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Abstract

We investigate the ground-state properties of two strongly-correlated systems: the

two-dimensional t−J model that can be used to study the high-temperature super-

conducting phase in the doped antiferromagnet, and the frustrated Néel antiferro-

magnet described by the J1 − J2 Heisenberg model on the square lattice, which is

widely considered as the prototype model for spin frustration.

In this thesis, we apply to these two systems state-of-the-art quantum Monte

Carlo techniques, including the variational and the Green’s function Monte Carlo

with the fixed-node approximation. Few Lanczos steps are used to systematically

improve the accuracy of the trial wave functions. By introducing a suitable regu-

larization scheme for the variational calculations with few Lanczos steps, stable and

controllable simulations can be performed up to very large cluster sizes with very

good accuracy.

In the two-dimensional t−J model at J/t = 0.4, we show that the accuracy of the

Gutzwiller-projected variational state (containing dx2−y2 pairing) can be improved

much by few Lanczos steps; in addition, the fixed-node Monte Carlo with these sys-

tematically improvable trial wave functions gives results that are comparable with

the best accurate DMRG ones. Our main outcome is that the ground state is homo-

geneous and no evidence of stripes is detected around the doping δ = 1/8. Indeed,

our best approximation to the ground state does not show any tendency towards

charge inhomogeneity. Furthermore, our results show that a uniform state contain-

ing superconductivity and antiferromagnetism is stabilized at low hole doping, i.e.,

δ . 0.1.

In the J1 − J2 Heisenberg model on the square lattice, we use the projected

mean-field state that is built from Abrikosov fermions having a Z2 gauge structure
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and four Dirac points in the spinon spectrum. No spin or dimer order is found in the

strongly frustrated regime and our calculations imply that a spin liquid phase may

faithfully represent the exact ground state around J2/J1 = 0.5. The few Lanczos

step technique is used to systematically improve the accuracy of the variational

states both for the ground state and for few relevant low-energy excitations. This

procedure allows us to estimate, in a valuable and systemic way, the spin gaps

within thermodynamical limit and to show a solid evidence of an unconventional

gapless excitation spectrum in the strongly frustrated regime, i.e., J2/J1 ' 0.5. In

particular, we found gapless triplet excitations at momenta (π, 0) and (0, π), which

are compatible with the presence of four Dirac points at momenta (±π
2
,±π

2
) in the

spinon spectrum.
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Introduction

The study of strongly-correlated electron systems is one of the most exciting and

challenging areas in condensed-matter physics. Recently, several very interesting

new phases of matter have been theoretically proposed and experimentally observed

in several materials. Among them, the discovery of the cuprate high-temperature

superconductors by Bednorz and Müller in 1986 [1] has opened a new era of un-

conventional superconductors. These materials are made by Copper-Oxygen planes

intercalated by (insulating) block layers generically containing rare earths and Oxy-

gens. The ‘parent’ compounds of the cuprate superconductors are Mott insulators

with antiferromagnetic Néel ordering [2]. The phase diagram becomes very rich

when the electron density is changed in the Copper-Oxygen planes by substituting

the rare earths with lower valence elements or by adding Oxygen in the insulat-

ing block layers. Besides the superconducting phase, an interesting charge-density

(often called stripe) order has been observed in Copper-oxide materials by neutron

scattering studies [3, 4, 5]. Here, the doped charges are concentrated along domain

walls between antiferromagnetic insulating regions [6]: see Fig.1 for an example of a

stripe. The origin of these microscopic inhomogeneities may be due to the competi-

tion between the strong antiferromagnetic interaction and the long-range Coulomb

interaction between charges. The understanding of the origin and the mechanism,

which should be different from the standard electron-phonon interaction, of high-

temperature superconductors is one of the biggest challenges in the present theory

of condensed matter.

Another class of interesting compounds is given by pure Mott insulators, where

no magnetic order is detected down to very low temperatures (i.e., several order of

magnitude smaller than the super-exchange coupling). These materials are often

11



12 Introduction

Figure 1: An example of stripe phase in a two-dimensional lattice. The size of the

circles and arrows is proportional to the electron density and spin along z direction,

respectively. Anti-parallel spins across the hole-rich sites (empty circles), i.e., the π

shift.

characterized by the presence of competing magnetic interactions, which gives rise

to frustration. Systems that do not show any kind of long-range order are called

spin liquids. In recent years, there has been a huge experimental and theoretical

effort to understand their physical properties. The possibilities to sustain elemen-

tary excitations with fractional quantum numbers (like in the fractional quantum

Hall effect) and the existence of the so-called topological order are two prominent

examples of the exotic properties characterizing spin liquids.

Among possible spin-liquid materials, it is worth to mention the organic charge-

transfer salt κ− (BEDT − TTF )2Cu2(CN)3, which has a triangular lattice struc-

ture [7, 8], and the so-called Herbertsmithite, ZnCu3(OH)6Cl2, with a Kagomé

lattice structure [9]. The exotic excitations of these materials can be studied by

measuring physical quantities like for example magnetic susceptibility, specific heat,

Neutron scattering, nuclear-magnetic resonance, and muon-spin resonance. In the

organic salt κ− (BEDT − TTF )2Cu2(CN)3, the magnetic susceptibility goes to a

constant at low temperatures and the specific heat is linear in temperature, indi-

cating gapless spin excitations; moreover, the ratio of magnetic susceptibility to the

linear-temperature coefficient of the specific heat is close to the free-fermion one,

suggesting that the excitations are fermionic spinons [8, 10]. Also in the Kagomé
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material ZnCu3(OH)6Cl2, the magnetic excitations are found to be (almost) gapless

by magnetic susceptibility measurements [9, 10].

The electronic and chemical structure of these strongly-correlated materials is

very intricate. In order to capture the relevant physics, it is necessary to simplify

the problem as much as possible. In this regard, many effective low-energy models

have been introduced to describe these strongly-correlated systems and they have

attracted much attention also very recently. For instance, the Hubbard and t − J
models have been used to study the high-temperature superconducting phase in

doped antiferromagnets, while one of the simplest frustrated Hamiltonian, namely

the J1 − J2 Heisenberg model on the square lattice, is still widely considered as the

prototype model for spin frustration.

However, only one-dimensional models can be solved by analytic methods. For

example, Bethe solved the Heisenberg model [11] and, later, Lieb and Wu solved

the Hubbard model [12]. Instead, in two dimensions, there are no exact solu-

tions. Traditional mean-field techniques and dynamical mean-field theory [13] also

fail to give a satisfactory description of the phase diagram of the two-dimensional

strongly-correlated electron systems. Therefore, many kinds of advanced numeri-

cal approaches have been used to study correlated electrons in two dimensions. As

an example, the Lanczos method allows us to compute the exact properties of any

Hamiltonian. Unfortunately, due to the exponential increase of the Hilbert space

with the lattice size, this method is restricted to extremely small sizes.

An important step forward has been done by the density matrix renormaliza-

tion group (DMRG) [14], which has been very successful for solving several one-

dimensional models and recently has been aslo applied to two-dimensional systems.

For the two-dimensional t− J model, a stripe phase for J/t = 0.4 at doping δ = 1
8

was found [15, 16]; more recently, a gapped spin liquid has been suggested in the

strongly-frustrated regime of the J1−J2 Heisenberg model [17]. The main drawback

of DMRG is that cylindrical boundary conditions are usually considered on highly

anisotropic “ladder” geometries, composed by a relatively small number of “legs”.

As a result, an unbiased thermodynamic limit is difficult to reach, in comparison

to systems retaining a full rotational/translational symmetry. Therefore, we believe

that it is extremely important to compare DMRG results with other methods, in

which a square lattice with periodic boundary conditions can be used.
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The variational Monte Carlo method is one of the choices. Although several

trial wave functions may be considered and compared, the main limitation of this

technique is that the results crucially depend on the chosen wave function. In

order to improve the variational Monte Carlo, it is possible to apply the Green’s

function Monte Carlo method [18]. By means of this method, starting from the

variational wave function, the exact ground state can be filtered out. As other

quantum Monte Carlo methods for fermionic systems, the well-known sign problem

affects this technique. Due to the antisymmetry of the many-body wave function

of ferminons, the cancellation between positive and negative weights during the

simulation implies an exceedingly large statistical error for the Green’s function

Monte Carlo. In order to overcome this difficulty, some approximate method has

been introduced, for example the fixed-node approximation [19].

In Ref. [20], Spanu and coworkers used the fixed-node Monte Carlo to study

the t− J model for J/t ' 0.4 and obtained a coexistence of superconductivity and

antiferromagnetism in the small doping region. These results are in sharp contrast

with the DMRG conclusions and, therefore, more accurate methods are required

to clarify this issue. Based on a given trial wave function, a number p of Lanczos

steps can be applied to approach the ground state by systematically improving

the standard quantum Monte Carlo techniques. Within this approach, both the

energy and variance can be computed. Since the ground state has the minimum

energy and a zero variance, it is possible to estimate the exact ground-state energy

by extrapolation to the zero variance limit. In this thesis we show that, if the

variational wave function is a good approximation of the exact ground state, few

Lanczos steps are enough to obtain a good estimate of the ground-state energy and

its low-energy excitation spectrum.

We present the results for the two-dimensional t − J model, showing that the

accuracy of the Gutzwiller-projected variational state (containing dx2−y2 pairing)

can be improved much by few Lanczos steps; in addition, the fixed-node Monte

Carlo with these systematically improvable trial wave functions gives results that

are comparable with the best accurate DMRG ones. Our results do not show any

evidence of static stripes at J/t = 0.4 in the t− J model.

By using the same techniques, we also studied the J1 − J2 Heisenberg model on

the square lattice: here, the projected wave function is written in terms of Abrikosov
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fermions and has non-trivial pairing terms. A spin-liquid phase around J2/J1 = 0.5

is found, which is in agreement with the conclusion by DMRG. However, through

accurate calculations up to large clusters for both the ground state and the low-

energy excitations, we show a solid evidence of an unconventional gapless excitation

spectrum in the strongly frustrated regime, i.e., J2/J1 ' 0.5. This outcome disagrees

with the claim of a spin liquid with a finite spin gap ∼ 0.2J1, proposed by Jiang et

al. with state-of-the-art DMRG calculations [17].
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Chapter 1

Strongly correlated electron

systems

The properties of non-interacting electrons in a periodic potential generated by the

ions are well understood by the pioneering work of Bloch, just few years after the

birth of quantum mechanics [21]. Bloch’s theorem states that the eigenfunctions

for such a system can be written as the product of a plane wave envelope function

and a periodic function un,k(r) that has the same periodicity as the potential; the

corresponding energy eigenvalues are εn(k) = εn(k + K), which are periodic with

periodicity K of a reciprocal lattice vector. The energies associated with the index

n vary continuously with wave vector k and form an energy band identified by the

index n. When a weak electron-electron interaction is added as a perturbation, the

only effect is to slightly change the band structure and, therefore, the independent-

electron picture is still valid and able to describe all physical properties. Later,

Landau developed a framework to describe the interacting gas of electrons, in which

the excitations close to the Fermi surface can be described as weakly-interacting

quasiparticles [22]. The Fermi liquid is qualitatively analogous to the non-interacting

Fermi gas, in the following sense: the system’s dynamics and thermodynamics at

low temperatures may be described by substituting the interacting fermions with

non-interacting quasiparticles, which carry the same spin, charge and momentum as

the original particles. The Bloch’s theorem and the Landau theory of Fermi liquids

are two pillars of the solid state physics and give the framework to understand most

17
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of the known materials.

Within the independent-electron picture, it is possible to distinguish a metal

from an insulator in a straightforward way, i.e., by looking at the filling of the

electronic bands. An electronic system can be insulating only because there is a

finite gap between the highest occupied level and the lowest unoccupied one: this is

the so-called band insulator. In this sense, due to the spin degeneracy (in absence of

the spin-orbit coupling) an odd number of electrons per unit cell naturally implies

a partially filled conduction band and, therefore, a metallic behavior. However,

when the repulsive interaction between electrons is sufficiently strong in comparison

with their kinetic energy, the independent-electron picture may fail and the system

can turn insulating, even with an odd number of electrons per unit cell. In 1937

Mott and Peierls introduced the so-called Mott insulator, whose origin comes from

a strong electron-electron repulsion and, therefore, is completely different from a

band insulator [23]. The cartoon picture of a Mott insulator is given by a regular

lattice of Hydrogen atoms, whose distances may be varied: when the ions are close

to each other, the electrons delocalize around the lattice, thus forming a half-filled

band with a metallic character; on the contrary, when the ions are sufficiently far

apart, it is more favorable to localize each electron around an ion, in order not to

pay a considerable Coulomb repulsion. A metal to (Mott) insulator transition is

expected to appear for a given distance between ions.

