sections.
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3.5 Single Impurity Spectral Properties

The first issue we want to address concerns the origin of the two peaks in the

orbital 2 spectral function inside the Mott-Hubbard gap. The self-consistency

condition (3.14) of the effective Anderson impurity model (3.13) plays a very

crucial role, for instance it determines a critical value of U above which the

Kondo effect does not take place anymore. Yet, useful information can be

obtained by studying (3.13) without imposing (3.14), which is what we are

going to do in this section by means of Wilson’s numerical renormalization

group (see Section 2.6).

The Anderson impurity model (3.13) is controlled by several energy scales,

the Hubbard U, the Hund’s coupling J and the so-called hybridization widths

Γa =
∑
k

V 2ka δ (εka) .

For simplicity, we will assume that the two conduction baths are degenerate

with half-bandwidth D, which will be our unit of energy. In Fig. 3.9, we show

the impurity spectral function of the orbital 2, A2(ω), as obtained by NRG

for J = 0, U = 2D, Γ1 = D/(2π), and for several values of Γ2/Γ1 < 1.

Since we do not impose any self-consistency, the DOS for any Γ2 6= 0 shows a
Kondo resonance at the chemical potential, which narrows as Γ2 decreases. In

addition, there are two more peaks which move slightly away from the chemical

potential as Γ2 is reduced. These peaks actually resemble those we find in the

DMFT calculation. Indeed, they move linearly as we switch on J, see Fig. 3.10,

just like we observe within DMFT.

The origin of these peaks is easy to identify when Γ2 = 0. When the orbital

2 is not hybridized with its bath, its occupation number n2 is a conserved

quantity. The ground state is expected to belong to the subspace with n2 =

1, because, in this case, 〈n1〉 = 1 and the Kondo-screening energy gain is
maximum. This state is twofold degenerate reflecting the free spin-1/2 of the

electron localized in orbital 2. The energy gap to the lowest energy states

for n2 = 0, 2, 〈n1〉 = 2, 0, respectively, is therefore of the order of the Kondo
temperature of orbital 1, TK 1. The DOS of the impurity orbital 2 is analogous

to the core-hole spectral function in X-ray absorption, so it should start above

a finite threshold proportional to TK 1. In other words, the DOS has a small

but finite gap of order TK 1, similar to what we observe within DMFT.

However, as soon as Γ2 is non zero, this gap is filled and, in addition, a

Kondo-resonance appears. Even if we move the peaks away from the chemical

potential by increasing J, see Fig. 3.10, the region between them and the

narrow (practically invisible in the figure) Kondo-resonance is still covered by

spectral weight. In the light of this dynamical behavior, it is not at all obvious

what the self-consistency requirement (3.14) may lead to when band-1 is still

conducting. In other words, either a true narrow gap, as if Γ2 = 0, or a

pseudo-gap with a power-law vanishing DOS, or two-peaks plus the narrow
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Figure 3.11: Schematic picture of the projective self-consistent tech-

nique. The Hubbard bands of the impurity density of states are found

from the high-energy solutions of HH. The quasiparticle peak is con-
structed from the hybridization Hamiltonian Hm that couples the low-
energy eigenvectors of HL and HH.

resonance are equally compatible with the self-consistency condition. However,

the event in which most of the spectral weight is concentrated in the two

symmetric peaks, leaving only negligible weight within the narrow resonance,

is extremely hard to identify with a limited number of levels. As an attempt

to discriminate among the aforementioned possible scenarios, in the following

section, we implement a projective self-consistency technique which allows a

more detailed low-energy description within DMFT.

3.6 Projective Self-Consistent Technique

A remarkable feature uncovered by DMFT nearby a MIT is the clear separa-

tion of energy scales between well preformed high-energy Hubbard bands and

lingering low-energy itinerant quasiparticles. It has been shown [90] that this

partition of energy scales allows to reformulate the problem into a new one, in

which the high-energy part is projected out. Essentially, the original Anderson

impurity model, which involves both high-energy side-bands and low-energy

quasiparticles, is reduced to a Kondo-like model which can be attacked more

easily by a numerical procedure. In this section, we apply a projective technique

to our model, which is similar to Ref. [90], with the only difference that the

resulting effective problem is still an Anderson impurity model with rescaled

parameters.

As we have shown, the occurrence of an OSMT does not seem to require
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a finite exchange, but rather a sufficiently small bandwidth ratio. Therefore,

we prefer to present the projective technique in the simpler case where J = 0.

Following Ref. [90], we start by rewriting the Anderson impurity model (3.13)

explicitly separating low- (L) and high- (H) energy scales

HAM = HH +HL +Hm, (3.15)

where

HH =
U

2
(nf − 2)2 +

∑H

k,a,σ

εHkac
†
kaσckaσ +

∑H

k,a,σ

V Hka(f
†
aσckaσ + h.c.), (3.16)

describes the impurity coupled to the high-energy levels,

HL =
∑L

k,a,σ

εLkac
†
kaσckaσ, (3.17)

is the low-energy bath Hamiltonian, and finally

Hm =
∑L

k,a,σ

V Lka(f
†
aσckaσ + h.c.), (3.18)

mixes low- and high-energy sectors (see Fig. 3.11). The impurity Green’s

function, also written as sum of a low- and a high-energy part, Ga(iω) =

GLa (iω) + G
H
a (iω), should satisfy the self-consistency requirement (3.14). If

we assume that the low-energy spectral weight isWa � 1, the self-consistency
condition for the integrated low- and high-energy spectral functions, ρLa (ε) and

ρHa (ε), respectively, implies the following sum-rules∑L

k

(
V Lka
)2
= t2a Wa, (3.19)

∑H

k

(
V Hka
)2
= t2a (1−Wa) , (3.20)

showing that the impurity is strongly hybridized with the high-energy levels

and very weakly with the low-energy ones. Let us for the moment neglect the

coupling to the latter. The ground state of (3.16) is the adiabatic evolution of

the states in which all negative-energy bath levels are doubly occupied and two

electrons sit on the impurity, giving rise to a six-fold degenerate ground state.

Other states with the same number of electrons lie above the ground state at

least by an energy U. The lowest-energy states with one more (less) electron

are more degenerate, since they emerge adiabatically from the states obtained

by adding (removing) an electron either in the impurity levels or in the positive

(negative)-energy baths. This large degeneracy is, however, split linearly by

V Hka, which implies the broadening of the Hubbard bands around their centers

of gravity ±U/2. The main effect of the mixing term (3.18) is to provide a
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Kondo exchange coupling between the six-fold degenerate ground state of HH
and the low-energy baths, which can be obtained by degenerate second-order

perturbation theory in Hm or, more formally, by a Schrieffer-Wolff canonical
transformation [90, 104]. Once the effective Kondo model is obtained, we

could for instance follow Ref. [90], namely solve that model and impose the

self-consistency condition to the impurity Green’s function, calculated through

the Schrieffer-Wolff canonically transformed faσ. To be consistent, one should

in principle expand the transformed faσ up to second order in V
L/U and impose

the self-consistency requirement in the whole energy range, including low and

high energies. In practice, even if the self-consistency is imposed only to the

low-energy spectrum, one still gets a faithful description of the critical behavior

near the MIT [90]. An equivalent procedure, that we have instead decided

to follow, is to identify a new two-orbital Anderson impurity model, coupled

only to the low-energy levels, which maps to the same Kondo model and next

impose the self-consistency only to the low-energy part of the impurity Green’s

function:

t2a G
L
a (iωn) =

∑
k

(
V Lka
)2

iωn − εLka
. (3.21)

Regarding the high-energy part of the self-consistency, since we always model

the high-energy levels with just four levels at energies εHa± = ±U/2, we need
to impose an additional requirement besides (3.21), which, through (3.20), is

simply

V Ha± = ta

√
1−Wa
2

, (3.22)

whereWa is the low-energy spectral weight obtained self-consistently from (3.21).

The advantage of the projective method is that we can now model the low-

energy spectrum with more levels, the cost being the additional self-consistency

condition (3.22).

When we apply this projective technique to our two-orbital model with

J = 0 and t1 ≥ t2, we end up with an effective Anderson impurity model

Heff =
U1
2
(n1 − 1)2 +

U2
2
(n2 − 1)2 + U12(n1 − 1)(n2 − 1)

+
∑L

k,a,σ

εLkac
†
kaσckaσ +

∑L

k,a,σ

√
γa V

L
ka(f

†
aσckaσ + h.c.). (3.23)

Here U1 (U2) is found from the solution of the high-energy problem (3.16)

by looking at the energy difference of the states with one more or one less

particle in orbital 1 (2) and we set U12 = (U1 + U2)/2 which assures the six-

fold degeneracy of the isolated doubly-occupied impurity. In other words, if

we denote by E0 the energy of the six-fold degenerate ground-state and by

E±a the energy of the ground-state in the sector with one more (less) particle

on orbitals a, then Ua = E+a − 2E0 + E−a and we have that U1 ≤ U2 with
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Figure 3.12: Imaginary part of the Green’s function for D2/D1 =

0.18, U/D1 = 2.00, and J = 0 as obtained by DMFT (circles) and

with the PSCT (squares).

U2 − U1 ∼ t1 − t2. Finally,
√
γa gives the reduction of the overlap between

states that are connected by f †aσ, due to the introduction of the hybridization

through V Hka:
√
γa = 〈+a|f †aσ|0〉, where |+a〉 is the ground state with one more

particle in orbitals a and |0〉 is the relevant1 state in the ground-state multiplet.
In this effective model, the high-energy levels provide a partial screening of the

Hubbard repulsion, more efficient within orbital 1, which is more hybridized with

the bath. Therefore, the difference of bandwidths acquires quite a transparent

role in our projective method: while the bare Coulomb repulsion does not care

about the orbitals in which electrons sit, this indifference is lost once the high-

energy screening is taken into account. In Fig. 3.12, we compare the imaginary

part of the Green’s functions in Matsubara frequencies ωn as function of ωn as

obtained by full DMFT or using the above projective self-consistent technique

(PSCT), at J = 0. Note that within the PSCT, we model the low-energy

conduction bath through five discrete levels. The agreement is satisfying,

and the additional levels clearly allow for a more accurate description of the

low-energy Green’s function.

In Fig. 3.13, we plot the PSCT values of the quasiparticle residues Z1 and

Z2 as function of U at J = 0 for D2/D1 = 0.18, as well as of the full spectral

weights,W1 andW2, inside the Mott Hubbard gap. In agreement with standard

1This state is selected by fixing its quantum numbers.
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Figure 3.13: Quasiparticle residues Za (triangles) and low-energy

spectral weights Wa (circles) as obtained by the PSCT with J = 0.

Dashed lines refer to the wide band, and continuous lines to the narrow

one.