Strictly speaking, a Mott insulator is a state that does not break any of the

symmetries of the original problem (e.g., translations, rotations, spin SU(2), time

reversal, etc.) and cannot be adiabatically turned into a band insulator. In a looser

definition, systems with magnetic order can be also included, whenever the mag-

netic order can be considered as a by-product, rather than the driving force to have

an insulating behavior. After many years of intense investigations, the physics of

quantum magnets still attracts a lot of interest. In particular, new problems arose

from the discovery of high-temperature superconductors, whose parent compounds

are Mott insulators with antiferromagnetic order (like for example La2CuO4) [2].

Besides the understanding of the origin of superconductivity from doping Mott in-

sulators, one important issue is related to the possibility of destroying magnetic

order by engineering competing super-exchange couplings. Whenever no magnetic

order (and possibly other kinds of symmetry breaking) is developed down to zero
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Figure 1.1: Three spins on a triangle with antiferromagnetic interactions.

temperature, we talk about spin liquids [10, 24].

One of the main path to obtain magnetically disordered ground states is to con-

sider frustration in low-dimensional lattices. Frustration stands for the existence

of competing interactions: individually, each term would give rise to a well defined

minimal-energy configuration that however is not compatible with the other ones.

The paradigmatic example is given by three spins on a triangle with antiferromag-

netic interactions (see Fig. 1.1). The low spatial dimensionality is important to

enhance quantum fluctuations. In this regard, the most interesting (and physically

relevant) systems are two dimensional, since in one dimension, the Mermin-Wagner

theorem forbids any kind of magnetic order (except for ferromagnetism) at zero

temperature [25]. In the last few years, a huge effort has been spent to understand

the low-temperature properties of various frustrated materials, like for example the

Heisenberg model on triangular and Kagomé lattices in two dimensions, or even

more complicated geometries in three dimensions.

Unfortunately, all traditional methods, such as mean-field theory or perturbation

theory, fail to give a satisfactory description of the physical properties of strongly-

correlated systems. Therefore, many kinds of numerical techniques have been in-

troduced to study strongly correlated-electron problems. Density-matrix renormal-

ization group (DMRG) or dynamical mean-field theory (DMFT) are two prominent

examples that have been devised to study and understand particular aspects of

correlated systems. However, both DMRG and DMFT fail to describe pure two-

dimensional systems: while DMRG works preferably in one dimension, DMFT is
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essentially an infinite-dimensional approximation. In addition, a considerable im-

provement has been done in quantum Monte Carlo methods, including variational

and projection techniques, which have been widely used to clarify different issues.

The great advantage of these stochastic methods is that two- or three-dimensional

systems can be directly considered, thus having a direct comparison with real ma-

terials.

1.1 Microscopic models for correlated electrons

The prototypical Hamiltonian that contains the basic ingredients of strongly-correlated

electrons on the lattice is the one-band Hubbard model [26]:

HHub = −t
∑
〈ij〉σ

c†iσcjσ + h.c.+ U
∑
i

ni↑ni↓, (1.1)

where 〈. . . 〉 indicates nearest-neighbor sites of the lattice. In the following we will

consider the two-dimensional square lattice, but other geometries can be also con-

ceived. In addition, longer-range hopping terms may be also included.

The Hubbard model contains important simplifications of the original problem

of electrons in solids. First of all, only one kind of orbital on each ion (with s-wave

symmetry, for simplicity) is taken. The motivation is that, in several cases, there

is only one band in the vicinity of the Fermi level, which is relevant to determine

the low-temperature properties of the material. ciσ and c†iσ are the creation and

annihilation operators for the electrons on the site i with spin σ, and niσ = c†iσciσ;

ni =
∑

σ niσ being the density operator on the site i. t is the hopping amplitude be-

tween two nearest-neighbor sites. The second important simplification is to reduce

the long-range Coulomb interactions into an on-site electron-electron repulsion. The

justification for this approximation is that, in many materials, the Coulomb poten-

tial is heavily screened and the effective interaction is therefore short range. The

parameter U parametrizes the on-site Coulomb repulsion.

The ground-state properties only depend upon the ratio U/t and the total elec-

tron density n =
∑

iσ〈niσ〉. When U = 0, the model just describes free electrons,

while for t = 0 the electrons are localized to minimize the total energy. The half-

filled case with n = 1 is particularly important, since a metal to (Mott) insulator



1.1 Microscopic models for correlated electrons 21

transition occurs when increasing the ratio U/t (its actual value depending upon

the lattice geometry). Indeed, in the atomic limit t = 0, every site is occupied by

a single electron, and the system has a large energy gap ∆E = U ; by including a

small hopping t� U , this gap is slightly renormalized, but remains finite, implying

a Mott insulator. Only when t is considerably large, usually of the order of U , the

gap eventually closes and a metallic behavior is reached.

At half-filling for U � t, well inside the Mott insulator, one can use the per-

turbation theory to obtain an effective low-energy model. When t = 0 the ground

state has a huge degeneracy, due to the freedom in having up or down spins on

each site. When an infinitesimal hopping is turned on, this degeneracy is lifted

by the (second-order) virtual hopping between nearest-neighbor sites: antiparallel

spins are favored with respect to parallel ones (see Fig.1.2). Therefore, an antifer-

romagnetic super-exchange term J = 4t2/U is generated, leading to the Heisenberg

Hamiltonian:

HHeis = J
∑
〈ij〉

Si · Sj, (1.2)

where Si = (Sxi , S
y
i , S

z
i ) are the quantum spin operators on the site i. Away from

half-filling n 6= 1, the effective Hamiltonian also contains a hopping term, which

is constrained in the subspace with ni ≤ 1, i.e., in the subspace without double

occupancies:

HtJ = −t
∑
〈i,j〉σ

PGc
†
i,σcjσPG + h.c.+ J

∑
〈i,j〉

(
Si · Sj −

1

4
ninj

)
, (1.3)

here, a nearest-neighbor density-density interaction also appears (at half-filling this

term just gives rise to a trivial energy shift). PG is the projector that constrains the

Hilbert space not to contain double occupied sites.

In one dimension, both analytical (e.g., Bethe ansatz [11] or bosonization [27]

techniques) and DMRG [14] approaches allowed for a full understanding of several

low-energy properties of correlated systems; in particular, DMRG enables highly

accurate calculations for systems sufficiently large to approach the thermodynamical

limit. In higher dimensions, the situation is much more complex and only very

limited regions of the phase diagram are well understood.
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Figure 1.2: Néel order on the square lattice. The dashed lines indicate the second-

order virtual hopping.

1.2 The quantum antiferromagnet

On the square lattice, the Heisenberg model with nearest-neighbor interactions dis-

plays an antiferromagnetic Néel order at zero temperature: spins have a collinear

order with a staggered pattern, defined by the pitch vector Q = (π, π). In this

regard, quantum Monte Carlo has been extremely powerful and important to finally

demonstrate this fact for the spin-half model [28, 29, 30]. After performing the

finite-size scaling, the most accurate calculations of the ground-state energy and

staggered magnetization gave ε0 = −0.669437(5) and M = 0.3070(3), respectively.

The Néel antiferromagnet breaks the SU(2) spin-rotational symmetry, having

gapless excitations above the ground state (i.e., Goldstone modes). The qualitative

description of the Néel phase can be captured by using the Holstein-Primakoff ap-

proach to describe the spin operators in the limit of large spin, i.e., S � 1 [31]. In

this spin-wave theory, one starts by assuming the Néel order and then, by intro-

ducing the Gaussian fluctuations, the value of classical magnetization is reduced.

Excitations over the ground state are magnons that carry S = 1.

Before knowing the numerical solution of the S = 1/2 Heisenberg model on

the square lattice, Anderson suggested that its ground state could be magnetically

disordered, especially in presence of frustration (the original Anderson’s suggestion

referred to the triangular lattice) [32]. In particular, he prompted that a good

variational ansatz for the Heisenberg model could be represented by the so-called

resonating-valence bond (RVB) state. The RVB state is linear superpositions of
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(b)(a)

Figure 1.3: (a) and (b) represent two particular valence bond states. The red lines

represent the singlet bonds between two spins.

valence-bond states in which each spin of the lattice is coupled with another one to

form a singlet:

|ΨRV B〉 =
∑
i

ai|V B〉i, (1.4)

where |V B〉i are valence-bond states. The RVB state is the generalization on a

lattice of the Kekulé’s suggestion of the π-orbitals of the Benzene molecule. In Fig.

1.3, we show two particular valence-bond states on the square lattice. Depending

on the valence-bond states that are included in the sum and the actual weights ai,

RVB states with different properties can be obtained. For example, if only nearest-

neighbor singlets are allowed in each |V B〉i and all ai are equal, we have the so-

called short-range RVB state. Here, the spin-spin correlations decay exponentially

in space, implying a finite gap in the low-energy excitations. This is the prototype for

a gapped spin liquid. If the presence of long-range singlets are allowed in each |V B〉i,
we have a long-range RVB state. Here, the spin-spin correlations may decay with

a power-law behavior, implying gapless spin excitations. These states generically

describe magnetically disordered states (even though Liang et al. [33] showed that
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(b)(a)

Figure 1.4: Two holes in an antiferromagnet. In the J � t limit, the energy loss

with respect to the ordered state is given by number of broken bonds (red lines).

(a) two holes are widely separated and break 8 bonds, (b) two holes form a pair and

break 7 bonds.

for sufficiently long-range singlets a magnetic state can be obtained). In this sense,

RVB wave functions are used to describe spin-liquid phases; however, they can also

capture valence-bond solids, in which singlets are distributed according to a well-

defined pattern, e.g., they are stacked along the rows or columns (see Fig.1.3(b)).

Here, although the spin-spin correlations are exponentially decaying, singlet-singlet

correlations remain finite at large distances, implying a valence-bond order.

Although the Heisenberg model on the square and triangular lattices is now

known to have an antiferromagnetic order at zero temperature, the Anderson’s sug-

gestion still remains very appealing when additional terms are added in the model,

in order to frustrate the magnetic order. In practice, two ways can be considered to

melt antiferromagnetism. The first one, closely related to high-temperature super-

conductors, is to insert mobile holes into the Heisenberg model and consider the t−J
model of Eq.(1.3). In this way, the “preformed” singlets should be poised to become

Cooper pairs and lead to superconductivity [2]. The second way is to remain at half

filling adding further super-exchange couplings at longer distances. In this way, for

sufficiently strong frustration, the magnetic order is definitively suppressed and a
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non-magnetic state is stabilized. Nowadays, there are several compounds that are

known to possess frustrating interactions, either because of their frustrated lattices

(e.g., triangular, Kagomé, etc) or because of the presence of competing antiferro-

magnetic couplings [34].

In the following two sections we will describe these two cases in detail.

1.3 Doping the Mott insulator

The problem of doped Mott insulators can be studied by considering the t−J Hamil-

tonian of Eq.(1.3), where the kinetic term acts in the subspace without doubly

occupied sites. Similarly, the Hubbard model of Eq.(1.1) can be also considered;

however, in this case, the (large) energy scale U overwhelms the (tiny) antiferro-

magnetic scale J = 4t2/U , implying much harder numerical simulations to reach

the correct low-temperature physics.

In general, the kinetic energy tends to delocalize the holes (or the electrons), thus

favoring a homogeneous state; on the contrary, the interaction energy would tend to

localize particles, implying some inhomogeneous phase in which holes are segregated

in a given region of the lattice. The competition between these two terms of the

Hamiltonian may give rise to strong charge and spin fluctuations, and eventually to

phase separation, charge-density wave (CDW), or spin-density wave (SDW).

In order to understand the charge inhomogeneities in the doped Mott insulator,

we take the t−J model and first consider the case of a small hopping compared

to the super-exchange coupling, namely J � t. In this limit, we can neglect the

kinetic energy of the holes. Let us denote the energy of the antiferromagnetic state

without holes by E0 and then insert two holes. If these holes are far apart, four

antiferromagnetic bonds are broken for each one; this implies that the energy is

E = E0 + 8BJ , BJ being the antiferromagnetic energy per bond (see Fig.1.4(a)).

By contrast, whenever the holes are close together (to form a pair), the energy is E =

E0+7BJ , since one bond is in common (see Fig.1.4(b)). Therefore, it is energetically

favorable to cluster together two holes. The argument can be generalized for a finite

number of holes. This simple variational calculation suggests that, at least for very

large values of J/t, the state where the holes are segregated, leaving the rest of the



26 Strongly correlated electron systems

(b)(a)

e(
)

e(
)

Figure 1.5: Energy per hole e(δ) as function of doping δ for a stable (a) and unstable

(b) system. The dashed line is the Maxwell construction.

system undoped, is favored over the uniform one.

At finite t the loss in antiferromagnetic energy competes with the gain in kinetic

energy, and it is not at all obvious if the phase-separated state is still favorite over

the homogeneous one. In order to study the presence of phase separation in t−J
and Hubbard models, Emery et al. [35] suggested to compute the “energy per hole”:

e(δ) =
E(δ)− E(0)

δ
, (1.5)

here, E(δ) is the energy per site at hole doping δ = Nhole/Nsite and E(0) is its

value at half filling. For a stable system, e(δ) must be a monotonically increasing

function of δ, since in this case the energy is a convex function of the doping and

e(δ) represents the chord joining half filling and the doping δ. On the other hand,

the instability towards phase separation is marked by a minimum at a given δc on

finite clusters, and a flat behavior up to δc in the thermodynamic limit where the

Maxwell construction is implied , see Fig.1.5. Although the energy per hole e(δ)

contains the same information as the energy per site E(δ), the former one gives a

much better detector for phase separation than the latter one.
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In real materials, a true phase separation is very rare, since electrons are charged

and a macroscopic segregation would imply an infinite Coulomb energy; in this re-

gard, the phase separation observed in La2CuO4+δ is possible because of the pres-

ence of mobile Oxygens in the reservoir layers [36, 37, 38, 39]. Instead of a q = 0

instability, some microscopic segregation with q 6= 0 is possible even in presence

of long-range Coulomb interactions [6]. In particular, Emery and Kivelson have

suggested that CDW naturally emerges when the Coulomb repulsion is considered

on top of a phase-separated system [6]; it has been also suggested that the strong

scattering between particles in this regime may also lead to an attraction in the

particle-particle channel, thus leading to superconductivity [40].

From the experimental point of view, the so-called striped phase, in which both

charge and spin modulations are present, has been observed in a few superconducting

materials. The first indication of spin-density modulations has been provided by

neutron-scattering studies of La2−xSrxCuO4 [41]. Then, Tranquada, et al. have

shown some evidence that also in the copper-oxide material La1.48Nd0.4Sr0.12CuO4

a phase with spin and possibly charge orders is present [3, 4, 5]. One fingerprint of

stripes is the existence of a π-shift, namely by antiparallel spins across the hole-rich

domain wall, see Fig. 1 in Introduction.

Motivated by these experimental results, there have been several attempts to

detect stripes in simple microscopic Hamiltonians, such as the Hubbard or the t−J
models. In particular, by using DMRG [15], and more recently infinite projected

entangled-pair states (iPEPS) [16], it has been shown that the ground state of the

t−J model may possess stripe order in a rather wide region of hole doping around

δ = 1/8. The great success of these methods is that they are able to obtain stripes

that are closely related to the ones observed in experiments. However, we would

like to emphasize that DMRG and iPEPS are approximate techniques, especially

in two spatial dimensions, and their results may not represent the exact ground

state. Nevertheless, it must be said that charge fluctuations are very strong in a

wide range of the phase diagram. Therefore, small perturbations may drive the

system into CDW or striped phases: in this regard, we mention that by considering

anisotropies tx 6= ty and Jx 6= Jy, some evidence of stripes has been found with

π-phase shift, which gives rise to incommensurate peaks in the spin structure factor

[42].
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J1 J2

J1

Figure 1.6: Nearest- (J1) and next-nearest-neighbor (J2) spin-spin super-exchanges

in the two-dimensional square lattice. The second-neighbor interaction frustrates

the Néel order.

Although many kinds of models and different methods have been used to study

the microscopic mechanics of the phase separation and stripes in the doped quantum

antiferromagnet, the actual situation is still not clear and more investigations are

definitively needed.

1.4 Adding frustrating super-exchange couplings

to the Néel antiferromagnet

The simplest way to add frustration to the simple Heisenberg model is to consider a

next-nearest-neighbor super-exchange J2, so to define the so-called J1−J2 Heisenberg

model:

HJ1J2 = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj, (1.6)

where 〈. . . 〉 and 〈〈. . . 〉〉 indicate nearest-neighbor and next-nearest-neighbor sites

on the square lattice, see Fig. 1.6. In the unfrustrated case with J2 = 0, it is

well established that the ground state has Néel long-range order, with a pitch vec-
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Figure 1.7: The schematic phase diagram of the J1 − J2 Heisenberg model on the

square lattice at zero temperature. Magnetic phases settle down for small J2/J1 and

large J2/J1 values. In between a quantum spin liquid is expected to be stabilized.

tor Q = (π, π). For large values of J2, the ground state shows again a collinear

magnetic order with pitch vector Q = (π, 0) or (0, π) (this collinear order implies

that rotations are broken, besides the translations along one of the two main di-

rections of the lattice). The intermediate regime, around the strongest frustration

point J2/J1 = 0.5, is the most debated one, since the combined effect of frustration

and quantum fluctuations destroys antiferromagnetism and leads to a non-magnetic

ground state, see Fig. 1.7. However, the nature of this quantum phase is still con-

troversial. Since the pioneering works [43, 44, 45, 46], it was clear that the problem

was terribly complicated: many states can be constructed with very similar energies

but very different physical properties, e.g., having dimer or plaquette valence-bond

order, or being totally disordered with short- or long-range resonating-valence bond

fluctuations. Recently, DMRG calculations suggested that a gapped spin liquid

without any dimer order is stabilized for 0.4 . J2/J1 . 0.6 [17].

Unfortunately, at present, the only known materials whose low-temperature

physics may be described by the J1−J2 model have either small or large values
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of J2/J1 [47, 48], falling into magnetic regions. Examples of spin liquids may be

found in different two-dimensional materials, having triangular [7, 8] and Kagomé

[9] structures.

In order to characterize and describe spin-liquid phases, it is necessary to develop

a suitable approach that goes beyond simple mean-field approximations of the orig-

inal spin Hamiltonian. For this task, different techniques have been devised; here,

we will consider a particular one, which is based upon the Abrikosov-fermion rep-

resentation of the spin operators [49] and is suitable to be implemented in efficient

variational Monte Carlo approaches.

1.4.1 Fermionic mean-field approach to spin models and the

projective symmetry group

Let us start from a generic model of interacting spin on a lattice:

H =
∑
i,j

JijSi · Sj, (1.7)

where the super-exchange coupling Jij depends on the distance between site i and

j. A simple mean-field approximation for the Hamiltonian (1.7) would lead to

H =
∑
i,j

Jij [〈Si〉 · Sj + 〈Sj〉 · Si − 〈Sj〉 · 〈Si〉] , (1.8)

clearly, this approximation is not able to capture spin liquids, for which 〈Si〉 = 0,

since it gives the trivial mean-field model H = 0. Therefore, an alternative approach

must be decided. The general idea is to re-write the spin operator in terms of more

elementary degrees of freedom, which are often called partons. One possibility is to

use the so-called Abrikosov-fermion representation of the spin operator [49]:

Sµi =
1

2
c†iασ

µ
αβciβ, (1.9)

where σµαβ are the Pauli matrices, and c†iα (ciα) creates (destroys) an electron with

spin 1/2. It can be easily verified that this is a faithful representation of the spin

operator, i.e., it reproduces the correct commutation relations of the spin operators.
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In terms of these fermionic operators, the Heisenberg model (1.7) can be re-written

as

H =
∑
i,j

Jij[
1

4
(ni↑ − ni↓)(nj↑ − nj↓) +

1

2
(c†i↑ci↓c

†
j↓cj↑ + c†j↑cj↓c

†
i↓ci↑)]. (1.10)

One drawback of considering these new fermionic particles is that their Hilbert space

is larger than the original one: for spins, each site has only two states (up or down

spin), while for fermions, each site has four possible states, empty, singly occupied

(with up or down spin), or doubly occupied. Therefore, in order to describe the spin

model, a constraint on each site must be considered:∑
σ

c†iσciσ = 1, (1.11)

which implies also that

ciσci,−σ = 0. (1.12)

Now, a mean-field decoupling can be performed within the fermionic Hamiltonian

(1.10):

HMF =
∑
i,j

−3

8
Jij[χji

∑
σ

c†iσcjσ + ηij(c
†
i↑c
†
j↓ + c†j↑c

†
i↓) +H.c.− |χij|2 − |ηij|2]

+
∑
i

{a3
0(
∑
σ

c†iσciσ − 1) + [(a1
0 + ia2

0)
∑
σ

ciσci,−σ +H.c.]}, (1.13)

where the local constraints (1.11) and (1.12) have been replaced by global ones

(i.e., enforcing the single occupancy only on average) and have been introduced by

Lagrange multipliers:

〈
∑

σ c
†
iσciσ〉 = 1, (1.14)

〈ciσci,−σ〉 = 0. (1.15)

The mean-field Hamiltonian contains few (complex) parameters, i.e., χij = 2〈c†i↑cj↑〉 =

2〈c†i↓cj↓〉 and ηij = −2〈ci↑cj↓〉 = 2〈ci↓cj↑〉; in addition, al0 (l = 1, 2, 3) are the La-

grange multipliers.
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At this level, the mean-field Hamiltonian is described by free fermions, the so-

called spinons, which carry half of the spin of a usual S = 1 magnon excitation.

Understanding whether these fractionalized excitations survive beyond the mean-

field approximation is crucial to determine the validity of this approach. Therefore,

it is important to incorporate some of the important fluctuations that have been

neglected. In the following, we will briefly sketch some arguments given by Wen [50]

to argue when a stable mean-field state could be expected.

The mean-field Hamiltonian can be re-written in a more compact form by using

the doublet:

ψi =

(
ci↑

c†i↓

)
(1.16)

and the 2× 2 matrix:

Uij =

(
χ†ij ηij

η†ij −χij

)
= U †ij, (1.17)

which can be written in terms of the identity and the three Pauli matrices:

Uij = χIijτ0 + χRijτ3 + ηIijτ2 + ηRijτ1, (1.18)

where τ0 stands for the identity and χRij (ηRij) and χIij (ηIij) indicate the real and

imaginary parts of the hopping (pairing) parameters.

Then, we have:

HMF =
∑
i,j

3

8
Jij[

1

2
Tr(U †ijUij)− (ψ†iUijψj +H.c.)] +

∑
i

al0ψ
†
i τlψi, (1.19)

in addition, the constraints can be written as:

〈ψ†i τlψi〉 = 0. (1.20)

It can be verified easily that, given the form of the Uij matrix (1.17), the mean-field

Hamiltonian preserves the spin-rotational symmetry.

The mean-field Hamiltonian (1.19) is invariant under a local SU(2) transforma-

tion W (i):

ψi → W (i)ψi, (1.21)

Uij → W (i)UijW
†(j). (1.22)
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This symmetry is usually referred as a gauge symmetry of the enlarged fermionic

system: the price to be paied when enlarging the Hilbert space, passing from spins

to electrons, is the presence of a redundancy, which is equivalent to a gauge symme-

try. We would like to emphasize that the structure of this emergent gauge structure

depends on how the spin operator has been re-written in terms of partons: con-

sidering bosons instead of fermions would imply a U(1) structure instead of SU(2).

Therefore, this is usually referred as a “high-energy” gauge symmetry [50].

The presence of this gauge symmetry has very important consequences. First of

all, let |Ψ(Uij)
MF 〉 be the ground state of HMF , for a fixed (mean-field) ansatz of Uij.

|Ψ(Uij)
MF 〉 is not a valid state for the original spin problem, since it does not have one

electron per site. Now, since the transformation (1.22) does not change the spin

operator, we have that |Ψ(Uij)
MF 〉 and |Ψ(WiUijW

†
j )

MF 〉 give rise to the same state after

projection on the physical Hilbert space:

Ψspin({σi}) = 〈0|
∏
i

ciσi |Ψ
(Uij)
MF 〉 = 〈0|

∏
i

ciσi |Ψ
(WiUijW

†
j )

MF 〉. (1.23)

Therefore, the two ansatze Uij and U ′ij = WiUijW
†
j label the same physical spin

state.

However, there may exist ansatze that will give rise to different physical states.

Indeed, the remarkable aspect is that different spin-liquid states can be obtained,

even though all of them have all the symmetries of the microscopic Hamiltonian. As

a result, they cannot be distinguished by local symmetries (or order parameters),

like in the ordinary Landau theory for classical phase transitions.

Wen [50] was able to make a classifications of different spin liquids that may

be obtained within this approach. This can be achieved by considering the so-

called projective symmetry group (PSG). A PSG is a property of an anstaz Uij

and is formed by all the transformations that keep the Ansatz unchanged. A PSG

transformation must be a combination of lattice T and gauge GT transformations.

The invariance of the ansatz under its PSG can be expressed as

T (Uij) = UT (i)T (j), (1.24)

GT (Uij) = GT (i)UijG
†
T (j), (1.25)

GT T (Uij) = Uij, (1.26)
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where GT (i) ∈ SU(2). GT T defines the PSG for the ansatz Uij. We would like to

emphasize that, given the presence of the local gauge symmetry, a totally symmetric

physical state may be obtained even by considering a less symmetric ansatz Uij.

Eq.(1.26) expresses the condition to obtain a symmetric state when considering the

gauge transformations (i.e., for having a symmetric state after projection).

The PSG for two gauge-equivalent ansatze Uij and W (Uij) = W (i)UijW
†(j) are

related: if GT T is the PSG for Uij, then WGT TW−1 is the PSG for W (Uij).