DMFT, we find a region where Z2 is zero within our numerical accuracy, while

Z1 is still finite. Yet, the total spectral weights are both non zero. In Fig. 3.14,

we draw the DOS for the two bands and various U’s. Note that the scale is

different from the one in Fig. 3.7 and the position of the largest peaks found

with the PSCT are in good agreement with the low-energy peaks obtained

by DMFT. Moreover, even though the PSCT allows for two additional levels

to model the low-energy part of the spectrum, after the self-consistency, no

additional structure appears around the chemical potential. Actually, the two

supplementary levels merge into the central or the lateral structures.

3.7 Discussion and Conclusions

In this chapter, we have studied by several techniques the properties of the

Mott transition in an infinite-dimensional Hubbard model with two bands hav-

ing the same center of gravity but different bandwidths, both in the presence

and in the absence of the Hund’s exchange splitting J. We have shown that

a variational calculation based on a Gutzwiller wave function predicts that the

two bands may undergo different metal-insulator transitions both for J = 0

and J 6= 0: By increasing U, the narrower band ceases to conduct before the
wider one. The necessary condition for this orbital-selective Mott transition is
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Figure 3.14: Low-energy part of the density of states of the wide band

(left panels) and the narrow band (right panels) obtained within the

PSCT for different U/D1. The ratio of the bandwidth isD2/D1 = 0.18

and J = 0.

that the bandwidth ratio is lower than a critical value which increases with J,

being 0.2 when J = 0, see Fig. 3.3. The behavior of the quasiparticle residues

as obtained by DMFT using exact diagonalization as impurity solver confirms,

even quantitatively, the variational results, showing that the residue of the

narrower band may vanish before the one of the wider band if the bandwidth

ratio is sufficiently small. In this model the OSMT occurs both in the absence

and in the presence of an exchange splitting. We notice that, in more general

situations where the number of orbitals is greater than two and different from

the number of electrons, as for instance in the case of t2g orbitals occupied by

two or four electrons on average, the Coulomb exchange would instead com-

pete against the angular momentum quenching which occurs in the OSMT

scenario. Therefore we suspect that the role of the Coulomb exchange might

actually depend on the specific model.

However, a closer inspection of the low-energy spectral properties of the

narrower band in the region, where it is apparently insulating while the wider

band still conducts, poses doubts on the above simple scenario. The reason

is that, in spite of a quasiparticle residue which is zero within our numerical

accuracy, the narrower band has spectral weight inside the Mott-Hubbard gap,

which scales like the quasiparticle residue of the wider band. In other words,

the charge fluctuations which still occur in the wider band are transferred into
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the narrower one, as one can expect. This low-energy spectral weight is con-

centrated in two peaks symmetrically located around the chemical potential.

Roughly speaking, the distance of each peak from the chemical potential is 2J

plus a quantity of the order of the quasiparticle resonance width of the wider

band. Due to our limited numerical resolution, we can not establish rigorously

whether these two peaks (a) signal a narrow-gap semiconducting behavior, (b)

signal a semimetallic behavior, with a power-law vanishing density of states,

(c) or coexist with an extremely narrow resonance at the chemical potential,

with a spectral weight well below our numerical accuracy, just like the single

impurity does. Although the elements at our disposal do not definitely allow

to discriminate among these three scenarios, one can recognize that some of

them are more plausible than the others.

The first possibility (a) of a narrow-gap semiconductor seems very unlikely.

Indeed, in this case, the gap between the two low-energy peaks would open

large and then diminish as the quasiparticle resonance width of the wider band,

by further increasing the repulsion U. Therefore, the insulating character of

the narrower band would weaken by increasing U, which seems a bit unlikely.

Let us consider instead the scenario (b) of a semimetal. If taken literally,

it would imply a vanishingly small local magnetic susceptibility, while we ac-

tually find a very large one, much larger than the local susceptibility of the

wider band. However, a semimetallic behavior would imply, in our particle-hole

symmetric case, a breakdown of Fermi-liquid theory2. Therefore, a power-law

vanishing single-particle DOS might not necessarily conflict with almost free-

spin excitations in a scenario in which Fermi-liquid theory breaks down and

for instance spin-charge separation emerges. Although it might represent a

quite interesting circumstance, yet we could not find any physical arguments

justifying such a non-Fermi liquid behavior. Therefore, we are tempted to dis-

card it in favor of the more conservative scenario (c) in which the two peaks

coexist with a narrow resonance which remains tied at the chemical potential,

its spectral weight being smaller than our numerical accuracy. This resonance

should disappear right at the same U where the wider band ceases to conduct.

Finally, we note that, whatever the correct zero-temperature scenario, either

(b) or (c), there should exist a finite-temperature interval where the narrower

band loses its coherence unlike the wider one, which might display unusual

properties.

We terminate by mentioning that a parallel work by de’ Medici et al. [84]

studied the same problem using DMFT and a slave-spin mean-field approach

and reached similar conclusions. Moreover, in Ref. [18], the zero-temperature

properties of the self-energy of the wide band were investigated in detail and

2In the presence of particle-hole symmetry, the chemical potential is strictly zero whatever

is the interaction. On the other hand, if Fermi-liquid theory holds, then ImΣ(ω) ∼ ω2. In this
case, it turns out that the value of the DOS at the chemical potential should not be affected

by U and J. Therefore, if one finds a different DOS from the bare one, that necessarily

implies a breakdown of Fermi-liquid theory.
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point in favor of scenario (b). Indeed, in their calculation, the low-energy

behavior of the self-energy displays non-Fermi liquid behavior. Finally, the

problem of the OSMT has continued to attract a lot of interest after the

completion of this work and an overview of the related activity can be found

in Ref. [65].



Chapter 4

Critical Behavior in Impurity
Trimers and Tetramers

We study two clusters of three and four Kondo impurities by means of Wilson’s

numerical renormalization group and conformal field theory. In both clusters,

the spin-1/2 magnetic moments are connected between them through a di-

rect exchange and each one is coupled to a conduction bath. The competition

between the Kondo effect, that is favored by a degenerate ground-state, and

the direct exchange, that tends to split this degeneracy, leads to rich phase

diagrams displaying stable phases separated by quantum critical lines. We pre-

cisely analyze these different phases by identifying the correct theory for every

fixed point of the renormalization group. We finally discuss their properties in

connection with the Mott transition as described by cluster dynamical mean-

field theory. Indeed, an impurity trimer and tetramer represent the simplest

clusters to simulate a Hubbard model on a triangular and square lattice. In

this context, we show that exotic behaviors that are found close to the Mott

transition in lattice models might well be traced back to instabilities, like an-

tiferromagnetism or Cooper pairing, that are already present at the impurity

level. The project presented in this chapter has been realized in collaboration

with M. Fabrizio, L. De Leo and P. Lecheminant.

4.1 Introduction

More than fifty years after its proposal [91], the Mott transition remains an

issue of current and broad interest, continually revived by the discovery of

strongly correlated materials which display anomalous phenomena in the vicin-

ity of a Mott insulating phase. The interaction-driven metal-to-insulator tran-

sition emerges out of the competition between the tendency of the electrons

to delocalize throughout the crystal, so as to maximize the band-energy gain,

and the Coulomb repulsion among the same electrons which, on the contrary,

tends to suppress valence fluctuations by localizing the carriers. Yet, as we

73
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have discussed in Chapter 1, realistic systems generally involve other energy

scales besides the Coulomb repulsion and the band-energy gain. Let us collec-

tively denote them by J. Approaching the Mott insulating phase, the entropy

is first reduced by the onset of a quasiparticle Fermi sea below a temperature

T ∗F , which gradually decreases because of strong correlations. At some point,

T ∗F will become of the same order as J and the new energy scales compete

with the formation of a degenerate quasiparticle gas. Indeed, the presence of

J provides new mechanisms to quench the entropy by freezing spin and or-

bital degrees of freedom, independently from the charge degrees of freedom.

This situation is actually realized in heavy fermion materials, where the Kondo

effect, favoring the formation of a coherent band of heavy quasiparticles, com-

petes with the RKKY interaction. Here, this competition is supposedly the key

to understand the anomalies which appear at the transition between the heavy

fermion paramagnet and the magnetically ordered phase [32, 106].

Competing Screening Mechanisms in Anderson Impurity Models

The heavy-fermion example is particularly pertinent for introducing the subject

of this chapter. Indeed, the competition between Kondo effect and RKKY

coupling has interesting consequences not only in the periodic Anderson model

but already at the level of Anderson impurity models. For instance, the phase

diagram of two spin-1/2 impurities coupled to a conduction bath but also

by a direct antiferromagnetic exchange has two limiting regimes: one where

each impurity is independently Kondo screened by the conduction electrons

and another where the direct exchange takes care of locking the impurity spins

into a singlet state, which is transparent to the conduction electrons. Under

particular circumstances, these two regimes are separated by a quantum critical

point, at which non-Fermi-liquid behavior emerges [5, 7, 60, 61, 62]. The

phase diagram grows richer when one considers three antiferromagnetically

coupled spin-1/2 impurities [55, 97]. In this case, besides a Kondo screened

regime, there are other phases where the direct exchange prevails even if it

is unable to fully quench the impurity degrees of freedom. This leads to

stable non-Fermi-liquid phases analogous to overscreened multi-channel Kondo

models [2, 3]. These clusters of impurity models are not only interesting

as simple attempts towards understanding the fully periodic Anderson model.

For instance, compact clusters of impurities are achievable experimentally by

adsorbing atoms on metallic surfaces. Indeed, trimers of Cr atoms have already

been realized on gold surfaces [58], which has actually motivated the most

recent theoretical activity on impurity trimers [55, 72, 75, 102]. In this context,

the major task is to identify those phases that are stable towards perturbations

which are generally allowed on metallic surfaces. Therefore, the quantum

critical points which separate stable phases are of minor interest, as they are

extremely unlikely to occur.
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Impurity Models and Dynamical Mean-Field Theory

The unstable critical points arise when the competition between Kondo screen-

ing and RKKY coupling is maximum. This is nothing but the impurity counter-

part of the situation when T ∗F ' J that we previously met in connection with
the Mott transition. This weak analogy turns into an actual equivalence within

the dynamical mean-field theory (DMFT) [42], which is the quantum analogue

of classical mean-field theory and, like the latter, becomes exact for infinite

coordination lattices (see Section 2.3). Within this limit, the single-particle

self-energy becomes fully local but maintains a non-trivial time-dependence.

In order to determine the frequency-dependent self-energy, within DMFT, one

solves an auxiliary single-impurity Anderson model, designed to have an impu-

rity self-energy that coincides with the local self-energy of the lattice model.

This requirement translates into an impurity model which is identified by the

same local interaction as the lattice model and by a coupling to a conduc-

tion bath which has to be self-consistently determined. As an approximation,

which is not exact in any limiting case, DMFT can be extended to include

short-range spatial components of the self-energy [69, 77, 81, 98, 105]. In

these novel versions, the lattice model is mapped onto a cluster of Anderson

impurities, subject to a self-consistency condition which is however no longer

uniquely determined by the requirement that the approximation becomes exact

in particular limits.

In the original single-site formulation of DMFT, the physics of the Anderson

impurity turned out to be a precious guideline to interpret the DMFT results.