Every PSG contains a special subgroup, the invariant gauge group (IGG): all

the gauge transformations that leave the ansatz unchanged:

G = {Gi|GiUijG
†
j = Uij, Gi ∈ SU(2)}. (1.27)

Using PSG and IGG, we can classify spin liquid phases. The crucial point is that,

given the lattice symmetries T (i.e., translations, rotations, and reflections) and

possibly also time reversal, different sets of gauge transformations GT can be found

to fulfill Eq.(1.26). Each set of transformations defines a PSG and, therefore, a

spin liquid. Thus, even though all spin liquids have the same symmetries, they are

characterized by a different set of transformations that leave the ansatz unchanged.

Wen argued that the IGG defines the important gauge fluctuations around the

mean-field ansatz, i.e., the “low-energy” gauge fluctuations. The IGG can have

SU(2), U(1), or Z2 symmetry, defining SU(2), U(1), or Z2 spin liquids, respectively.

Similarly, a first distinction among spin liquids may be done by considering SU(2)

fluxes for loops with a given base site, in which the loop starts and ends. For example,

we can consider a loop C with a base point i such that i → i + x → i + x + y →
i + y → i; the SU(2) flux is given by PC = Ui,i+xUi+x,i+x+yUi+x+y,i+yUi+y,i. PC is a

2× 2 matrix that results from the multiplications of the Uij for different bonds. PC

can be written in terms of the identity and the three Pauli matrices. Under a gauge

transformation (1.22), the flux PC changes as:

PC → W (i)PCW
†(i), (1.28)

involving only the matrix W (i) at the site i.

Wen [50, 51] argued that if the SU(2) flux PC for all loops is trivial PC ∝ τ0, then

the SU(2) gauge structure is unbroken. This is the case when η = 0 or when χ = η
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in the mean-field ansatz. When the flux PC is non-trivial but all possible fluxes with

different loops commute with each other, then the SU(2) gauge structure is broken

down to U(1). Finally, when there are fluxes that do not commute, then the SU(2)

gauge structure is broken down to Z2.

A Z2 gauge interaction is particularly important, since it is gapped and thus

irrelevant at low energies: in this case one would expect that the mean-field picture

is not destroyed when putting back fluctuations. The expectation is that spinons

remain free fermions at low energies.

Let us finish this section by illustrating how it is possible to classify Z2 spin

liquids by using the PSG and the IGG in a particularly simple case, where only

translational symmetries are considered. The more difficult case, with translations,

reflections, and time-reversal symmetries can be found in Ref.[50].

In this case the IGG is Z2 and contains two elements:

G = Z2 = {G1, G2}. (1.29)

G1(i) = τ0 G2(i) = −τ0. (1.30)

First of all, we can use the local SU(2) gauge transformations to obtain SU(2)

fluxes that do not depend upon the site i. Then, the translational invariance of the

fluxes implies that:

GTx(i) = ±τ0 GTy(i) = ±τ0. (1.31)

Then, we note that the gauge transformations of the form W (i) = ±τ0 do not change

the translation-invariant property of the loop operators. Thus we can use such gauge

transformations to further simplify GTx and GTy . First, we can choose a gauge to

make

GTy(i) = τ0. (1.32)

Then, we note that a gauge transformation W (i) = W (ix) does not change the

condition GTy(i) = τ0 and can be used to fix:

GTx(ix, iy = 0) = τ0. (1.33)
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Finally, since the translations in x and y directions commute, we have

GTxTxGTyTy(GTxTx)
−1(GTyTy)

−1

= GTx(i)GTy(i− x)G−1
Tx

(i− y)G−1
Ty

(i) ∈ G. (1.34)

By using Eq.(1.32), we have:

GTx(i)G
−1
Tx

(i− y) = ±τ0. (1.35)

Therefore, two solutions are possible:

GTx(i) = τ0, (1.36)

GTx(i) = (−1)iyτ0, (1.37)

which are referred as Z2A and Z2B, respectively [50]. The two ansatze corresponding

to these solutions are given by

Ui,i+m = Um, (1.38)

and

Ui,i+m = (−1)myixUm, (1.39)

and correspond to a translational invariant ansatz (1.38) and an ansatz with a 2× 1

unit cell (1.39).

In Ref.[50], the full classification of Z2 spin liquids, by using translations, reflec-

tions, and time-reversal symmetries, has been worked out. It can be divided into

two classes:

GTx(i) = τ0, GTy(i) = τ0,

GPx(i) = ηixxpxη
iy
xpygPx , GPy(i) = ηixxpyη

iy
xpxgPy ,

GPxy(i) = gPxy , GT (i) = ηitgT , (1.40)

and

GTx(i) = (−1)iyτ0, GTy(i) = τ0,

GPx(i) = ηixxpxη
iy
xpygPx , GPy(i) = ηixxpyη

iy
xpxgPy ,

GPxy(i) = (−1)ixiygPxy , GT (i) = ηiTgT . (1.41)
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Here ηi can be 1 or −1. gP is the operator obtained by considering three parity

symmetries (i.e., Px: (ix, iy)→ (−ix, iy), Py: (ix, iy)→ (ix,−iy), and Pxy: (ix, iy)→
(−ix,−iy)). gT is obtained by considering time-reversal symmetry (i.e., T: Uij →
−Uij). They are listed from Eq.(1.42) to (1.58):

gPxy = τ0, gPx = τ0, gPy = τ0, gT = τ0, (1.42)

gPxy = τ0, gPx = iτ3, gPy = iτ3, gT = τ0, (1.43)

gPxy = iτ3, gPx = τ0, gPy = τ0, gT = τ0, (1.44)

gPxy = iτ3, gPx = iτ3, gPy = iτ3, gT = τ0, (1.45)

gPxy = iτ3, gPx = iτ1, gPy = iτ1, gT = τ0, (1.46)

gPxy = τ0, gPx = τ0, gPy = τ0, gT = iτ3, (1.47)

gPxy = τ0, gPx = iτ3, gPy = iτ3, gT = iτ3, (1.48)

gPxy = τ0, gPx = iτ1, gPy = iτ1, gT = iτ3, (1.49)

gPxy = iτ3, gPx = τ0, gPy = τ0, gT = iτ3, (1.50)

gPxy = iτ3, gPx = iτ3, gPy = iτ3, gT = iτ3, (1.51)

gPxy = iτ3, gPx = iτ1, gPy = iτ1, gT = iτ3, (1.52)

gPxy = iτ1, gPx = τ0, gPy = τ0, gT = iτ3, (1.53)

gPxy = iτ1, gPx = iτ3, gPy = iτ3, gT = iτ3, (1.54)

gPxy = iτ1, gPx = iτ1, gPy = iτ1, gT = iτ3, (1.55)

gPxy = iτ1, gPx = iτ2, gPy = iτ2, gT = iτ3, (1.56)

gPxy = i
τ1 + τ2√

2
, gPx = iτ1, gPy = iτ2, gT = τ0, (1.57)

gPxy = i
τ1 + τ2√

2
, gPx = iτ1, gPy = iτ2, gT = iτ3. (1.58)

The following scheme can be used to label different PSG’s:

Z2A(gPx)ηixxpx(gPy)ηixxpygPxy(gT )ηt , (1.59)

Z2B(gPx)ηixxpx(gPy)ηixxpygPxy(gT )ηt . (1.60)

The label Z2A . . . corresponds to the case of Eq.(1.40), and the label Z2B . . .

corresponds to the case of Eq.(1.41). An abbreviated notation can be obtained by
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replacing (τ0,+, τ1,+, τ2,+, τ3,+) by (0, 1, 2, 3) and (τ0,−, τ1,−, τ2,−, τ3,−) by (n, x, y, z).

As an example, the spin liquid Z2Azz13 is Z2Aτ3,−τ3,−τ1,+τ3,+.

Remarkably 272 different solutions for the PSG have been found. Although some

of them do not give rise to acceptable ansatze Uij, within this approach, there should

be at most 196 different spin liquids.



Chapter 2

Numerical Methods

The independent-electron approximation is known to dramatically fail in strongly-

correlated systems, which cannot be easily handled with analytical tools. Therefore

numerical methods are needed, and recently many kinds of techniques have been

introduced to study strongly correlated systems. In this chapter, we will briefly

describe the methods used in this thesis, including the exact diagonalization/Lanczos

method and the quantum Monte Carlo technique.

In the first section, we will discuss how to diagonalize exactly the Hamiltonian

matrix by using the Lanczos method. However, because of the memory limitation,

this method can be used only on small lattice sizes. In order to overcome this

problem, we have to consider statistical methods: starting from the second section,

we will introduce the quantum Monte Carlo methods.

The core of Monte Carlo approach is the Metropolis algorithm [52], which gen-

erates a random walk in the configuration space, this sequence of configurations is

called a Markov chain. The configurations are sampled during the random walk,

according to a given stationary probability distribution that obtained after a cer-

tain number of steps to reach equilibrium. Since the general principles of the Monte

Carlo methods can be found in many textbooks, we will focus on the implemen-

tation of Monte Carlo in the quantum problems. We will show that very efficient

algorithms allow us to describe very large systems with good accuracy, by means of

the variational Monte Carlo, the Green’s function Monte Carlo, and the stochastic

minimization. Also, we will describe how to apply few Lanczos steps to the given

39
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variational wave function, which can be therefore systematically improved with this

technique.

2.1 Lanczos

Generally the ground state |Φ0〉 of the Hamiltonian H can be obtained by the

power method from a trial wave function |ΨT 〉, which is nonorthogonal to |Φ0〉. In

the power method, we define the operator Λ − H, where Λ is a suitable constant,

allowing the convergence to the ground state of H. Indeed, after many iterations,

we have that:

(Λ−H)n|ΨT 〉 = (Λ− E0)n

[
α0|Φ0〉+

∑
i 6=0

(
Λ− Ei
Λ− E0

)n
αi|Φi〉

]
, (2.1)

where Ei and |Φi〉 are the eigenvalues and eigenvectors of H, and αi = 〈Φi|ΨT 〉. By

taking Λ such that |Λ−Ei||Λ−E0| < 1, when n goes to infinity, we obtain

|Φ0〉 ∼ lim
n→∞

(Λ−H)n|ΨT 〉, (2.2)

namely, the ground state is filtered by the iterative approach of (Λ−H).

Starting from the power method, where the ground state is approximated by a

single power, |Φ0〉 ∼ (Λ − H)n|ΨT 〉, we can define a much more efficient iterative

procedure, the Lanczos method, where the information contained in all the powers,

from 1 to n, is used,

|Φ0〉 ∼
n∑
i=1

αiH
i|ΨT 〉. (2.3)

In the Lanczos method, an orthogonal basis is constructed, in contrast to the power

method, in which the vectors are not orthogonal. The orthogonal vectors can be

defined by the following formula:

bn+1|Ψn+1〉 = H|Ψn〉 − an|Ψn〉 − bn|Ψn−1〉, (2.4)

for n = 1, 2, 3, ..., with |Ψ0〉 = 0, b1 = 0, and

an = 〈Ψn|H|Ψn〉, (2.5)

bn = 〈Ψn+1|H|Ψn〉. (2.6)
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The initial vector |Ψ1〉 = |ΨT 〉 can be randomly chosen, in order to have a non-zero

overlap with the true ground state 〈Ψ1|Φ0〉 6= 0. Based on these definitions, it is

easy to prove that |Ψn〉 is orthogonal with |Ψn−1〉 and |Ψn+1〉. Moreover by using

this basis, the Hamiltonian has a tridiagonal form

H =


a1 b2 0 0 ...

b2 a2 b3 0 ...

0 b3 a3 b4 ...

0 0 b4 a5 ...

... ... ... ... ...

 . (2.7)

Once in this form, the matrix can be easily diaganolized by using standard library

routines. The main advantage of the Lanczos method is that a small number of

iterations (typically about 100 ∼ 200, depending on the model) is sufficient to get a

very high accuracy for the exact ground state:

|Φ0〉 ≈
∼100∑
n=1

ci|Ψn〉. (2.8)

The main limitation of this technique is that the Hilbert space grows exponentially

with the number of particles and even small lattices may require a huge computer

memory. For example, for the t− J model, where each site can be either empty or

singly occupied, the Hilbert space can be as large as several millions of states for

about 2/4 holes on 26 sites. In order to alleviate this problem, we can make use of

lattice symmetries and work in distinct subspaces of the Hamiltonian.