This was possible mainly because a lot was already known about single-impurity

models. On the contrary, apart from few exceptions [60, 97], little is known

about impurity clusters. This is likely the reason why, in the cluster versions

of DMFT, not much attention has been paid so far to the impurity-cluster

models per se. In addition, since impurity clusters involve many energy scales,

including inter-impurity processes, it is not a priori evident whether there is

a common interpreting scheme like the Kondo physics in the single-impurity

case.

In order to clarify this issue, let us start by recalling some basic facts about

the single-site DMFT mapping onto impurity models. Within this mapping,

the quasiparticle effective Fermi temperature T ∗F translates into the Kondo

temperature TK of the impurity model. The self-consistency condition causes

TK to vanish at a finite value of U, which signals, in the lattice counterpart,

the onset of the Mott transition. This also implies that the metallic phase

just prior to the Mott transition translates into an Anderson impurity model

deep inside the Kondo regime, with a very narrow Kondo resonance and well

formed Hubbard side-bands [42]. The same behavior should remain even when

dealing with a cluster of impurities, which should translate into a cluster of

Kondo impurities that can effectively be regarded as a single impurity with

many internal degrees of freedom. The novelty stems from the other energy
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J

U/W

T   = T

J

δ

T   = TK        FK        F
* *

Figure 4.1: Behavior versus U and the doping of the quasiparticle

Fermi temperature T ∗F , which translates within DMFT into the Kondo

temperature TK of the effective impurity model.

scales, which we denoted as J, that take care of quenching, in the Mott

insulator, the degrees of freedom other than the charge. Indeed, near the

Mott transition, J translates into additional processes, like for instance an

inter-impurity exchange, which tends to remove, completely or partially, the

degeneracy of the cluster. Consequently, J competes with the Kondo effect,

which takes better advantage the more degenerate the impurity cluster.

We note that this competition is always active in impurity clusters while

it is commonly absent in single-impurity models except in particular multi-

orbital cases [25, 26]. We believe that it is this additional ingredient, the

common denominator of all impurity-cluster models, which endows them with

the capability to provide a more faithful description of a realistic Mott transition

within DMFT.

Indeed, in the presence of J, the approach to the Mott transition displays,

as qualitatively shown in Fig. 4.1, a Kondo temperature smoothly decreasing

from its initial value W as U/W increases. Just before the transition, TK
becomes of order J. Analogously, (see Fig. 4.1) if one starts from the Mott

insulator and dopes it, TK will smoothly increase from its value TK = 0 at zero

doping, until it crosses a value of order J. This is the location of the, possibly

quantum critical, point which separates the Kondo screened phase, TK � J,

from the regime in which the internal screening mechanism prevails, J � TK .

Therefore, these critical points are always crossed in impurity models onto

which lattice models approaching a Mott transition are mapped within cluster

DMFT. The question is whether and how they may influence the behavior of

the lattice model after the DMFT self-consistency is carried out.

It has been argued [34, 36] that these impurity critical points do play an

important role in determining the phase diagram of the corresponding lattice

models. Indeed, near these unstable critical points, the impurity models dis-

play strongly enhanced local susceptibilities (or, equivalently, enhanced local
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Figure 4.2: The impurity dimer with the Hamiltonian (4.1).

irreducible four-leg vertices) in several instability channels. Moreover, within

DMFT the irreducible four-leg vertices, which enter the Bethe-Salpeter equa-

tions, coincide with the local ones [42]. Therefore, it is reasonable to argue

that, after the full DMFT self-consistency is carried out, these local instabil-

ities may turn into full bulk instabilities, leading to symmetry broken phases

that partially hide what would have been the quantum critical regions around

the impurity unstable fixed points. This hypothesis, which has been tested

with success by a full DMFT calculation in a two-orbital Hubbard model [26],

suggests that the analysis of impurity-cluster models, even without any DMFT

self-consistency, may be very helpful in interpreting and even anticipating the

phase diagrams of strongly-correlated lattice models as uncovered by cluster

DMFT.

Following this speculation, we will, in this chapter, study the phase diagram

of the simplest Anderson impurity clusters, namely a trimer and a tetramer of

impurities, which can be used to implement a cluster DMFT calculation for

the Hubbard model on a square lattice. Needless to say, the interest in impu-

rity clusters goes beyond its possible relevance to Hubbard models on a square

lattice. As we previously mentioned, these clusters may be experimentally re-

alized on metallic surfaces or, eventually, by arranging quantum dots in proper

geometries. Moreover, as will emerge from our analysis, these models repre-

sent a theoretical challenge by themselves which requires the full machinery of

Wilson’s numerical renormalization group (NRG) and conformal field theory

(CFT) in order to have a detailed understanding (see Sections 2.6 and 2.7).

4.2 The Impurity Dimer

Before starting a systematic study of three and four impurity clusters, let us

briefly review the simplest example of an impurity dimer. This model was

originally studied by Jones and Varma [60, 61, 62] using NRG and the results

were later interpreted by Affleck and Ludwig [5, 7] within CFT. For simplicity,

we consider the impurity dimer drawn in Fig. 4.2 with the following Hamiltonian
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H =
2∑
a=1

[∑
kσ

εk c
†
a kσca kσ +

JK
2V

∑
kk′αβ

Sa · c†a kα σαβ ca k′β

]

+ J S1 · S2 ≡
2∑
a=1

HKa + J S1 · S2,

(4.1)

which describes two spin-1/2 impurities, coupled together by an antiferro-

magnetic J, and both Kondo coupled to their own conduction bath by an

antiferromagnetic JK . The operators c
†
a kσ and ca kσ create and annihilate,

respectively, a conduction electron with spin σ and momentum k in the bath

a, and σ are the Pauli matrices. The two conduction baths are assumed to

be degenerate and particle-hole invariant. Furthermore, we assume that the

conduction-bath density of state is finite and smooth around the chemical po-

tential on a scale larger than the Kondo temperature. As a consequence, the

two baths, in the absence of the impurities, can be described [1] by a CFT

which includes independent spin SU(2)1 and charge isospin SU(2)1 symmetry

for each bath, namely an overall(
SU(2)

(1)
1 × SU(2)

(2)
1

)
charge

×
(
SU(2)

(1)
1 × SU(2)

(2)
1

)
spin
.

The subscript in SU(2)
(a)
k can be regarded here as the number of copies of

spin-1/2 electrons participating to the SU(2) algebra, while the superscript

refers to the bath.

The hypothesis behind the use of CFT is that, once the coupling to the

impurities is switched on, conformal invariance is not lost. The effect of the

impurities is then merely to change the conduction-bath boundary conditions

(BCs) among the conformally invariant ones. An important step in deter-

mining the allowed BCs is the conformal embedding [35], which amounts to

identifying the conformal field theories corresponding to the symmetry groups

under which the Hamiltonian of the bath plus the impurity remains invariant.

In the most favorable cases, the BCs that actually emerge correspond to con-

formally invariant BCs only within one of the different CFTs of the embedding.

The next useful information is that the conformally invariant BCs within each

sectors can be obtained by the so-called fusion hypothesis, according to which,

starting from the spectrum of a known BC, one can obtain all the others upon

fusion with the proper primary fields of the CFT (see Section 2.7).

In the model of Fig. 4.2, the isospin generators commute with the Hamil-

tonian even when JK and J are finite, and the charge sector can still be repre-

sented by two independent isospin SU(2)1. On the other hand, only the overall

spin SU(2) transformations leave the Hamiltonian invariant, which translates

into an SU(2)2 (two copies of electrons) CFT. As a result, the proper embed-

ding in the spin sector is [5]

SU(2)1 × SU(2)1 → SU(2)2 × Z2,
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Figure 4.3: Renormalization group flow diagram of the impurity

dimer.

where Z2 denotes an Ising CFT reflecting the symmetry under permutation of

the two baths.

The NRG phase diagram of the model [60, 61, 62] is sketched in Fig. 4.3

and includes, as we previously mentioned, two stable phases: a Kondo screened

and an unscreened phase, separated by an unstable critical point when J =

J∗ ' TK . Affleck and Ludwig [5, 7] realized that these different fixed points are
described by the three different BCs of the Ising CFT. The two stable phases

correspond to fixed BCs, where one Ising spin orientation is prohibited at the

boundary, and the unstable fixed point to a free BC, where both orientations

are allowed. Starting from the unscreened phase, the Kondo screened phase

is obtained by fusion with the Ising primary field ε of dimension 1/2, while the

unstable fixed point is obtained by fusion with the primary field σ of dimension

1/16.

As shown in Section 2.7, CFT also allows, by double-fusion, to deter-

mine the scaling dimensions of the relevant operators. It turns out that there

are three equally relevant (i.e. with dimension smaller than one) symmetry-

breaking perturbations which can destabilize the unstable fixed point. They

all have the same dimension 1/2 as the invariant operator which moves away

from the fixed point and corresponds to a deviation of J from its fixed point

value J∗ at fixed TK . The first perturbation is an opposite spin magnetization

for the two baths. The second is a BCS term in the inter-bath Cooper singlet

channel. The last perturbation corresponds to a direct hybridization between

the two baths breaking the independent conservation of charge.

The latter is very important. Indeed, let us suppose that, instead of two

spin-1/2 impurities, we have two single-orbital Anderson impurities with the

Hamiltonian

H =
2∑
a=1

[∑
kσ

εk c
†
a kσca kσ −

tK√
V

∑
kσ

c
†
a kσda σ +H.c.

]
− t⊥

∑
σ

d
†
1σd2σ +H.c.+

U

2

2∑
a=1

(na − 1)2,

(4.2)

where da σ are the annihilation operators for the impurity and na =
∑
σ d

†
a σda σ.

It is actually the model (4.2) rather than (4.1) that has to be used to simulate,
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with a single dimer, a Hubbard model within cluster DMFT. As we previously

mentioned, the approach to the Mott transition corresponds to an impurity

model deep inside the Kondo regime, namely with U � tK , t⊥. Within this

limit, the model (4.2) can be mapped by a Schrieffer-Wolff transformation

onto (4.1), with J = 4t2⊥/U and JK = 4t
2
K/U. However, at next order in 1/U,

a local direct hybridization V among the baths is generated, with V ∼ JK t⊥/U.
Although small, V is a relevant perturbation which makes the unstable fixed

point of the model (4.1) inaccessible in the model (4.2). Yet, since J � V ,

a quantum critical region, instead of a true quantum critical point, is still well

visible as was shown in Ref. [34]. In other words, the quantum phase transition

which occurs in model (4.1) turns into a very sharp crossover in (4.2). This

suggests that the unstable fixed point of the spin-dimer may still influence the

approach to the Mott transition in lattice models which map within DMFT

onto the impurity model (4.2). In particular, if the latter is used to mimic,

within cluster DMFT, a Hubbard model on a square lattice, we would spec-

ulate that near the Mott transition the inter-site singlet Cooper pairing and

the tendency to antiferromagnetic ordering are strongly enhanced, since both

are instability channels of the dimer fixed point (note that the hybridization

among the baths is explicitly present in the Hamiltonian). Most likely, antifer-

romagnetism prevails at half-filling, but upon doping, superconductivity might

still emerge [34].