2.2 Variational Monte Carlo

As mentioned in the previous section, due to the exponential growth of the Hilbert

space, exact calculations can be performed only on small clusters. On large lattice

sizes, one must devise alternative methods: the variational Monte Carlo approach

is one possible choice. The key point of the variational Monte Carlo approach is

the variational principle in quantum mechanics: the expectation value of a given

Hamiltonian H over any trial wave function |Ψv〉, Ev, is always higher than the



42 Numerical Methods

ground-state energy E0,

Ev =
〈Ψv|H|Ψv〉
〈Ψv|Ψv〉

≥ E0. (2.9)

This can be easily derived by inserting the complete set of eigenvectors |Φi〉 of the

Hamiltonian H with eigenvalues Ei,

Ev =
〈Ψv|H|Ψv〉
〈Ψv|Ψv〉

=
∑
i

Ei
|〈Φi|Ψv〉|2

〈Ψv|Ψv〉

= E0 +
∑
i 6=0

(Ei − E0)
|〈Φi|Ψv〉|2

〈Ψv|Ψv〉
, (2.10)

since Ei > E0, we have

Ev ≥ E0. (2.11)

In the variational Monte Carlo, a stochastic process is defined in a given basis |x〉,
in order to evaluate expectation values of various operators. Here, we introduce

the complete sets of basis |x〉, where the electrons occupy the sites on the lattice,

|x〉 = c†R1
c†R2

...|0〉. Then we insert this basis into the expectation value:

Ev =
〈Ψv|H|Ψv〉
〈Ψv|Ψv〉

=

∑
x,x′ Ψv(x

′)Hx′,xΨv(x)∑
x Ψ2

v(x)
=
∑
x

ExΨ
2
v(x)∑

x′ Ψ
2
v(x
′)
, (2.12)

with Ψv(x) = 〈x|Ψ〉 and Hx′,x = 〈x′|H|x〉. The local energy is

Ex =
〈Ψv|H|x〉
〈Ψv|x〉

=
∑
x′

Ψv(x
′)

Ψv(x)
Hx′,x. (2.13)

A stochastic algorithm can be defined to generate a sequence of configurations {|xn〉}
in the Hilbert space (the so-called Markov chain) by using P (x) as the probability

distribution

P (x) =
Ψ2
v(x)∑

x′ Ψ
2
v(x
′)
. (2.14)

In practice, the Metropolis algorithm [52] is the easiest way to generate configu-

rations according to the probability distribution P (x). Given one configuration x,
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the new configuration x′ is proposed and then accepted if the following condition is

satisfied:

ξ <
P (x′)

P (x)
=

[
Ψv(x

′)

Ψv(x)

]2

, (2.15)

where ξ is a random number uniformly distributed in the interval between 0 and

1. Otherwise the old configuration will be kept, x′ = x. Then we can calculate the

expectation value as the average of Ex over the sampled configurations:

Ev ≈
1

N

N∑
n=1

Exn , (2.16)

where N is the number of configurations generated in the Markov chain.

In the variational Monte Carlo, it is possible to calculate any kind of expectation

value over a given wave function in a similar way

〈O〉v =
∑
x

OxΨ
2
v(x)∑

x′ Ψ
2
v(x
′)
, (2.17)

where

Ox =
∑
x′

Ψv(x
′)

Ψv(x)
Ox′,x. (2.18)

Within the variational Monte Carlo approach, different trial wave functions can

be considered, in order to improve the energy expectation value. In the present

thesis, we have chosen projected mean-field states, defined as:

|Ψv〉 = PJ |MF 〉. (2.19)

|MF 〉 is defined by a mean field Hamiltonian. The projector PJ introduces correla-

tions into the wave function, and is diagonal in the basis {|x〉}

Ψv(x) = 〈x|Ψv〉 = PJ(x)〈x|MF 〉, (2.20)

where 〈x|MF 〉 is a determinant. During the Markov chain, the calculation of ra-

tios like 〈x
′|Ψv〉
〈x|Ψv〉 is needed, both for the Metropolis algorithm and for the local en-

ergy (2.13). A straightforward calculation of the determinant would require O(N3
site)

operations; however, whenever |x′〉 and |x〉 differ for only few electron positions, it is

possible to compute the ratio 〈x
′|MF 〉
〈x|MF 〉 by using a fast algorithm with O(1) operations.

In this way, the core of the variational calculations is O(N2
site), corresponding to the

update of Green’s function
〈x|c†R1

cR2
|MF 〉

〈x|MF 〉 [53].
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2.3 The Minimization Algorithm

Let us consider the variational wave function |Ψv(α)〉, which depends on a set of

variational parameters α = {αk} (k = 1, 2, ..., p); then, the energy Ev(α) calculated

over |Ψv(α)〉 also depends on α. We want to define an iterative scheme to optimize

the variational energy, within the ansatz described by |Ψv(α)〉. Here, we use the

stochastic reconfiguration (SR) method: starting from |Ψv(α)〉, we define

|ΨΛ−H〉 = (Λ−H)|Ψv(α)〉, (2.21)

where Λ is a suitable large constant such that |ΨΛ−H〉 has a lower energy than

|Ψv(α)〉. Since the state |ΨΛ−H〉 will not have the defined functional parameters by

α, we have to find the best possible approximation |Ψv(α
′)〉 for it. Therefore we

also considered the state obtained by slightly changing the parameters α′ = α+ δα.

Within the linear approximation:

|Ψv(α
′)〉 ≈ |Ψv(α)〉+

p∑
k=1

δαk
∂|Ψv(α)〉
∂αk

=

[
1 +

p∑
k=1

δαkOk

]
|Ψv(α)〉, (2.22)

where the operator Ok is defined through the matrix elements

〈x|Ok|x′〉 = Ok(x)δx,x′ ,

Ok(x) = ∂ ln〈x|Ψv(α)〉
∂αk

. (2.23)

Defining O0 = 1, we have

|Ψv(α
′)〉 =

p∑
k=0

δαkOk|Ψv(α)〉, (2.24)

where δα0 is related to an irrelevant normalization of the wave function.

Then we equal |ΨΛ−H〉 and |Ψv(α
′)〉 in a restricted subspace defined byOk|Ψv(α)〉,

for k = 0, ..., p:

〈Ψv(α)|Ok(Λ−H)|Ψv(α)〉 =

p∑
k′=0

δαk′〈Ψv(α)|OkOk′ |Ψv(α)〉, (2.25)

which can be written as

fk =

p∑
k′=0

δαk′Skk′ , (2.26)



2.3 The Minimization Algorithm 45

where

fk = 〈Ψv(α)|Ok(Λ−H)|Ψv(α)〉
〈Ψv(α)|Ψv(α)〉 , (2.27)

Skk′ =
〈Ψv(α)|OkOk′ |Ψv(α)〉
〈Ψv(α)|Ψv(α)〉 . (2.28)

This is a set of (p + 1) linear equations, where the unknown δαk can be easily

obtained by inverting the matrix Skk′ . Indeed, we can easily decouple the equation

for k = 0 from the other p equations. When k = 0, we have f0 = Λ− Ev(α), then

δα0 = Λ− Ev(α)−
p∑

k=1

δαkS0k. (2.29)

Combining Eq.(2.26) and Eq.(2.29), we obtain

fRedk =

p∑
k′=1

δαk′S
Red
kk′ , (2.30)

where

fRedk = 〈Ψv(α)|Ok|Ψv(α)〉
〈Ψv(α)|Ψv(α)〉

〈Ψv(α)|H|Ψv(α)〉
〈Ψv(α)|Ψv(α)〉 −

〈Ψv(α)|OkH|Ψv(α)〉
〈Ψv(α)|Ψv(α)〉 , (2.31)

SRedkk′ = Skk′ − Sk0Sk′0. (2.32)

Notice that

fRedk = −1

2

∂Ev(α)

∂αk
. (2.33)

In practice, we perform N Metropolis steps to calculate the observables of

Eq.(2.31) and (2.32), then solve the linear equations of Eq.(2.30) in order to get

the variations {δαk}, so to update the variational parameters {αk} into {α′k}. The

new wave function |Ψv(α
′)〉 is considered as the starting state, and we perform a

new set of iterations, until the convergence is reached.

At equilibrium, ∂Ev(α)
∂αk

= 0, implying that δαk = 0, corresponding to the varia-

tional minimum. Moreover, the definition in Eq.(2.31) with fRedk = 0 implies that

the variational wave function has the same property of the exact eigenstate,

〈Ok〉〈H〉 = 〈OkH〉. (2.34)
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In principle the SR approach is similar to the standard steepest descent (SD)

method; indeed, the SR iteration corresponds to the following parameter changes:

δαk → δαk + ∆t
∑
k′

(SRedk,k′ )
−1fRedk′ , (2.35)

while the SD method has (SRed)−1 = δk,k′ . The advantage of SR with respect

to SD comes from the fact that the energy landscape may strongly depend upon

various parameters (i.e., some parameters may affect the energy values more than

others), the presence of the covariance matrix SRedkk′ takes into account this fact,

giving different convergence rates to the variational parameters.

2.4 Few Lanczos Steps

For a given trial wave function |Ψv〉, we can systematically improve its accuracy by

applying p Lanczos steps:

|Ψβ1...βp〉 =

p∑
i=0

βiH
i|Ψv〉. (2.36)

where β0 = 1, and βi (i 6= 0) are the Lanczos variational parameters. p = 0 means

the pure variational calculation without any Lanczos step. Using this improved wave

function, we can calculate the expectation value of the Hamiltonian H,

E{βi} =
〈Ψ{βi}|H|Ψ{βi}〉
〈Ψ{βi}|Ψ{βi}〉

=

∑
i,j βiβj〈Ψv|H i+j+1|Ψv〉∑
i,j βiβj〈Ψv|H i+j|Ψv〉

. (2.37)

From this equation, in order to compute E{βi}, we need all moments 〈Ψv|Hn|Ψv〉 up

to the order n = 2p + 1. In principle, a straightforward calculation of all moments

can be exactly obtained. However, in practice, the time required for the evaluating

them grows exponentially with the dimension of the Hilbert space, which gives

serious computational limitations. On the other hand, all moments can be evaluated

stochastically, but this approach will induce large statistical errors, which strongly

affect the final expectation value of Hamiltonian. In this thesis we implement few

Lanczos steps exactly, i.e., p = 1 and 2.
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In the case of p = 1, it is possible to evaluate the expectation value of the

Hamiltonian over

|Ψβ〉 = (1 + βH)|Ψv〉, (2.38)

with a reasonable computer time. We have

E(1) =
∑
x

Eβ
xΨ2

β(x)∑
x Ψ2

β(x)
, (2.39)

where Ψβ(x) = 〈x|Ψβ〉, and the local energy Eβ
x is

Eβ
x =

∑
x′

Hx′,x
Ψβ(x′)

Ψβ(x)
. (2.40)

We can use the Monte Carlo method to sample the expectation value E(1) by gener-

ating the configurations according to the probability distribution
Ψ2
β(x)∑

x Ψ2
β(x)

. For the

Metropolis algorithm, we need the ratio

Ψβ(x′)

Ψβ(x)
=
〈x′|(1 + βH)|Ψv〉
〈x|(1 + βH)|Ψv〉

=
Ψv(x

′)

Ψv(x)

(
1 + βEx′

1 + βEx

)
. (2.41)

This shows that we need to calculate the local energy of the trial wave function both

on the configuration |x〉 and |x′〉 at each Monte Carlo step, even if x′ is proposed as

the new configuration and not accepted.

For the second Lanczos step p = 2, we have the similar equations. Now we have

two Lanczos parameters,

|Ψβ1β2〉 = (1 + β1H + β2H
2)|Ψv〉. (2.42)

The expectation value of Hamiltonian is more complicated

E(2) =
∑
x

Eβ1β2
x Ψ2

β1β2
(x)∑

x Ψ2
β1β2

(x)
, (2.43)

with

Eβ1β2
x =

∑
x′

Hx′,x
Ψβ1β2(x

′)

Ψβ1β2(x)
. (2.44)
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The ratio for the Metropolis algorithm is given by

Ψβ1β2(x
′)

Ψβ1β2(x)
=
〈x′|(1 + β1H + β2H

2)|Ψv〉
〈x|(1 + β1H + β2H2)|Ψv〉

=
Ψv(x

′)

Ψv(x)

(
1 + β1Ex′ + β2〈H2〉x′
1 + β1Ex + β2〈H2〉x

)
,(2.45)

where 〈H2〉x = 〈x|H2|Ψv〉
〈x|Ψv〉 . In order to perform p Lanczos steps exactly, we have to

calculate 〈x|Hn|Ψv〉 for n = 1, 2, ..., p, which is more and more computationally

expensive when p is increased. In this thesis, we performed one Lanczos step up to

324 sites, and two Lanczos steps up to 162 sites.

2.4.1 Variance Extrapolation

In the variational Monte Carlo, we can calculate the variance to get more information

about the trial wave function:

σ2 =

[
〈Ψv|H2|Ψv〉
〈Ψv|Ψv〉

−
(
〈Ψv|H|Ψv〉
〈Ψv|Ψv〉

)2
]
, (2.46)

which provides a criterion for how much |Ψv〉 deviates from an eigenstate. The

variance σ2 vanishes for all eigenstates of H, and a good variational wave function

should give an energy close to E0 and a small variance. In practice, we calculate the

variance by

〈Ψv|H2|Ψv〉
〈Ψv|Ψv〉

=

∑
x〈Ψv|H|x〉〈x|H|Ψv〉∑

x〈Ψv|x〉〈x|Ψv〉
=

∑
xE

2
xΨ

2
v(x)∑

x Ψ2
v(x)

, (2.47)

according to which we need to compute both the local energy and its square.

Whenever the variational wave function is sufficiently close to the exact ground

state, it is possible to get information about the exact energy by performing a

variance extrapolation. Indeed, we can write

|Ψv〉 = |Φ0〉+ ε|ξ〉, (2.48)

where |Φ0〉 is the exact ground state and 〈ξ|Φ0〉 = 0. A straightforward calculation

of Ev and σ2 gives

Ev = E0 + ε2〈ξ|H|ξ〉/(1 + ξ2), (2.49)

σ2 ∼ ε2〈ξ|(H − E0)2|ξ〉/(1 + ξ2), (2.50)
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where ξ is small, we get

Ev ∼ E0 + const× σ2. (2.51)

Based on the above relation, it is possible to use different wave functions, for example

p = 0, 1, 2 Lanczos steps, to get different values of energy Ev and variance σ2. Then

we can perform the variance extrapolation to obtain the estimate of E0, for σ2 = 0.

2.4.2 Regularization

During the Markov chain process, the ratio 〈x′|MF 〉
〈x|MF 〉 is required. By using a fast

update for the ratio of two determinants [53], 〈x
′|MF 〉
〈x|MF 〉 can be evaluated in O(1) op-
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Figure 2.1: The local energy as function of the Monte Carlo steps without regular-

ization. The S = 1 excitation at J2/J1 = 0.5 in the J1 − J2 Heisenberg model on

the 6× 6 lattice with p = 1.
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erations within the p = 0 variational calculation, provided the denominator is finite.

In this way, the core of the variational Monte Carlo algorithm is O(N2
site). There

are some configurations |x0〉 for which the wave function vanishes, i.e., 〈x0|Ψv〉 = 0.

In the pure variational calculation, these configurations are not visited during the

Markov chain, since they are always rejected by the Metropolis algorithm. However,

whenever p > 0, most of these configurations will acquire a finite amplitude, namely
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Figure 2.2: Test curves showing the importance of the regularization used for the

S = 1 excitation with p = 1 at J2/J1 = 0.5 in the J1 − J2 Heisenberg model on the

6× 6 lattice. ε is the value of the regularization used (see text). The insets are the

amplification of the region 10−8 ≤ ε ≤ 100.
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〈x0|Ψp〉 6= 0. For example, for p = 1 we have

〈x0|Ψβ〉 = 〈x0|Ψv〉+ β〈x0|H|Ψv〉, (2.52)

which can be non-zero when 〈x0|Ψv〉 = 0, because of 〈x0|H|Ψv〉. The ratio between

two wave functions calculated for different configurations |x′〉 and |x〉 is:

〈x′|Ψβ〉
〈x|Ψβ〉

=
〈x′|Ψv〉+ β〈x′|H|Ψv〉
〈x|Ψv〉+ β〈x|H|Ψv〉

, (2.53)

which, in principle would require O(N4
site) operations, because of 〈x′|H|Ψv〉 and

〈x|H|Ψv〉. Nevertheless, one could continue to use a fast update, by re-writing

Eq.(2.53) like:

〈x′|Ψβ〉
〈x|Ψβ〉

=
〈x′|Ψv〉
〈x|Ψv〉

(
1 + βEx′

1 + βEx

)
, (2.54)

provided we do not visit configurations with a vanishing p = 0 wave function

〈x0|Ψv〉 = 0: the ratio 〈x′|Ψv〉
〈x|Ψv〉 requires O(1) operations, while the local energies

are O(Nsite). Since the fast update is O(N2
site), within this approach the p = 1

calculation does not increase the complexity of the algorithm. Moreover, it can be

easily shown that a similar calculation leads to O(N2
site) operations for the ratio with

p = 2.

Therefore, in order to have a fast code for p = 1 and 2, it is necessary to work

in the subspace where 〈x|MF 〉 6= 0. In practice, during the simulation we have

to define a discernment to decide whether 〈x|MF 〉 is vanishing or not (given the

presence of roundoff in computers); here, we take the following criterion:∑
x′ 6=x

∣∣∣∣Ψv(x
′)

Ψv(x)

∣∣∣∣ |Hxx′| <
Nsite

ε
, (2.55)

where ε is a small constant that can be optimized in order to have a stable simulation.

The Markov chain is performed in the subspace where Eq.(2.55) is satisfied, and

represents always a well-defined variational calculation, even though for ε > 0 some

bias is introduced to the exact ε→ 0 limit.

In order to exemplify the advantage of this regularization, we report in Fig. 2.1

one calculation with ε = 0. Here, two large fluctuations are present, giving rise



52 Numerical Methods

to diverging errorbars. For these two points, the determinants acquire very small

values, i.e., |Ψv(x)| < 10−20. Remarkably, by using the regularization, those singular

configurations are not present and a completely stable simulation is possible, see

Fig. 2.2. Indeed, both the energy and the variance have a finite errorbar and do not

depend upon the value of ε, ranging from 10−8 to 10−4.

Up to here, we have described a simple way to perform a stable variational Monte

Carlo simulation with p > 0, without visiting vanishing configurations. Whenever

the number of these configurations is very large, the results obtained by this ap-

proach will be biased; in this case, even the variance extrapolation will fail to give
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Figure 2.3: Test curves obtained by adding noise to the determinant for the S = 2

excitation with p = 0, 1, 2 at J2/J1 = 0.2, 0.3 in the J1−J2 Heisenberg model on the

6× 6 lattice. The extrapolated energy values are compared with the exact results.
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the exact energy, since only a part of the total Hilbert space is spanned. In order to

improve the calculations, we can slightly modify the original wave function in order

to have 〈x|MF 〉 6= 0 for all configurations |x〉. One possibility is to add a random

on-site potential δnoise in the mean-field Hamiltonian that defines |MF 〉. By putting

δnoise, we can sample larger subspace to get better energy. In Fig. 2.3, we show the

calculations of S = 2 excitation with and without noise in the small J2/J1 region of

the J1−J2 Heisenberg model on the 6×6 lattice. With δnoise = 0, the percentage of

vanishing configurations is about 20%. For the pure variational calculation (p = 0),

δnoise does not change the value of the energy and the variance. By contrast, for

p = 1 and 2, the gain in the accuracy is considerable, e.g., (∼ 10−3) for energy.

Also the variance extrapolations are sizable improved by the introduction of the

random potential: with δnoise = 0.01 the quadratic fit gives the exact energy after

extrapolation, while the estimated value is much higher when δnoise = 0.

2.5 Green’s Function Monte Carlo

The Green’s function Monte Carlo is a stochastic algorithm that allows us to perform

the power method of Eq.(2.1):

Ψn+1(x′) =
∑
x

Gx′,xΨn(x), (2.56)

where the subscript indicates the iteration “time” and the matrix Gx′,x is given by:

Gx′,x = 〈x′|Λ−H|x〉 = Λδx′,x −Hx′,x, (2.57)

where Λ is a suitably large constant to project the initial trial state into the ground

state of H.

First, we split Gx′,x into three parts:

Gx′,x = sx′,xpx′,xbx, (2.58)

where px′,x is a stochastic matrix (i.e.,
∑

x′ px′,x = 1 and px′,x ≥ 0), bx is a weight

(i.e., bx =
∑

x′ |Gx′,x|), and sx′,x is the sign of Gx′,x. The idea of the Green’s function

Monte Carlo is to interpret Eq.(2.59) as a Master equation for a walker that walks
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in the Hilbert space. Instead of performing the exact evolution
∑

x′ Gx′,xΨn(x), a

walker described by the configuration |x〉 and its weight is considered (the latter

one is due to bx). Therefore, the Master equation is implemented by changing |x〉
into |x′〉 according to the transition probability px′,x and updating the weight ω into

ω′ = ωbxsx′,x. Formally, we have that:

〈x|Ψn〉 =

∫
dωωPn(x, ω), (2.59)

and

Pn+1(x′, ω′) =
∑
x

∫
dωK(x′, ω′|x, ω)Pn(x, ω), (2.60)

with the kernel K(x′, ω′|x, ω) = px′,xδ(ω
′ − ωbx). By definition in Eq.(2.56), the

state Ψn(x) is

Ψn(x) = 〈ωnδx,xn〉 =

∫
dωnωnPn(x, ωn), (2.61)

then the ground-state energy is given by

E0 = lim
n→∞

∑
xn

∫
dωnωnExnPn(xn, ωn)∑

xn

∫
dωnωn(xn)Pn(xn, ωn)

= lim
n→∞

∑
xn
ExnΨn(xn)∑
xn

Ψn(xn)
, (2.62)

where the local energy Exn =
∑

x′ Hx′,x = Λ− bx.
The bare algorithm of Eq.(2.59) can be easily improved by considering the so-

called importance sampling, namely by modifying the Green’s function Gx′,x into:

Ḡx′,x = ΨG(x′)Gx′,x/ΨG(x), (2.63)

where the wave function ΨG(x) is a suitably chosen guiding function, which should

be taken as close as possible to the exact ground state in order to minimize the

statistical fluctuations. Notice that, in presence of the importance sampling, Ḡx′,x

is no longer symmetric. Therefore, a similar iterative technique can be implemented

with:

Ψn(x)ΨG(x) = 〈ωnδx,xn〉. (2.64)
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Also the local energy should be modified by the guiding function,

Exn =
∑
x′

ΨG(x′)

ΨG(x)
Hx′,x. (2.65)

The remarkable fact of this approach is to have the so-called zero-variance property,

namely whenever the guiding function is the exact ground state Ex = Egs, and the

statistical fluctuations vanish. Since the convergence of the iterative procedure is

exponentially fast, it is enough to stop the iteration to a reasonably finite n = l,

then the corresponding estimate in Eq.(2.62) is

E0 = lim
l→∞

∑
nExnG

l
n∑

nG
l
n

, (2.66)

where the weight factor Gl
n is given by

Gl
n =

l∏
j=1

bxn−jsxn−j+1,xn−j . (2.67)

According to above definition, Gl
n is a product of l different factors, which can

have very large fluctuations. To solve this problem, we introduce the many walkers

algorithm [30], which allows us to drop out the irrelevant walkers with small weights

and to control the bias due to the finite walkers.

Given M walkers, the corresponding configurations and weights are ([x], [ω]),

with each component xi and ωi (i = 1, ...,M). If the walkers are independent, we

have that the probability distribution factorises

Pn([x], [ω]) =
∏
i

Pn(xi, ωi). (2.68)

Similarly to the one walker algorithm, the state evolved at the iteration n is

Ψn(x)ΨG(x) = 〈 1

M

M∑
i=1

ωiδx,xi〉 =

∫
[dω]

∑
[x]

∑
j ωjδx,xj
M

Pn([x], [ω]). (2.69)

In order to avoid the divergence of the weights, we define a reconfiguration process

that changes the probability distribution without changing the wave function

P ′n([x′], [ω′]) =
∑
[x]

∫
[dω]K([x′], [ω′]|[x], [ω])Pn([x], [ω]), (2.70)
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with the kernel

K([x′], [ω′]|[x], [ω]) =
M∏
j=1

(∑
i ωiδx′j ,xi∑

i ωi

)
δ

(
ω′j −

∑
i ωi
M

)
. (2.71)

This reconfiguration process generates a new set of M walkers ([x′], [ω′]) from the

old ones, each new walker has the new configuration x′i chosen with the probability

pi =
ωj(i)∑
i ωi

, and the weight ω′ = 1
M

∑
i ωi. After this process, all walkers have

the same weight, and the irrelevant walkers with small weights are dropped out.

Moreover this kind of reconfiguration does not change the probability distribution

[30].

Besides the energy, the Green’s function Monte Carlo can be used to calculate

also the correlation functions of the ground state. It is simple to compute the

expectation values of operators which are diagonal in the working basis, Ox,x′ =

〈x|O|x′〉δx,x′ . In order to get the expectation value 〈O〉, it is necessary to use the

forward walking technique. The expectation value is written as

〈O〉 = lim
N,N ′→∞

〈ΨG|HNOHN ′|Ψ〉
〈ΨG|HN+N ′ |Ψ〉

. (2.72)

In this equation, first one samples a configuration after N ′ GFMC steps, then com-

putes Ox,x, and finally the walker is propagated forward for further N steps. In

order to get this average, a similar approach for the energy can be used

〈O〉 = lim
l→∞

∑
nOxnG

l
n∑

nG
l
n

, (2.73)

where Oxn is the average over the walkers at the generation n, Oxn = 1
M

∑
j O

n
j , and

On
j is the value on the configuration xj of the jth walker at the generation n. The

factor Gl
n is

Gl
n =

l−1∏
j=−N

ω′n−j, (2.74)

which is different from the case of the energy, and contains a further propagation of

N steps.

In the forward walking technique, in order to control the bias, the set of values

On
j with weights factors Gl

n has to be modified after each reconfiguration. In practice
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after each reconfiguration, we have to bookkeep only the values On
j of the observ-

able that survive after the reconfiguration. Therefore, after each reconfiguration,

On′
i = Oj(i), for i = 1, ...,M and the function j(i) describing the reconfiguration

scheme has to be computed: the walker with index i assumes the configuration with

index j(i) before the reconfiguration. In order to implement recursively the forward

walking, it is useful to store at each reconfiguration the integer function jn(i) for

each reconfiguration n and the value On
i of of the operator for each walker. Then

it is possible to compute the relevant configurations contributing to the operator O

after N reconfiguration steps by recursive application of the integer function jn(i).