4.3 The Impurity Trimer

Let us move now to our actual work and start considering the impurity trimer

drawn in Fig. 4.4 with the Hamiltonian

H =
3∑
a=1

HKa + J (S1 + S3) · S2 + J ′ S1 · S3, (4.3)

where HKa has been defined in (4.1). This model describes three spin-1/2 im-
purities coupled together by antiferromagnetic J and J ′ and to their own con-

duction bath by JK > 0. As before, we assume that the baths are degenerate

and particle-hole invariant. When J ′ = 0 the trimer is the next simple cluster

beyond the dimer to represent a Hubbard model on a square lattice within clus-

ter DMFT. This would really be true only if we considered three single-orbital

Anderson impurities coupled by a single-particle hopping t⊥ rather than three

spin-1/2 moments coupled by an exchange J. However, in view of what we

discussed in the case of the dimer, the model (4.3) is more suitable to identify

unstable fixed points which might transform into sharp crossover regions in

the case of Anderson impurities because of the weak hybridization among the

baths generated by t⊥. For this reason, we will consider, both here for the

trimer and later for the tetramer, spin-1/2 Kondo impurities and treat the

hybridization among the baths as a perturbation.
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Figure 4.4: The impurity trimer with the Hamiltonian (4.3).

4.3.1 CFT Preliminaries for the Trimer

As in the dimer example, the trimer model (4.3) exhibits charge degrees of

freedom described by three independent isospin SU(2)
(a)
1 CFTs, a = 1, 2, 3.

The expression of the inter-impurity exchange naturally suggests how the spin

symmetry should be reduced. First, we have to couple the spin sectors of

baths 1 and 3 into an overall SU(2)2 via the embedding

SU(2)
(1)
1 × SU(2)

(3)
1 → SU(2)

(1−3)
2 × Z2,

where Z2 denotes the Ising CFT. Then, the SU(2)2 is coupled to the bath 2

into an overall SU(2)3 according to embedding

SU(2)
(1−3)
2 × SU(2)(2)1 → SU(2)3 × (TIM) ,

where TIM stands for the tricritical Ising model CFT. Combining everything

together, we see that the original symmetry of the three independent spin

SU(2)
(a)
1 is reduced to

SU(2)3 × Z2 × (TIM) .

This conformal embedding can be rigorously justified by the character decom-

position [35], namely by the formal identification of the free energies in the

original and in the decomposed theory (see Appendix A).
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× I ε t ε
′′

σ σ
′

I I ε t ε
′′

σ σ
′

ε ε I + t ε+ ε
′′

t σ + σ
′

σ

t t ε+ ε
′′

I + t ε σ + σ
′

σ

ε
′′

ε
′′

t ε I σ σ
′

σ σ σ + σ
′
σ + σ

′
σ I + ε+ t + ε

′′
ε+ t

σ
′

σ
′

σ σ σ
′

ε+ t I + ε
′′

Table 4.1: Fusion rules of the tricritical Ising model.

The SU(2)k CFT has central charge c = 3k/(2+k). Its primary fields φ
(k)
2j

are labeled by a spin quantum number j = 0, . . . , k/2 and have the following

scaling dimensions and fusion rules:

∆
(k)
j = j(j + 1)/(2 + k)

j × j ′ = |j − j ′|+ (|j − j ′|+ 1) + · · ·+min(j + j ′, k − j − j ′).

The Ising CFT, with central charge c = 1/2, has three primary fields,

the identity I, the thermal energy εI and the order parameter σI [35]. Their

dimension and fusion rules [35, p. 221] are given by

∆I = 0, ∆εI = 1/2, ∆σI = 1/16

σI × σI = I + εI , σI × εI = σI , εI × εI = I.

Finally, the TIM has central charge c = 7/10 and six primary fields [35]:

the identity I, ε, t, ε
′′
, σ and σ

′
. Their dimension are

∆I = 0, ∆ε = 1/10, ∆t = 3/5,

∆ε′′ = 3/2, ∆σ = 3/80, ∆σ′ = 7/16,

and the fusion rules [35, p. 224] between these fields are shown in Table 4.1.

As we previously mentioned, the possible conformally invariant boundary

conditions can be classified by means of the fusion hypothesis [2, 3, 7]. Starting

from the spectrum of a simple BC, for instance corresponding to JK = 0, one

can obtain the spectra of other allowed BCs upon fusion with the primary

fields of the CFTs. By comparing the low-energy spectra determined in this

way with those obtained by NRG, one can identify and characterize all fixed

points of the model.

4.3.2 Fixed Points in the Trimer Phase Diagram

In Fig. 4.5, we sketch the phase diagram of the impurity trimer as obtained

by NRG (see Section 2.6). The calculations were performed with Λ = 3.
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Figure 4.5: Renormalization group flow diagram for the trimer model.

We use both spin and isospin symmetries that allow to keep up to 2000

states at each iteration. Each phase is then identified by a fixed point of

the renormalization group, which can be either stable or unstable, as indicated

by the flow lines drawn in the figure. In order to have a classification scheme

which works equally well for Fermi-liquid and non-Fermi-liquid phases, the fixed

points are identified through the zero-frequency values of the bath S-matrices

(S1, S2, S3), which can be obtained by CFT through the modular S-matrix
(see Section 2.7.3 and Appendix B). Let us now discuss all fixed points, start-

ing from the trivial one with (S1, S2, S3) = (1, 1, 1) corresponding to the case

JK = 0.

The Fixed Point (1, 1, 1)

The fixed point with JK = 0 describes impurities that are completely decoupled

from the conduction baths. In this case, the conduction bath electrons do not

experience any phase shift and correspondingly (S1, S2, S3) = (1, 1, 1). This

fixed point is unstable towards switching on JK , since the impurity trimer is

always in a non-zero spin configuration and the Kondo exchange is a marginally

relevant perturbation (see Fig. 4.5). We will take this fixed point as the

ancestor BC which, upon fusion with primary fields, will provide all other BCs.

The Fixed Point (−1,−1,−1)

This fixed point describes a conventional perfectly Kondo-screened phase, that

can be obtained [2, 3] from the (1, 1, 1) fixed point upon fusion with the highest
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weight representation of the SU(2)3 CFT with j = 3/2. It is clear that this

phase extends in a whole region around the origin J = J ′ = 0 in Fig. 4.5.

Indeed, when J = J ′ = 0, each impurity is independently Kondo screened by

its own conduction bath and this perfect screening can not be affected by finite

J and J ′ much smaller than the Kondo temperature. It is far less obvious that

this fixed point remains stable for large J ' J ′. When J ′ = J � TK , the

impurity locks into two degenerate S=1/2 configurations. In the first, sites 1

and 3 are coupled into a triplet which in turn is coupled with site 2 into an

overall spin-1/2 configuration. Since this is even by interchanging 1 with 3,

we denote it as |e〉. The other configuration, which we denote as |o〉, is odd
under 1↔ 3 and corresponds to coupling sites 1 and 3 into a singlet, leaving
behind the free spin-1/2 moment of site 2. The Kondo exchange projected

onto this subspace reads

JK
3
|e〉〈e| S ·

(
2J1(0)− J2(0) + 2J3(0)

)
+ JK |o〉〈o| S · J2(0)

−
JK√
3

(
|e〉〈o|+ |o〉〈e|

)
S ·
(
J1(0)− J3(0)

)
,

(4.4)

where S describes the effective S=1/2 of the trimer, while Ja(0) is the spin

density of bath a = 1, 2, 3 at the impurity site, assumed to be the origin. All the

above screening channels flows to strong coupling within a one-loop calcula-

tion. Since it is readily shown that the impurity can be perfectly screened,

both in the spin and in the e-o channels, one has to conclude that the

whole line J = J ′ at finite JK corresponds to the Kondo screened fixed point

(−1,−1,−1), as shown in Fig. 4.5. A small deviation from J = J ′ splits

the degeneracy between |e〉 and |o〉 and would eventually destabilize this fixed
point, the faster the smaller JK .

The Fixed Point (0, 1, 0)

This fixed point occurs for J � TK , J
′ (see Fig. 4.5). The NRG spectrum is

shown at the far right of Fig. 4.6 and the energies are reported in Table 4.2.

This spectrum is compatible with that obtained by first fusing the (1, 1, 1)

fixed point with the j = 3/2 primary field of the SU(2)3 CFT and then with

the field σ
′
of the TIM. It is not difficult to realize that this fixed point is

equivalent to the non-Fermi-liquid phase of the S=1/2 two-channel Kondo

model [2, 3]. Indeed, if J ′ = 0 and J is very large, the trimer is locked into the

S=1/2 configuration which we previously denoted as |e〉, to indicate the even
parity upon 1 ↔ 3. According to (4.4), the Kondo exchange projected onto
this configuration is

S ·
3∑
a=1

J
(a)
K Ja(0) =

JK
3
S ·
(
2J1(0)− J2(0) + 2J3(0)

)
. (4.5)
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Figure 4.6: Flow diagrams for J ′ = 0 and J slightly smaller (left) and

slightly larger (right) than the critical J∗. The intermediate, unstable

fixed point is clearly visible. The arrows mark the CFT predictions for

the location of the energy levels.

2I 2S Q Z2 TIM x − 3/16 ENRG

0 1 0 0 3/80 0 0.000000

1 0 1/4 1/16 0 1/8 0.126716

1 0 1/4 1/16 0 1/8 0.128870

1 2 1/4 0 3/80 1/2 0.498068

1 0 1/4 0 7/16 1/2 0.498105

0 1 1/2 0 3/80 1/2 0.499241

2 1 1/2 0 3/80 1/2 0.499241

0 1 0 1/2 3/80 1/2 0.500586

0 1 1/2 1/16 1/10 5/8 0.624506

2 1 1/2 1/16 1/10 5/8 0.624506

0 1 1/2 1/16 1/10 5/8 0.625623

2 1 1/2 1/16 1/10 5/8 0.625623

1 2 1/4 1/16 1/10 5/8 0.628025

1 2 1/4 1/16 1/10 5/8 0.628167

Table 4.2: Lowest energy states as obtained by CFT and NRG for

the fixed point (S1, S2, S3) = (0, 1, 0). The states are given with their

total isospin I and spin S. The columns Q, Z2 and TIM indicate the

contributions from the charge, the Ising and the TIM CFT respectively.
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Hence, while bath 1 and 3 are still antiferromagnetically coupled, the cou-

pling with bath 2 turns effectively ferromagnetic. The ordinary one-loop

renormalization group calculation would predict that the Kondo exchanges

J
(1)
K = J

(3)
K > 0 flow towards strong coupling, while J

(2)
K < 0 flows towards

zero. This suggests that a model with J
(1)
K = J

(3)
K � −J

(2)
K > 0 should behave

asymptotically as (4.5). If J
(2)
K = 0 this is just the two-channel spin-1/2 impu-

rity model [2, 3, 6], which is non Fermi-liquid with S-matrices S1 = S3 = 0. It

is easy to realize that the small ferromagnetic J
(2)
K transforms into an antifer-

romagnetic exchange with the spin-density operators of baths 1 and 3, which

is irrelevant. Indeed, the operator (J1+J2+J3) ·(J1−2J2+J3) has dimension
3/2. Consequently, we expect that this phase should be non-Fermi-liquid and

identified by the S-matrices (S1, S2, S3) = (0, 1, 0), as is indeed confirmed by

CFT. In addition, through the modular S-matrix (see Section 2.7.2 and Ap-
pendix B), one can show that the zero-temperature entropy S(0) = 1/2 ln 2 is

finite and coincides with that of the S=1/2 two-channel Kondo model. Since

σ
′ × σ′ = I + ε′′ and the dimension of ε′′ is 3/2 > 1, this fixed point is stable
to symmetry-preserving perturbations. However, there are several symmetry-

breaking relevant perturbations of dimension 1/2. One of them corresponds

to the staggered magnetization

J1 − 2J2 + J3. (4.6)

All the other relevant operators break the degeneracy between bath 1 and 3

as well. This is for instance the case for the spin-singlet operator

J2 ·
(
J1 − J3

)
, (4.7)

which is indeed known to be a relevant perturbation at the overscreened non-

Fermi-liquid fixed point [8]. This phase extends at finite J ′ because a small J ′

does not generate any symmetry-breaking relevant perturbation.