The Green’s function Monte Carlo can be used to study the ground-state prop-

erties of a given Hamiltonian exactly in a numerical simulation, only if we do not

have the so-called sign problem, i.e., the off-diagonal elements of matrix Gx′,x > 0

(x 6= x′) (we can choose suitable value of Λ to have Gx,x > 0). When the sign

of Gx′,x, sx′,x, is not always larger than zero, the weights of walkers can be posi-

tive or negative, a wild cancelations will be between them, and then give a small

quantity to sample with huge fluctuations. It is necessary to consider some kind of

approximation, such as the fixed node approximation (FN) [19]:

HFN
x′,x =

{
Hx′,x, if Hx′,x ≤ 0,

0, if Hx′,x > 0. (2.75)

The FN defines HFN starting from H, and sets to zero the positive off-diagonal

elements. The fixed-node wave function ΨFN of HFN can be computed without

any sign problem, and it can be used to improve the variational wave function.

Furthermore, the FN energy is an upper bound to the true ground state energy

[19].
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Chapter 3

Stripe in the 2D t− J model

3.1 Introduction

The comprehension of the low-energy properties of strongly-correlated systems re-

mains one of the biggest challenges in modern condensed matter physics. Indeed,

although a fair good understanding has been achieved in some limiting cases (espe-

cially for large spatial dimensions, thanks to dynamical mean-field theory [13, 54]),

many important questions remain widely open in the two-dimensional case, where

the competition between charge/spin ordering and superconductivity is very strong.

Unfortunately, in this case, there are not unbiased techniques that may be used

to obtain accurate results for low temperatures and large system sizes. Therefore,

several approximate methods have been developed and applied in the last years,

for example variational (VMC) [55] and fixed-node (FN) Monte Carlo [19], density-

matrix renormalization group (DMRG) [14] or its developments based upon the

so-called tensor network states, including multi-scale entanglement renormalization

ansatz (MERA) [56] and projected entangled-pair states (PEPS) [57], which has

been recently generalized to fermionic systems [58] and infinite lattices (iPEPS) [59].

In the t − J model, for the low electron density region, the results obtained by

different analytical or numerical methods are consistent. For example, Hellberg et

al. determined accurately the critical J/t for phase separation, i.e., Jc/t ≈ 3.43 [60].

On the other hand, in the high electron density and small value of J/t (which is the

related regime for cuprate high-temperature superconductors), different calculations

59
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have shown contradicting outcomes. The variational analysis by Emery et al. leads

to the conclusion that phase separation occurs for all values of J/t [35]. Hellberg

et al. investigated this problem by the Green’s function Monte Carlo method and

Maxwell construction for larger clusters and reached similar conclusion [61]. The

DMRG calculations show domain walls for doping 0 < δ ≤ 0.3 [62], and a striped

phase at δ = 1
8

[15]. By contrast, a critical value of Jc/t below which no phase

separation exists, has been found both by high-temperature expansions [63] and

power Lanczos techniques [64]: the former one obtained Jc/t ∼ 1, the latter one

Jc/t ∼ 0.6. Moreover, by using variational and Green’s function Monte Carlo, a

critical value of Jc/t ≈ 0.7 has been found [65]. More important issues on magnetic

and superconducting properties are still under debate. One important issue, related

to the mechanism of pairing in the cuprate materials, is whether some charge insta-

bility may take place (at q = 0, leading to phase separation, or at finite q, leading

to the so-called stripes) or instead the homogeneous ground state is stable [66]. In

the latter case, the residual attraction among quasi-particles may lead to a super-

conducting state. Previous FN calculations emphasized the existence of a stable

superconducting ground state [67], while DMRG and iPEPS results suggested a

stripe order [16].

The competition between superconductivity and stripes have been studied in

several papers, and different aspects have been addressed in the recent past [68,

69, 70]. For example, it has been shown that a relatively small anisotropy in the

super-exchange (and hopping) parameters may lead to a striped order [42]. In this

regard, it is crucial to have a controlled method that may give variational results,

in order to make a direct comparison of energies (and other correlation functions)

among different methods and reach a final consensus.

In this chapter, we present state-of-the-art Monte Carlo calculations for the 2D

t−J model; first, we introduce the model and discuss the form of the wave functions

that are used in the Monte Carlo methods, and then we show the variational results.

The small size calculations show the accuracy of the methods. Then the phase

diagram is obtained by the large-cluster calculations, and no phase separation is

found for small J/t. We also consider stripe structures both in the variational wave

function and Hamiltonian. These results suggest the absence of static stripes.
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3.2 Model and methods

The t−J model on the two-dimensional square lattice, which can be derived from

the three-band Hubbard model[71], is defined by Eq.(1.3). This Hamiltonian is

defined in the subspace without doubly occupied sites. In this chapter, we will take

the amplitude for nearest-neighbor hopping t = 1, and consider, in most of the

calculations, the antiferromagnetic super-exchange J/t = 0.4. The hole doping will

be denoted by δ = 1−N/Nsite, where N and Nsite are the number of electrons and

sites, respectively. In general the square lattice can be constructed by Nsite = l2+m2,

with l and m being positive integers. When l(or m)= 0 or l = m, the clusters have

all symmetries of the infinite lattice; however, l 6= m clusters have rotations, but no

reflection symmetries. In this chapter, L×L or 45-degree tilted lattices (with l = m

and Nsite = 2l2, l being an odd integer, so that the non-interacting ground state is

non-degenerate at half filling) are considered and periodic boundary conditions are

taken in both directions.

Our starting variational wave function is constructed by applying different pro-

jector operators to a mean-field state

|Ψv〉 = PNPGJdJs|ΦMF 〉, (3.1)

where PN is the projector onto the subspace with N electrons, PG is the Gutzwiller

projector, which enforces no double occupation on each site. Jd is the density-

density Jastrow

Jd = exp(
1

2

∑
i,j

uijninj), (3.2)

with uij being the corresponding variational parameters, and Js is the spin-spin

Jastrow

Js = exp(
1

2

∑
i,j

vijS
z
i S

z
j ), (3.3)

vij being the corresponding variational parameters. Finally, |ΦMF 〉 is a mean-field

state that may contain BCS pairing, antiferromagnetic order, or both. It can be

taken as the ground state of the mean field Hamiltonian

HMF =
∑
i,j,σ

tijc
†
iσcjσ +H.c.−µ

∑
i,σ

niσ +
∑
〈i,j〉

∆ij(c
†
i↑c
†
j↓+ c†j↑c

†
i↓+H.c.) +HAF , (3.4)
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where ∆ij is the BCS paring with d− wave symmetry, and the staggered magnetic

field term HAF is

HAF = ∆AF

∑
i

(−1)Ri(c†i↑ci↓ +H.c.), (3.5)

with the antiferromagnetic parameter ∆AF in the x − y plane. Relevant quantum

fluctuations can be included by considering the Jastrow factor Js, which acts per-

pendicularly to the plane of the magnetization [20, 65].

The mean-field Hamiltonian (3.4) is quadratic in the fermionic operators and

can be easily diagonalized in real space. Its ground state has the general form

|ΦMF 〉 = exp

1

2

∑
i,j,σi,σj

f
σiσj
ij c†iσic

†
jσj

 |0〉. (3.6)

In general we can choose the configurations with definite z component of the spin.

In the case of the standard BCS Hamiltonian with ∆AF = 0 or ∆AF along z direc-

tion, the pairing function f
σiσj
ij is an antisymmetric 2Nsite × 2Nsite matrix, and the

mean field wave function is equivalent to a slater determinant [55]. However, if the

magnetic field is in the x− y plane, the mean field wave function takes the form of

a Pfaffian [20, 65],

〈x|ΦMF 〉 = Pf [f ]. (3.7)

By using the minimization technique [72] described in Section 2.3, we are able to

deal with a large number of variational parameters. In the wave function (3.1) the

variational parameters are the uij’s and vij’s (for all independent distances in the

lattice), and few parameters that describe the mean-field state |ΦMF 〉 (i.e., the pair-

ing amplitude ∆BCS, the antiferromagnetic parameter ∆AF , as well as the chemical

potential µ and the next-nearest-neighbor hopping describing the variational elec-

tron dispersion). Due to the presence of strong correlations (i.e., the Gutzwiller

projector and the Jastrow factors), a variational Monte Carlo approach is required

to compute the energy and all physical observables.

The accuracy of the wave function (3.1) may be improved in different ways. The

first one is by applying Lanczos steps as discussed in Section 2.4. Here, we consider

the case in which few (i.e., p = 1, 2) Lanczos steps are applied to the original

variational state (corresponding to p = 0). An estimation of the true ground-state
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Figure 3.1: Variational results for the variance extrapolation on a 162-site cluster,

for different numbers of holes: p = 0 and 1 (p = 0, 1 and 2) Lanczos steps have

been performed on the wave function with (without) antiferromagnetism. The best

fixed-node results are also marked by arrows.
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energy may be achieved by the variance extrapolation (see Section 2.4). Therefore,

the exact ground state energy Eex may be assessed by fitting the variational ground-

state energy E vs σ2 for p = 0, 1, and 2. Another way to improve the VMC

calculations is through the FN approach [19], described in Section 2.5, where the

ground state of an auxiliary FN Hamiltonian is obtained. In this case, we use the

optimized variational wave function as the guiding function. Most importantly, the

resulting energies are still variational, so to have a totally controlled approximation

of the original problem [19].

3.3 Results

Before showing the results on large systems, we would like to mention that a very

good accuracy on small lattices, where the Lanczos diagonalizations can be per-

formed, is obtained. In Table 3.1 we compare our results with the exact ones on the

26-site lattice with 2 and 4 holes, and at different values of J/t. Pure VMC and FN

results are shown, with 0, 1 and 2 Lanczos steps, as well as the estimated values from

the variance extrapolation. We only consider BCS pairing and no antiferromagnetic

order: in these cases, which correspond to relatively high dopings, the gain due to

antiferromagnetism is negligible. Both the Lanczos steps and the FN techniques

largely improve the variational wave function and the best FN calculations (with 2

Lanczos steps) reach an accuracy of (Eex−E)/Eex ≈ 0.002 and ≈ 0.003 for 2 and 4

holes, respectively (for J/t = 0.4). The estimated energies, obtained by the variance

extrapolation from the variational results with p = 0, 1, 2 Lanczos steps, agree with

the exact data within one or two errorbars.

Let us now move to larger sizes, where we have used two kinds of wave functions,

with and without antiferromagnetic parameters. We will define them by BCS+AF

and BCS, respectively. In the following, for the Pfaffian wave function we will

only consider p = 1, since p = 2 is very time consuming. Remarkably, the same

extrapolated energies are obtained by using these two states, see Fig. 3.1, for 6, 16,

and 20 holes. For the small values of dopings ( i.e., 6 holes), the BCS+AF state gives

better energies and smaller variances than the BCS results for p = 0 and 1. On the

contrary, for large dopings (i.e., 16 and 20 holes), the presence of antiferromagnets is
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Figure 3.2: Energy per hole as a function of the doping for J/t = 0.4. Variational

results are reported for p = 0 and 1 (p = 0, 1 and 2) Lanczos steps for the wave

function with (without) antiferromagnetism. The extrapolated gap for 0.03 . δ .

0.15 are reported.
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for a better comparison.
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Table 3.1: VMC and FN energies per site for 26 sites with 2 and 4 holes. The

estimated values of the variance extrapolation and exact results are also reported.

J/t

2 holes

VMC
extrapolation

p = 0 p = 1 p = 2

0.3 -0.48334(1) -0.49563(4) -0.4985(1) -0.5010(7)

0.4 -0.57664(1) -0.58930(4) -0.5925(1) -0.5949(3)

0.5 -0.67045(1) -0.68418(5) -0.6874(1) -0.6895(3)

0.6 -0.76463(1) -0.77999(5) -0.7833(1) -0.7868(5)

0.8 -0.95410(1) -0.97332(7) -0.9771(1) -0.9800(5)

1.0 -1.14483(1) -1.16832(7) -1.1727(1) -1.1759(6)

FN
exact

p = 0 p = 1 p = 2

0.3 -0.49256(1) -0.49824(1) -0.49979(1) -0.50097

0.4 -0.58625(1) -0.59197(1) -0.59349(1) -0.59452

0.5 -0.68091(1) -0.68700(1) -0.68845(1) -0.68945

0.6 -0.77645(1) -0.78295(1) -0.78446(1) -0.78537

0.8 -0.96920(1) -0.97684(1) -0.97837(1) -0.97935

1.0 -1.16385(1) -1.17286(1) -1.17434(2) -1.17538

J/t

4 holes

VMC
extrapolation

p = 0 p = 1 p = 2

0.3 -0.61372(1) -0.63293(6) -0.6375(1) -0.6410(3)

0.4 -0.68894(1) -0.70643(6) -0.7107(1) -0.7140(4)

0.5 -0.76461(1) -0.78106(5) -0.7851(1) -0.7875(8)

0.6 -0.84065(1) -0.85667(6) -0.8606(1) -0.8632(4)

0.8 -0.99361(1) -1.01052(6) -1.0144(1) -1.0174(5)

1.0 -1.14760(1) -1.16741(7) -1.1719(2) -1.1757(9)

FN
exact

p = 0 p = 1 p = 2

0.3 -0.62752(1) -0.63677(1) -0.63940(1) -0.64262

0.4 -0.70101(1) -0.70938(2) -0.71207(1) -0.71437

0.5 -0.77571(1) -0.78399(1) -0.78632(1) -0.78812

0.6 -0.85132(1) -0.85944(1) -0.86164(1) -0.86337

0.8 -1.00476(1) -1.01338(1) -1.01551(1) -1.01733

1.0 -1.16072(1) -1.17054(1) -1.17306(1) -1.17493
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Figure 3.4: The CDW parameters as function of SR steps at 1/8 doping on 24× 24

size cluster. (a) ls = 8; (b) ls = 12. i labels different sites.

not crucial to improve the variational state. The FN results with the second Lanczos

step are also reported in Fig. 3.1, which are close to the extrapolated values and

show very good accuracy.