The approach to the fixed point is controlled by two leading irrelevant

operators of dimension 3/2: ε
′′
and the scalar product of the staggered mag-

netization (4.6) with the first spin descendant. Similarly to the overscreened

two-channel Kondo model [2, 3], these operators produce logarithmic singu-

larities in the impurity contribution to the specific heat coefficient and to the

magnetic susceptibility, Cimp/T ∼ χimp ∼ ln(1/T ).

The Fixed Point φ−2 (−1, 1,−1)

Since the Kondo screened phase (−1,−1,−1) and the non-Fermi liquid phase
(0, 1, 0) are essentially different, an unstable critical line separates them (see

Fig. 4.5). The NRG spectrum for this line is shown in the central part of

Fig. 4.6 and the corresponding energy levels are reported in Table 4.3. We

find that the NRG spectrum can be reproduced by fusing the (1, 1, 1) fixed
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2I 2S Q Z2 TIM x − 1/4 ENRG

0 1 0 0 1/10 0 0.000000

1 0 1/4 1/16 3/80 1/10 (×2) 0.100321

1 2 1/4 0 0 2/5 0.396747

0 1 0 1/2 0 2/5 0.400154

0 1 1/2 0 0 2/5 0.400259

2 1 1/2 0 0 2/5 0.400259

0 1 1/2 1/16 3/80 1/2 (×2) 0.499136

2 1 1/2 1/16 3/80 1/2 (×2) 0.499136

1 2 1/4 1/16 3/80 1/2 (×2) 0.501840

0 3 0 0 1/10 3/5 0.597377

1 0 1/4 1/2 1/10 3/5 0.597432

1 0 3/2 0 1/10 3/5 (×2) 0.597512

3 0 3/2 0 1/10 3/5 0.597512

1 0 1/4 0 3/5 3/5 0.606210

0 1 1/2 1/16 7/16 9/10 (×2) 0.908031

2 1 1/2 1/16 7/16 9/10 (×2) 0.908031

1 2 1/4 1/16 7/16 9/10 (×2) 0.914685

Table 4.3: Lowest energy states as obtained by CFT and NRG for

the unstable fixed point (S1, S2, S3) = φ−2(−1, 1,−1). The states
are given with their total isospin I and spin S. The columns Q, Z2
and TIM indicate the contributions from the charge, the Ising and the

TIM CFT respectively.
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Figure 4.7: Flow diagrams for J = 0.01 and J ′ slightly smaller (left)

and slightly larger (right) than the critical J ′∗. The intermediate, unsta-

ble fixed point is clearly visible. The arrows mark the CFT predictions

for the location of the energy levels.

point with the j = 3/2 primary field of the SU(2)3 CFT and with the field

ε of the TIM. The S-matrices are φ−2 (−1, 1,−1) and the residual entropy
is S(0) = lnφ, where φ = (1 +

√
5)/2 is the golden ratio. Since ε × ε =

I + t, the operator which moves away from the critical line has dimension

3/5. In other words, a small deviation δ from the line introduces a cross-over

energy scale δ5/2. The most relevant symmetry-breaking operator is still the

staggered magnetization (4.6), which now has dimension 2/5. Once more, the

approach to this fixed point is controlled by the scalar product of the staggered

magnetization with the first Kac-Moody descendant of the SU(2)3 CFT, which

has dimension 1 + 2/5. Analogously to the multichannel Kondo [2, 3], this

operator produces impurity contributions to the specific-heat coefficient and

magnetic susceptibility that diverge like T−1/5.

The spin-singlet operator (4.7) is also relevant, although with a smaller

dimension 3/5. In addition, there is a new class of dimension-3/5 operators

which correspond to coupling into a spin-singlet two particles, or one hole and

one particle, belonging to bath 2 and either bath 1 or 3. This implies two

important features: (i) This fixed point, like the dimer one, is destabilized

by a single-particle hybridization between the baths, hence it would never be

reachable in a model of coupled Anderson impurities, as we expected; (ii) The

inter-bath Cooper pairing instability is again enhanced, like in the dimer model.
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2I 2S Q Z2 TIM x − 5/16 ENRG

1 0 1/4 1/16 0 0 0.00000

0 1 0 1/16 1/10 0 0.00001

0 1 1/2 0 3/80 3/8 (×2) 0.37234

2 1 1/2 0 3/80 3/8 (×2) 0.37234

1 0 1/4 0 7/16 3/8 (×2) 0.37245

1 2 1/4 0 3/80 3/8 (×2) 0.37245

0 1 0 1/16 3/5 1/2 0.49748

0 3 0 1/16 0 1/2 0.49748

1 2 1/4 1/16 1/10 1/2 0.49765

0 1 1/2 1/16 1/10 1/2 0.49797

2 1 1/2 1/16 1/10 1/2 0.49797

1 0 3/4 1/16 0 1/2 (×2) 0.49813

3 0 3/4 1/16 0 1/2 0.49813

0 1 1/2 1/2 3/80 7/8 (×2) 0.88039

2 1 1/2 1/2 3/80 7/8 (×2) 0.88039

1 0 1/4 1/2 7/16 7/8 (×2) 0.88048

1 2 1/4 1/2 3/80 7/8 (×2) 0.88048

Table 4.4: Lowest energy states as obtained by CFT and NRG for the

fixed point (S1, S2, S3) = (0,−1, 0). The states are given with their
total isospin I and spin S. The columns Q, Z2 and TIM indicate the

contributions from the charge, the Ising and the TIM CFT respectively.

The Fixed Points (1,−1, 1) and (0,−1, 0)

These two fixed points occur when J ′ > J is larger or comparable to the Kondo

temperature. They have a simple explanation. Indeed, when J = 0, site 2 is

only coupled to bath 2 with a Kondo exchange, leading to a full screening,

i.e. S2 = −1. Sites 1 and 3 plus their own baths realize once more a two-
impurity Kondo model which, as discussed before, has two stable regimes. One

regime, for J ′ � TK , is Kondo screened and has S1 = S3 = −1 so that it is
described by the fixed point (S1, S2, S3) = (−1,−1,−1) (see Fig. 4.5). The
other regime, J ′ � TK , has (S1, S2, S3) = (1,−1, 1) in Fig. 4.5. These two
regimes are clearly stable towards switching on a small J � J ′. When J = 0,

we also know that an unstable fixed point at J ′ = J ′∗ ∼ TK separates these

two stable phases and is identified by S1 = S3 = 0, hence the label (0,−1, 0)
in Fig. 4.5. Since site 2 is tightly bound into a singlet state with bath 2,

a finite but small J � TK will simply generate a ferromagnetic exchange of

order −J2/TK by virtually exciting the singlet state. The net effect is that the
unstable fixed point at J = 0 is just the endpoint of another critical line which,

for J � TK , moves to larger values of J
′. This has been checked by the NRG
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calculations, and we show the flow diagram around this line in Fig. 4.7. From

the CFT viewpoint, the (1,−1, 1) or (0,−1, 0) fixed points can be obtained
by fusing with the j = 3/2 primary field of the SU(2)3 and with ε

′′
of the TIM

or σI of the Ising CFT, respectively. For comparison, we report the energies

obtained by NRG at the fixed point (0,−1, 0) in Table 4.4. The properties of
the unstable (0,−1, 0) critical line are the same as those of the dimer critical
point. In particular, there is a relevant operator in the singlet Cooper channel

that now involves pairing among baths 1 and 3, as well as an equally relevant

operator which corresponds to an opposite magnetization of bath 1 and 3, i.e.

J1 − J3.

4.3.3 Concluding Remarks About the Trimer

We have shown that the trimer model (4.3) has quite a rich phase diagram,

drawn in Fig. 4.5. Besides the three different stable phases, we have found

two unstable critical lines with some notable features:

(1) Both critical lines turn into crossover regions, which we believe should

be sharp, if instead of three coupled spin-1/2 Kondo impurities we had

considered three Anderson impurities, with an on-site Hubbard U, cou-

pled by a hopping t between sites 2 and 1 and 2 and 3, and a hopping

t ′ between sites 1 and 3.

(2) Both lines are unstable towards a magnetic symmetry breaking deter-

mined by the largest among J and J ′, namely J1 − 2J2 + J3 for J > J ′

and J1 − J3 for J ′ > J.

(3) Both lines are also unstable in a singlet Cooper channel. In particular,

for J > J ′ along the critical line φ−2 (−1, 1,−1), the instability channel
corresponds to an inter-site pairing along bonds 1-2 and 2-3. On the

contrary, along the line (0,−1, 0) for J ′ > J, it is the inter-site pairing

along bond 1-3 which is singular.

The Trimer with C3 Symmetry and the Hubbard Model on a Triangular

Lattice

Let us conclude by noting that, for J = J ′, the trimer is actually the simplest

cluster to simulate, within DMFT, a Hubbard model on a triangular lattice.

Yet, as we mentioned several times, the trimer representative of a Hubbard

model very close to a Mott transition, necessarily includes, besides the inter-

impurity exchange J = J ′, a weak inter-bath hybridization, generally invariant

only under global U(1) gauge-symmetry, SU(2) spin-rotations as well as under

C3 symmetry.

A trimer coupled to three baths with C3 symmetry was studied by NRG

by Paul and Ingersent [97], who found a phase diagram which contains three
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stable phases: the perfectly Kondo screened phase, our (−1,−1,−1) fixed
point, and two non-Fermi-liquid regimes, which they denoted as Isospin-Kondo

and Frustrated-Kondo. In other words, the (−1,−1,−1) fixed point at J = J ′
is destabilized by an hybridization among the baths that preserves the C3
symmetry, provided it is large compared with the Kondo temperature. Trans-

lated within DMFT language, this should imply that the instability of the

(−1,−1,−1) fixed point is very likely to be encountered by the trimer, repre-
sentative of a Hubbard model on a triangular lattice, on the way to the Mott

insulating phase, TK → 0. Which of the two non-Fermi-liquid regimes may
occur depends on the density of states at the Fermi energy projected onto the

three helicity states, h = 0,±1, of the cluster

ρh =
1

V

∑
k

δ (εk − εF )
∣∣∣1 + eih2π/3 eik·a + e−ih2π/3 eik·b∣∣∣2 ,

where εk is the band energy of the triangular lattice, while a = (1, 0) and

b = (1/2,
√
3/2) are the unit lattice vectors. For the standard Hubbard model

with real nearest-neighbor hopping, ρ±1 > ρ0. This suggests that the non-

Fermi-liquid phase pertinent to this case is likely the Isospin-Kondo regime.

The Frustrated-Kondo regime, which requires ρ0 > ρ±1, might occur for in-

stance on a triangular lattice with purely imaginary nearest-neighbor hopping.

Incidentally, this is quite a peculiar model in which, although parity and time

reversal are broken, but not their product, particle-hole symmetry is preserved.

In both cases, the approach to the Mott transition should be influenced

by the critical point which separates the Fermi-liquid phase from the non-

Fermi-liquid one. However, the conformal embedding we have adopted so far

is no longer appropriate to describe both these critical points as well as the

Isospin-Kondo and the Frustrated-Kondo regimes, since it assumes indepen-

dent charge conservation in each bath. The correct embedding has recently

been found by Ingersent et al. [55], although it has been used only to discuss

the Isospin- and Frustrated-Kondo regimes and not the two unstable fixed

points, which would be of interest in connection with cluster DMFT.

4.4 The Impurity Tetramer

The other cluster that we consider is an impurity tetramer, as drawn in

Fig. 4.8. The properties of this cluster are still under current investigation

and we present hereunder the preliminary results that we have obtained. The

Hamiltonian is given by

H =
4∑
a=1

HKa + J (S1 + S3) · (S2 + S4) + J ′ (S1 · S3 + S2 · S4) . (4.8)

This model describes four spin-1/2 impurities, coupled together by a nearest

J, and next-nearest neighbor J ′, antiferromagnetic exchanges. In addition,
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Figure 4.8: The impurity tetramer with the Hamiltonian 4.8.

each spin is Kondo coupled to its conduction bath by JK > 0. The four baths

are degenerate and particle-hole invariant. Clearly, the tetramer can be used

to represent the Hubbard model on a square lattice within the framework of

cluster DMFT. Again, one should in principle consider Anderson impurities,

but in order to facilitate the identification of fixed points, we prefer to use

Kondo impurities and discuss the effect of the hybridization between the baths

by treating it as a perturbation.

4.4.1 CFT Preliminaries for the Tetramer

As usual, given our choice of the model (4.8), the charge degrees of freedom

can be described by four independent SU(2)1 CFTs, one for each bath. For

the spin symmetry, the way the impurities are coupled by the direct exchange

naturally leads to the following conformal embedding scheme: First, we couple

the spin sectors of baths 1 and 3 into an overall SU(2)2 × Z2 as in the case
of the impurity trimer. The same procedure is applied to the baths 2 and 4

and we get (
SU(2)

(1)
1 × SU(2)

(3)
1

)
×
(
SU(2)

(2)
1 × SU(2)

(4)
1

)
→
(
SU(2)

(1−3)
2 × Z(1)2

)
×
(
SU(2)

(2−4)
2 × Z(2)2

)
.
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Field Dimension

I 0 x2 + y2

θ 1 xy(x2 − y2)
φ3/2 3/2 x(x2 − y2); y(x2 − y2)
φ1/24 1/24

φ1/6 1/6 x ; y

φ3/8 3/8

φ2/3 2/3 x2 − y2; xy
φ25/24 25/24

σ(i=1,2) 1/16

τ (i=1,2) 9/16

Table 4.5: Primary fields of the c = 1 CFT with their dimensions.

Some fields transform according to irreducible representations of C4v
and the corresponding functions of coordinates are shown in the last

column.

The two SU(2)2 are then coupled together into an SU(2)4 and leave behind

a CFT with central charge c = 1. The resulting embedding is

SU(2)4 × Z(1)2 × Z
(2)
2 ×

[
c = 1 (CFT)

]
,

where c = 1 CFT stands for the Z2 orbifold of a free bosonic CFT [9, 35]

with compactification radius R =
√
12. This embedding can again be proven

rigorously through the character decomposition, as shown in Appendix A.

The c = 1 CFT contains 13 primary fields, some of them being twice

degenerate. We list them with their dimension in Table 4.5. Some of the

primary fields transform like irreducible representations of the C4v symmetry

group and we indicate, in Table 4.5, the functions of coordinates that transform

in the same way. The fusion rules between the primary fields can be found in

Ref. [35, p. 784].

4.4.2 Fixed Points in the Tetramer Phase Diagram

In Fig. 4.9, we sketch the phase diagram of (4.8) as obtained by NRG. The

calculations were performed with Λ = 10. We use the spin symmetry and the

conservation of charge in all four channels. At every NRG iteration, ∼ 2000
states are kept. As before, each fixed point of the renormalization group

is identified by the S-matrices (S1, S2, S3, S4)
(n), where the superscript (n)

is introduced to distinguish between different fixed points with the same S-

matrices. Let us describe the different fixed points that we find.
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Figure 4.9: NRG phase diagram of the impurity tetramer described

by the Hamiltonian (4.8).

The Fixed Point (−1,−1,−1,−1)

This fixed point corresponds to a perfectly Kondo-screened phase. It occurs

when TK is large as compared to both J and J
′, and can again be obtained

by fusing the JK = 0 spectrum with the highest weight representation of the

SU(2)4 with j = 2. We will use this screened (−1,−1,−1,−1) fixed point as
the ancestor BC to generate all the other BCs by fusion.

The Fixed Point (1, 1, 1, 1)(1)

If J ′ = 0 and J � TK , the tetramer locks into a non-degenerate singlet state

which is obtained by coupling sites 1 and 3 into a triplet, as well as sites 2

and 4, and coupling the two triplets into an overall singlet. This configuration

decouples from the conduction electrons which do not feel the presence of the

impurities anymore. This phase (see Fig. 4.9) is Fermi-liquid like and remains

stable even in the presence of a finite J ′, provided the lowest excitation gap

from the ground state of the isolated tetramer is much larger than TK . Within

CFT, there are several possible fusions which turn the (−1,−1,−1,−1) fixed
point into this new one. One possibility is a fusion with the primary field θ of

the c = 1 CFT.

The Fixed Point (0, 0, 0, 0)(1)

The two stable fixed points for J � JK and J � JK at J
′ � J are essen-

tially different and we expect that they are separated by a critical line (see

Fig. 4.9). This is confirmed by the NRG computation and the spectrum for
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2I 2S Q Z
(1)
2 Z

(2)
2 c = 1 x − 1/6 ENRG

0 0 0 0 0 1/6 0 0.00000

0 2 0 0 0 1/6 1/3 0.33123

1 1 1/4 1/16 0 1/16 1/3 (×2) 0.33898

1 1 1/4 0 1/16 1/16 1/3 (×2) 0.33898

0 0 1/2 1/16 1/16 1/24 1/2 (×4) 0.49602

2 0 1/2 1/16 1/16 1/24 1/2 (×4) 0.49602

0 2 0 1/2 0 0 2/3 0.67050

0 2 0 0 1/2 0 2/3 0.67050

0 2 1/2 0 0 0 2/3 (×2) 0.67050

2 2 1/2 0 0 0 2/3 (×2) 0.67050

1 1 1/4 1/16 0 9/16 5/6 (×2) 0.81649

1 1 1/4 0 1/16 9/16 5/6 (×2) 0.81649

1 1 3/4 0 1/16 1/16 5/6 (×4) 0.81649

3 1 3/4 0 1/16 1/16 5/6 (×2) 0.81649

1 1 3/4 1/16 0 1/16 5/6 (×4) 0.81649

3 1 3/4 1/16 0 1/16 5/6 (×2) 0.81649

1 3 1/4 1/16 0 1/16 5/6 (×2) 0.82156

1 3 1/4 0 1/16 1/16 5/6 (×2) 0.82156

0 2 1/2 1/16 1/16 1/24 5/6 (×4) 0.84007

2 2 1/2 1/16 1/16 1/24 5/6 (×4) 0.84007

1 1 1/4 1/16 1/2 1/16 5/6 (×2) 1.01981

1 1 1/4 1/2 1/16 1/16 5/6 (×2) 1.01981

Table 4.6: Lowest energy states as obtained by CFT and NRG for

the unstable fixed point (S1, S2, S3, S4) = (0, 0, 0, 0)
(1). The states

are given with their total isospin I and spin S. The columns Q, Z
(a)
2

and c = 1 indicate the contributions from the charge, the Ising and

the c = 1 CFT respectively.
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Figure 4.10: Flow diagrams for J ′ = 0 and J slightly smaller (left) and

slightly larger (right) than the critical J∗. The intermediate, unstable

fixed point is clearly visible. The arrows mark the CFT predictions for

the location of the energy levels.

this fixed point is shown in Fig. 4.10. The corresponding energies are reported

in Table 4.6. We find that the NRG spectrum can be reproduced by fusing the

(−1,−1,−1,−1) BC with the primary field φ1/6 of the c = 1 CFT. By the
modular S-matrix (see Appendix B), we find that the S-matrices are (0, 0, 0, 0)
and the residual entropy is S(0) = ln 2.

Since φ1/6×φ1/6 = I+ θ+φ2/3, the operator which moves away from the
critical line has dimension 2/3. The most relevant symmetry-breaking operator

corresponds to the staggered magnetization

J1 − J2 + J3 − J4, (4.9)

with dimension 1/3. Besides the staggered magnetization, there are other less

relevant operators of dimension 2/3. Some of them are four-fermion operators

obtained by coupling into a spin-singlet the staggered magnetization with other

spin-triplet excitations, such as the operator(
J1 − J3

)
·
(
J1 − J2 + J3 − J4

)
.

The other relevant operators of dimension 2/3 correspond to all possible mean-

field decoupling schemes of the exchange term(
J1 + J3

)
·
(
J2 + J4

)
,
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2I 2S Q Z
(1)
2 Z

(2)
2 c = 1 x − 1/8 ENRG

0 0 0 1/16 1/16 0 0 0.00000

1 1 1/4 1/16 0 1/16 3/8 (×2) 0.37800

1 1 1/4 0 1/16 1/16 3/8 (×2) 0.37800

0 2 0 1/16 1/16 1/6 1/2 (×2) 0.46976

0 0 1/2 1/16 1/16 0 1/2 (×2) 0.47207

2 0 1/2 1/16 1/16 0 1/2 (×2) 0.47207

0 0 1/2 0 0 3/8 3/4 (×4) 0.78136

2 0 1/2 0 0 3/8 3/4 (×4) 0.78136

0 2 1/2 0 0 1/24 3/4 (×4) 0.78137

2 2 1/2 0 0 1/24 3/4 (×4) 0.78137

1 1 1/4 0 1/16 9/16 7/8 (×2) 0.88754

1 1 1/4 1/16 0 9/16 7/8 (×2) 0.88754

1 3 1/4 0 1/16 1/16 7/8 (×2) 0.88755

1 3 1/4 1/16 0 1/16 7/8 (×2) 0.88755

1 1 3/4 0 1/16 1/16 7/8 (×4) 0.89000

3 1 3/4 0 1/16 1/16 7/8 (×2) 0.89000

1 1 3/4 1/16 0 1/16 7/8 (×4) 0.89000

3 1 3/4 1/16 0 1/16 7/8 (×2) 0.89000

1 1 1/4 1/16 1/2 1/16 7/8 (×2) 1.09484

1 1 1/4 1/2 1/16 1/16 7/8 (×2) 1.09484

Table 4.7: Lowest energy states as obtained by CFT and NRG for

the unstable fixed point (S1, S2, S3, S4) = (0, 0, 0, 0)
(2). The states

are given with their total isospin I and spin S. The columns Q, Z
(a)
2

and c = 1 indicate the contributions from the charge, the Ising and

the c = 1 CFT respectively.

into inter-bath bilinear operators. Among them, we just mention the inter-bath

hopping ∑
σ

(
c
†
1σ + c

†
3σ

)(
c2σ + c4σ

)
+H.c.,

as well as the d-wave Cooper pairing1

(
c
†
1↑ − c

†
3↑
)(
c
†
2↓ − c

†
4↓
)
−
(
↑↔↓

)
.

1In the reference frame of Fig. 4.8 this corresponds to a Cooper pair of dxy symmetry.

However, in the reference frame conventionally used for square lattices, which is rotated by

90 degrees, it corresponds to dx2−y2 .
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The Fixed Points (1, 1, 1, 1)(2) and (0, 0, 0, 0)(2)

If J = 0, sites 1 and 3 are decoupled from sites 2 and 4, hence the tetramer

reduces to two independent Kondo dimers. If J ′ � TK each pair of impurities,

1 and 3 or 2 and 4, is strongly bound into a singlet which decouples from

the conduction electrons. This fixed point is clearly stable to switching on

a small J. Hence, in analogy with the dimer, one should obtain it from the

(−1,−1,−1,−1) fixed point upon fusion with ε(1)I ε
(2)
I , where ε

(a)
I , a = 1, 2,

are the energy operators of the two Ising CFTs. The NRG spectrum agrees

with this prediction, not only for small J, but for the whole region J ′ > J with

J ′ � TK , see Fig. 4.9. Once again, this unscreened regime is separated from

the Kondo regime by a critical line which is the same as in the impurity dimer.

It is therefore obtained [5] from the (−1,−1,−1,−1) fixed point upon fusion
with σ

(1)
I σ

(2)
I and it is identified by zero scattering matrices (0, 0, 0, 0)

(2) (see

Fig. 4.9), and by a residual entropy S(0) = ln 2. The energies obtained by

NRG for this fixed point are shown in Table 4.7 and agree well with the CFT

prediction. Besides the dimension-1/2 operator which moves away from this

critical point, there are several symmetry-breaking perturbations with the same

dimension: the direct hybridization among baths 1 and 3, as well as among 2

and 4; the spin magnetization J1− J3 and J2− J4; the 1-3 and 2-4 inter-bath
singlet Cooper pairing.

The (1, 1, 1, 1) Line

If J = J ′ � TK , the tetramer locks into a doubly degenerate spin-singlet state.

One state in the doublet is the singlet formed by two triplets, one between

sites 1 and 3, the other between sites 2 and 4. In our reference frame, (see

Fig. 4.8) this state has x2−y2 symmetry. The second state is instead the prod-
uct of two singlets, between sites 1 and 3 and between 2 and 4. It transforms

like the product x y . The Kondo exchange provides a coupling between these

two configurations only at second order in JK , which is an irrelevant quartic

conduction-electron operator. Therefore, the tetramer decouples asymptoti-

cally from the conduction baths, and its degeneracy remains unchanged. This

is confirmed by the NRG calculation, which shows the same Fermi-liquid spec-

trum as in the absence of the impurity-cluster except that every state is doubly

degenerate. This phase is the analogous of a first-order line, hence the label

“(1, 1, 1, 1) line” in Fig. 4.8, and the splitting of the double degeneracy of the

tetramer is described by a relevant operator of dimension 0.

The Intermediate Fixed Point

The NRG calculations show that the two critical lines corresponding to the

fixed points (0, 0, 0, 0)(1,2) merge together at an unstable fixed point which

is the ending point of the (1, 1, 1, 1) line. This fixed point is unstable in all
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directions and it has so far been impossible to find compatible BCs and low-

energy spectrum. A more precise identification of this fixed point is under

current investigation.

4.5 Conclusions

In this chapter, we have studied two clusters of impurities by means of Wilson’s

numerical renormalization group and conformal field theory. Even if the two

clusters are different, the phase diagrams of the impurity trimer and tetramer

share striking similarities. In both cases, stable phases are separated by critical

lines that show non-Fermi liquid behavior. The unstable fixed points emerge

from the competition between the Kondo effect that gains energy if the ground

state is degenerate and the RKKY interaction that splits this degeneracy. As

a result, these fixed points have many instabilities, but magnetism always

appears as being the most relevant one. Actually, going from the trimer to

the tetramer, the magnetic instability becomes even more relevant. Besides

magnetization, Cooper-pair instabilities are also present.

Let us discuss what might be the effects of these instabilities if these

clusters were used to emulate a Hubbard model on a square lattice within

cluster DMFT. Clearly, such a discussion is quite speculative at this point,

but, as we have discussed in Section 4.1, even neglecting the self-consistency

found in DMFT, the local instabilities of the cluster might still transform into

bulk instabilities of the lattice model. Another aspect comes from consider-

ing Kondo impurities, whereas the appropriate model would display Anderson

impurities. In this case, we believe that the true critical lines would turn into

sharp crossover regions that are stable against particle-hole symmetry break-

ing, as was observed in Ref. [34]. As the lattice model approaches the Mott

transition, its effective Fermi temperature T ∗F goes to zero, as does the cor-

responding Kondo temperature TK of the impurity model. At some point, the

Kondo temperature and the energy scales of the RKKY interactions become

of the same order and the system enters into the crossover regions of the

impurity model. Note that while finding these critical regions requires a fine

tuning of the parameters in the impurity model, they are always crossed if it

is possible to continuously approach the Mott transition. In the lattice model,

these regions are translated into pseudo-gap phases that are controlled by sev-

eral energy scales [34] and occur before the Mott transition. It is reasonable

to think that, if the system is free to break symmetries, it would react to these

unstable phases by developing some order corresponding to the most relevant

instabilities of the impurity model. From our study, it is clear that developing

antiferromagnetism is the most natural way to break the symmetry, at least

at half-filling. However, if the model is not at half-filling, as when it is doped,

other symmetry breakings might occur, like the formation of Cooper pairs [26],

that we found to always be relevant perturbations at the unstable fixed points.
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Actually, in the mechanisms behind the Kondo effect, there is always some sort

of singlet formation, either between the conduction bath and the impurities,

or between the impurities themselves. Therefore, the pairing mechanism is

always present and it is not surprising that it can appear in the lattice model.

In conclusion, we expect that the competition between the Kondo effect

and other local interactions is a very generic feature that is found in all impurity-

cluster models. The consequences of this competition can be seen whenever

it is possible to drive a system smoothly to its Mott transition. Therefore, we

believe that it plays a key role in understanding the rich physics observed in

materials on the verge of a Mott transition.



Appendix A

Character Decompositions

The conformal embeddings of Chapter 4 can be justified by the Goddard-Kent-

Olive construction [35], in which a coset conformal field theory is built from a

Wess-Zumino-Witten (WZW) model with Lie group symmetry g by stripping

off the part of the model corresponding to a subalgebra p of g. The cosets

we are interested in have the form

SU(2)N × SU(2)L
SU(2)N+L

,

and describe a rational conformal field theory. The central charge of the coset

is the difference of the two WZW components and, if it is smaller than 1, it

has to correspond to a minimal model. Decomposing the representations of

SU(2)N × SU(2)L with respect to

SU(2)N+L ×
SU(2)N × SU(2)L

SU(2)N+L
,

it is possible [14] to express the characters of the coset and SU(2)N+L as a

function of the characters of SU(2)N and SU(2)L.

A.1 The Impurity Trimer

When the impurities are disconnected (JK = 0) in the trimer, the partition

function for an even chain reads

Z =
∑
jn=0,1

(
χ
(1)
j1
χ
(1)
j2
χ
(1)
j3

)
charge

(
χ
(1)
j1
χ
(1)
j2
χ
(1)
j3

)
spin

, (A.1)

where χ
(1)
j is the character of the conformal tower with highest weight state

of spin 2j in SU(2)1 and both the charge and spin sectors are described by a

CFT with symmetry

SU(2)
(1)
1 × SU(2)

(2)
1 × SU(2)

(3)
1 .
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The character decomposition allows to identify the free energy of this original

theory and the one in which the symmetry has been decomposed. In the case

of the impurity trimer, a first decomposition is obtained by

SU(2)1 × SU(2)1 ∼ SU(2)2 ×
SU(2)1 × SU(2)1

SU(2)2
.

Here the coset has central charge c = 1/2 and corresponds to the Ising model

Z2. In the second decomposition

SU(2)2 × SU(2)1 ∼ SU(2)3 ×
SU(2)2 × SU(2)1

SU(2)3
,

the coset has central charge c = 7/10 which is recognized as the tricritical

Ising model (TIM). The character decomposition for the embedding

SU(2)1 × SU(2)1 × SU(2)1 ∼ SU(2)3 × (TIM)× Z2

is given by

χ
(1)
0 χ

(1)
0 χ

(1)
0 = χ

(3)
0

(
χI0χ

TIM
0 + χI1/2χ

TIM
3/2

)
+ χ

(3)
2

(
χI0χ

TIM
3/5 + χ

I
1/2χ

TIM
1/10

)
χ
(1)
1 χ

(1)
1 χ

(1)
1 = χ

(3)
1

(
χI1/2χ

TIM
1/10 + χ

I
0χ
TIM
3/5

)
+ χ

(3)
3

(
χI0χ

TIM
0 + χI1/2χ

TIM
3/2

)
χ
(1)
1 χ

(1)
0 χ

(1)
0 = χ

(1)
0 χ

(1)
0 χ

(1)
1 = χ

(3)
1 χI1/16χ

TIM
3/80 + χ

(3)
3 χI1/16χ

TIM
7/16

χ
(1)
1 χ

(1)
1 χ

(1)
0 = χ

(1)
0 χ

(1)
1 χ

(1)
1 = χ

(3)
0 χI1/16χ

TIM
7/16 + χ

(3)
2 χI1/16χ

TIM
3/80

χ
(1)
1 χ

(1)
0 χ

(1)
1 = χ

(3)
0

(
χI1/2χ

TIM
0 + χI0χ

TIM
3/2

)
+ χ

(3)
2

(
χI1/2χ

TIM
3/5 + χ

I
0χ
TIM
1/10

)
χ
(1)
0 χ

(1)
1 χ

(1)
0 = χ

(3)
1

(
χI0χ

TIM
1/10 + χ

I
1/2χ

TIM
3/5

)
+ χ

(3)
3

(
χI0χ

TIM
3/2 + χ

I
1/2χ

TIM
0

)
.

Here, χ
(k)
j is the character of the conformal tower with highest weight state

of spin 2j in SU(2)k . The other characters have a superscript indicating the

corresponding minimal model (I for the Ising model and TIM for tricritical

Ising model) and a subscript giving their dimension. This formula expresses

how the partition function (A.1) is written in terms of the characters of the

decomposed theory.

A.2 The Impurity Tetramer

The partition function for the tetramer with disconnected impurities is given

by

Z =
∑
jn=0,1

(
χ
(1)
j1
χ
(1)
j2
χ
(1)
j3
χ
(1)
j4

)
charge

(
χ
(1)
j1
χ
(1)
j2
χ
(1)
j3
χ
(1)
j4

)
spin

. (A.2)
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The symmetry of the theory is first decomposed by coupling two pairs of

SU(2)1 together and it involves a coset with the central charge of the Ising

model, as in the impurity trimer. The remaining SU(2)2 are then coupled

according to

SU(2)2 × SU(2)2 ∼ SU(2)4 ×
SU(2)2 × SU(2)2

SU(2)4
.

In this case, the coset has central charge c = 1 and we find that the NRG

results are recovered by considering an orbifold Gaussian model with compact-

ification radius R =
√
12. The resulting embedding

SU(2)1 × SU(2)1 × SU(2)1 × SU(2)1 ∼ SU(2)4 × Z2 × Z2 ×
[
c = 1 CFT

]
,

has the following character decomposition:

χ
(1)
0 χ

(1)
0 χ

(1)
0 χ

(1)
0 =

χ
(4)
0

[
χI10 χ

I2
0 χI + χ

I1
1/2
χI2
1/2
χθ + χ

I1
0 χ
I2
1/2
χ
[1]
3/2
+ χI1

1/2
χI20 χ

[2]
3/2

]
+ χ

(4)
2

[(
χI10 χ

I2
0 + χ

I1
1/2
χI2
1/2

)
χ2/3 +

(
χI10 χ

I2
1/2
+ χI1

1/2
χI20

)
χ1/6

]
+ χ

(4)
4

[
χI10 χ

I2
0 χθ + χ

I1
1/2
χI2
1/2
χI + χ

I1
0 χ
I2
1/2
χ
[2]
3/2
+ χI1

1/2
χI20 χ

[1]
3/2

]
;

χ
(1)
1 χ

(1)
0 χ

(1)
0 χ

(1)
0 = χ

(1)
0 χ

(1)
1 χ

(1)
0 χ

(1)
0 =

χ
(4)
1

[
χI1
1/16

χI20 χ
[1]
1/16
+ χI1

1/16
χI2
1/2
χ
[1]
9/16

]
+ χ

(4)
3

[
χI1
1/16

χI20 χ
[1]
9/16
+ χI1

1/16
χI2
1/2
χ
[1]
1/16

]
;

χ
(1)
0 χ

(1)
0 χ

(1)
1 χ

(1)
0 = χ

(1)
0 χ

(1)
0 χ

(1)
0 χ

(1)
1 =

χ
(4)
1

[
χI10 χ

I2
1/16

χ
[2]
1/16
+ χI1

1/2
χI2
1/16

χ
[2]
9/16

]
+ χ

(4)
3

[
χI10 χ

I2
1/16

χ
[2]
9/16
+ χI1

1/2
χI2
1/16

χ
[2]
1/16

]
;

χ
(1)
1 χ

(1)
1 χ

(1)
0 χ

(1)
0 =

χ
(4)
0

[
χI1
1/2
χI20 χI + χ

I1
0 χ
I2
1/2
χθ + χ

I1
0 χ
I2
0 χ
[2]
3/2
+ χI1

1/2
χI2
1/2
χ
[1]
3/2

]
+ χ

(4)
2

[(
χI1
1/2
χI20 + χ

I1
0 χ
I2
1/2

)
χ2/3 +

(
χI1
1/2
χI2
1/2
+ χI10 χ

I2
0

)
χ1/6

]
+ χ

(4)
4

[
χI1
1/2
χI20 χθ + χ

I1
0 χ
I2
1/2
χI + χ

I1
0 χ
I2
0 χ
[1]
3/2
+ χI1

1/2
χI2
1/2
χ
[2]
3/2

]
;

χ
(1)
0 χ

(1)
0 χ

(1)
1 χ

(1)
1 =

χ
(4)
0

[
χI10 χ

I2
1/2
χI + χ

I1
1/2
χI20 χθ + χ

I1
0 χ
I2
0 χ
[1]
3/2
+ χI1

1/2
χI2
1/2
χ
[2]
3/2

]
+ χ

(4)
2

[(
χI1
1/2
χI20 + χ

I1
0 χ
I2
1/2

)
χ2/3 +

(
χI1
1/2
χI2
1/2
+ χI10 χ

I2
0

)
χ1/6

]
+ χ

(4)
4

[
χI10 χ

I2
1/2
χθ + χ

I1
1/2
χI20 χI + χ

I1
0 χ
I2
0 χ
[2]
3/2
+ χI1

1/2
χI2
1/2
χ
[1]
3/2

]
;
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χ
(1)
1 χ

(1)
0 χ

(1)
1 χ

(1)
0 = χ

(1)
0 χ

(1)
1 χ

(1)
0 χ

(1)
1 =

χ
(1)
1 χ

(1)
0 χ

(1)
0 χ

(1)
1 = χ

(1)
0 χ

(1)
1 χ

(1)
1 χ

(1)
0 =

χ
(4)
0 χI1

1/16
χI2
1/16

χ3/8

+ χ
(4)
2 χI1

1/16
χI2
1/16

(
χ1/24 + χ25/24

)
+ χ

(4)
4 χI1

1/16
χI2
1/16

χ3/8;

χ
(1)
1 χ

(1)
1 χ

(1)
1 χ

(1)
0 = χ

(1)
1 χ

(1)
1 χ

(1)
0 χ

(1)
1 =

χ
(4)
1

[
χI1
1/2
χI2
1/16

χ
[2]
1/16
+ χI10 χ

I2
1/16

χ
[2]
9/16

]
+ χ

(4)
3

[
χI1
1/2
χI2
1/16

χ
[2]
9/16
+ χI10 χ

I2
1/16

χ
[2]
1/16

]
;

χ
(1)
0 χ

(1)
1 χ

(1)
1 χ

(1)
1 = χ

(1)
1 χ

(1)
0 χ

(1)
1 χ

(1)
1 =

χ
(4)
1

[
χI1
1/16

χI2
1/2
χ
[1]
1/16
+ χI1

1/16
χI20 χ

[1]
9/16

]
+ χ

(4)
3

[
χI1
1/16

χI2
1/2
χ
[1]
9/16
+ χI1

1/16
χI20 χ

[1]
1/16

]
;

χ
(1)
1 χ

(1)
1 χ

(1)
1 χ

(1)
1 =

χ
(4)
0

[
χI1
1/2
χI2
1/2
χI + χ

I1
0 χ
I2
0 χθ + χ

I1
0 χ
I2
1/2
χ
[2]
3/2
+ χI1

1/2
χI20 χ

[1]
3/2

]
+ χ

(4)
2

[(
χI10 χ

I2
0 + χ

I1
1/2
χI2
1/2

)
χ2/3 +

(
χI10 χ

I2
1/2
+ χI1

1/2
χI20

)
χ1/6

]
+ χ

(4)
4

[
χI1
1/2
χI2
1/2
χθ + χ

I1
0 χ
I2
0 χI + χ

I1
0 χ
I2
1/2
χ
[1]
3/2
+ χI1

1/2
χI20 χ

[2]
3/2

]
.

We use the same notation as earlier, where I1 and I2 refer to the Ising model

and the remaining characters are those of the c = 1 CFT. This formula allows

to express the partition (A.2) in terms of the characters of the decomposed

theory.
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Modular S-Matrices

We write the modular S-matrices for the different models that appear in Chap-
ter 4. These matrices are useful to compute the fusion rules and physical

properties like the entropy or the scattering S-matrices.

B.1 Modular S-Matrix for the Ising Model

In the basis (I, ε, σ) of the Ising model, the modular S-matrix reads

S =
1

2

 1 1
√
2

1 1 −
√
2√

2 −
√
2 0

 .

B.2 Modular S-Matrix for the TIM

For the tricritical Ising model, in the basis (I, ε, t, ε
′′
, σ, σ

′
), the modular S-

matrix is given by

S =
√
1

5



s2 s1 s1 s2
√
2 s1

√
2 s2

s1 −s2 −s2 s1
√
2 s2 −

√
2 s1

s1 −s2 −s2 s1 −
√
2 s2

√
2 s1

s2 s1 s1 s2 −
√
2 s1 −

√
2 s2√

2 s1
√
2 s2 −

√
2 s2 −

√
2 s1 0 0√

2 s2 −
√
2 s1

√
2 s1 −

√
2 s2 0 0

 ,

where

s1 = sin

(
2π

5

)
, s2 = sin

(
4π

5

)
.
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B.3 Modular S-Matrix for the c = 1 CFT

Let us consider a c=1 Z2 orbifold Gaussian model with R =
√
2p′ and the

extended basis(
I, θ, φ

(i)
p′ , φλ, σ

(i ′), τ (i
′′)
)
versus

(
I, θ, φ

(j)
p′ , φµ, σ

(j ′), τ (j
′′)
)
.

In this basis, the modular S-matrix1 reads

1√
8p′



1 1 1 2
√
p′

√
p′

1 1 1 2 −
√
p′ −

√
p′

1 1 1 2(−1)µ (−1)i−j ′
√
p′ (−1)i−j ′′

√
p′

2 2 2(−1)λ 4 cosπ λµp′ 0 0√
p′ −

√
p′ (−1)i ′−j

√
p′ 0 δi ′j ′

√
2p′ −δi ′j ′′

√
2p′√

p′ −
√
p′ (−1)i ′′−j

√
p′ 0 −δi ′′j ′

√
2p′ δi ′′j ′′

√
2p′


.

1The expression of the modular S-matrix in Ref. [9], Eq. (2.84), contains a misprint. The
last element in the third row of the matrix has actually the opposite sign.
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