In order to analyze the tendency towards phase separation, we calculate the en-

ergy per hole e(δ) = [E(δ) − E(0)]/δ at different dopings by using two kinds of

wave functions. As mentioned in Chapter 1, e(δ) is a powerful detector for phase

separation: a monotonic behavior of e(δ) vs δ indicates a finite compressibility and

a stable uniform phase, while a minimum on finite systems or a flat behavior in the

thermodynamic limit indicates an instability [35]. In Figs. 3.2 and 3.3, we show

our results for various cluster sizes. It should be mentioned that the energy at half-

filling has been computed for each cluster independently. We have seen that this

choice minimizes finite size effects, which become negligible for Nsite ' 162 sites.

Close to half-filling, the Pfaffian wave function is considerably better than the simple

superconducting state, indicating a coexistence of pairing and antiferromagnetic or-

der [20, 65]. As the doping increases, the antiferromagnetic parameter decreases and

eventually vanishes for δ ≈ 0.1. The general trend is clear: the increased accuracy

of the calculation favors the homogeneous state, marked by a monotonic behavior of

the energy per hole vs the doping. In particular, one Lanczos step strongly improves
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the quality of the results, the gain in the FN energy being approximately 0.05t, in-

dependently of δ. Even the second Lanczos step is efficient for these large sizes,

providing a further energy gain of about 0.02t. We also mention that the results

obtained with the variance extrapolation are consistent with the DMRG and iPEPS

ones [16]; indeed, we have that e(δ) = −1.61(1) for 0.03 . δ . 0.12. However, the

extrapolated values have too large errorbars and cannot be used to study the issue

of phase separation.

Although results with p = 1 and p = 2 are not size consistent, the largest

size considered appears closely enough to describe the thermodynamic limit, and far

from the system sizes where the Lanczos techniques may have problems (in principle

for Nsite → ∞, Ep=2 → Ep=1 → E0). Therefore, we have considered p = 2 FN

calculations for Nsite = 162 (or even 98 for δ & 0.17), which compare well with the

best energies obtained by DMRG and iPEPS, see Fig. 3.3. The latter ones provide

slightly more accurate energies for δ ' 0.1. However, considering that all these

methods are significantly away from the estimated exact energy per hole obtained

by DMRG and variance extrapolations (i.e., e(δ) ' −1.61), the difference between

energies for δ = 0.1 looks essentially irrelevant. In contrast with DMRG and iPEPS

that find a minimum in the energy per hole [16], our best FN approximations do not

show any tendency to phase separation for any doping, and, therefore, represent a

thermodynamically stable phase corresponding to a well defined variational state.

Let us now consider the more subtle issue of stripes. Recently, DMRG and iPEPS

calculations suggested that the ground state has charge (and spin) modulations, at

least close to δ = 1/8 [16]. Up to now, we have considered a uniform mean-field

state |ΦMF 〉, clearly biasing the variational results towards a homogeneous state.

Despite the fact that the FN method can in principle remove this bias and give rise

to non-uniform results, we have not found any evidence in favor of stripes with this

variational ansatz.

In order to gain some evidence that a charge inhomogeneity is not stabilized in

the low-doping regime, we add a site-dependent chemical potential in the mean-field

Hamiltonian

µRi = δµ cos

(
4π

ls
xi

)
+ µ0, (3.8)

where Ri = (xi, yi) is the coordinate of the site i and ls is equal to 8 or 12. In our
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Figure 3.5: Upper panels: local density ni when a site-dependent chemical potential

with δµ = 1.6 [see Eq. (3.8)] is added to the variational wave function; the cases

with ls = 12 (a) and 8 (b) are reported. Lower panels: local density ni when a site-

dependent potential [see Eq. (3.9)] is added to the t−J Hamiltonian, with ls = 12

and V = 0.2 (c) and ls = 8 and V = 0.4 (d). Variational and fixed-node results

are reported for a 12 × 12 cluster and δ = 1/8. Insets: the difference between the

largest and the smallest local density (at the fixed-node level) as a function of V .
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Figure 3.6: The density-density correlation function calculated by using the same

parameters as Fig. 3.5. Upper panels: a site-dependent chemical potential with

δµ = 1.6 [see Eq. (3.8)] is added to the variational wave function; the cases with

ls = 12 (a) and 8 (b) are reported. Lower panels: a site-dependent potential [see

Eq. (3.9)] is added to the t−J Hamiltonian, with ls = 12 and V = 0.2 (c) and ls = 8

and V = 0.4 (d). Variational and fixed-node results are reported for a 12×12 cluster

and δ = 1/8.
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simulations, we start from a given δµ and then release each µRi in order to optimize

each site in the unit cell independently. In Fig. 3.4, we show the evolution of the

numerical optimization: after few iterations, a perfect uniform state is obtained,

since all chemical potentials µRi converge to the same value. Moreover, FN calcu-

lation strongly reduces the density modulation present in the original variational

wave function, see Fig. 3.5. Although a small inhomogeneity remains in the density

profile, the FN energy is always higher than the one with δµ = 0. The density-

density correlation function is reported in Fig. 3.6 with parameters corresponding

to Fig. 3.5. In the upper panels, the VMC results show the peaks at (π/3, 0) for

ls = 12 and (π/2, 0) for ls = 8; FN calculations reduce them to get the same N(q)

for both ls. For these calculations, we consider 12× 12, 16× 16, and 24× 24 lattices

at δ = 1/8. Similar results have been obtained also for δ = 1/12 on a 12× 12 lattice

(not shown).

In order to show the effectiveness and the reliability of the FN method to detect

charge inhomogeneities, we add a modulated potential directly in the t−J Hamilto-

nian:

VRi = V cos

(
4π

ls
xi

)
. (3.9)

Then, we consider a uniform mean-field wave function and compute the local density

for 12× 12 and 24× 24 lattices at δ = 1/8. The results are also reported in Fig. 3.5.

Clearly, the VMC results show a completely flat behavior of the density on different

sites. On the contrary, the FN simulations are able to recover a strongly modulated

density. The density-density correlation functions (see Fig. 3.6) show that the FN

calculations obtain the peaks at (π/3, 0) for ls = 12 and (π/2, 0) for ls = 8 which we

cannot find in the VMC results. This fact demonstrates that the presence of stripes

could be detected by using this approach, even when a uniform guiding function is

used in the FN technique.

Finally, we can also add a spin structure to the charge modulation, so to have:

nRi = 1− δ − δn cos

(
4π

ls
xi

)
, (3.10)

SzRi = δs(−1)Ri sin

(
2π

ls
xi

)
. (3.11)

The above structure implies a 2 × ls unit cell and contains the so-called π-shift,
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Figure 3.7: The SDW parameters as function of SR steps in the 2× ls unit cell at

1/8 doping on 24× 24 size cluster. (a) ls = 8; (b) ls = 12. i labels different sites.

namely anti-parallel spins across the hole-rich sites at xi = 0 and ls/2. In the

following, we consider suitable variational parameters inside the mean-field Hamil-

tonian that defines the uncorrelated state (i.e., local chemical potentials and local

magnetic fields) [68], such to reproduce a stripe with ls = 8, 12 and take δ = 1/8 on

16× 16 and 24× 24 lattices. We start from finite values of δn and δs and then opti-

mize nRi and SzRi for each site independently. In Fig. 3.7, we observe that the initial

stripe melts and a perfect uniform state is recovered. Moreover, the FN approach

over the striped variational state leads to a much more uniform state, by replacing

the π−shift with a small defect in a much weaker antiferromagnetic background, see

Fig. 3.8.

3.4 Conclusions

In this chapter, we adopt the quantum Monte Carlo techniques described in Chapter

2: by applying few Lanczos steps to the variational wave function and by filtering

out its high-energy components (by means of the Green’s function Monte Carlo with

the FN approximation), the accuracy of the calculations is highly improved. This

approach is particularly effective at low doping and is actually unbiased at half filling.
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Figure 3.8: Variational (a) and fixed-node (b) charge and spin distributions in the

2×8 unit cell of a 16×16 lattice. The size of the circles and arrows is proportional to

the electron density and spin along z, respectively (largest symbols: nRi = 0.9195(4),

SzRi = ±0.087(2)).

Moreover, an estimation of the exact energy is given by the variance extrapolation.

We have shown that the FN approach is particularly reliable, not only to improve

the energy of a given variational ansatz, but also to determine the density profile

of the ground state, in a way that is rather independent of the original ansatz.

Indeed, the approximate FN ground state |ΨFN〉 is not a “brute force” variational

ansatz, but it represents the ground state of a physical Hamiltonian that is different

from the exact one only in the region where the variational wave function is close

to zero (namely within the so-called nodal region). Operators O that are diagonal

in configuration space |x〉 (e.g., related to stripes or antiferromagnetic order) are

weakly affected by this nodal error. Indeed, in the expectation value of O, which

takes the form of
∑

x Ψ2
FN(x)Ox, the nodal region, where ΨFN(x) ' 0, provides a

very little contribution, thus explaining the reliability of the FN approach in these

cases.

Our results of energy per hole show that no phase separation is detected at any

doping: at low doping, a uniform state is stabilized, containing both superconduc-

tivity and antiferromagnetism (δ < 0.1). We also have studied the stripe phase by
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adding charge and spin modulations into the mean-field ansatz. The optimization

of wave function melts the stripes. On the other hand, if an external modulated po-

tential is added to the t−J Hamiltonian, the FN approximation gives rise to stripes,

even when the initial state is chosen to be homogeneous.
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Chapter 4

Quantum Spin Liquid

4.1 Introduction

During the “Valence-Bond-Solid era” most of the community working on highly-

frustrated magnets believed that quantum spin liquids could not exist as true ground

states of microscopic models and some kind of valence-bond order would have taken

place in non-magnetic insulators (thus leading to trivial band insulators). Now,

we are presently living in the more exciting “Quantum-Spin-Liquid era”, where a

plethora of different spin-liquid states are proposed as ground states of various mag-

netic systems, both theoretically and experimentally [24]. The turning point was

marked by the discovery that stable gapped spin liquids may be found in effective

low-energy Hamiltonians, which are based upon the so-called quantum dimer mod-

els [73] or strong-coupling expansions [74]. Since then, three main directions are

carried out to study quantum spin liquids. The first one is the definition of ad hoc

Hamiltonians that can be exactly solved to have a cartoon picture of the exotic prop-

erties expected in generic systems (e.g., topological degeneracy and fractional exci-

tations) [75, 76]. The second one is the classification of different spin-liquid states

according to hidden symmetries (i.e., beyond the Ginzburg-Landau description);

examples may be given by the projective-symmetry group [50], tensor states [77],

or cohomology [78, 79, 80]. Finally, the third and more pragmatic direction is to

perform numerical simulations on frustrated models, in order to gain evidence that

stable spin-liquid phases may indeed exist, such as the Heisenberg [17, 81, 82, 83, 84]

77
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Figure 4.1: The ground state energy per site of eight Z2 spin liquids in Ref. [50]

(Z2A0013, Z2A001n,Z2Azz13, Z2Azz1n, Z2B0013, Z2B001n, Z2Bzz13, Z2Bzz1n) at

J2/J1 = 0.5 on different sizes (L = 6, 10, 18). Black crossings mark unstable spin

liquids, for which the variational parameters related to Z2 symmetry vanish after the

optimization of the wave function. The best energy is given by the ansatz Z2Azz13.

and Hubbard [85, 86] models on different kinds of lattice.

In this chapter, we take the third point of view and investigate the J1 − J2

spin-half Heisenberg model on the square lattice. As discussed in Chapter 1, the

intermediate regime, separating two magnetically ordered phases (see Fig. 1.7),

is the most debated one, since the combined effect of frustration and quantum

fluctuations destroys antiferromagnetism and leads to a non-magnetic ground state.

Recent density-matrix renormalization group (DMRG) results sparked the desire

of understanding the phase diagram of the J1−J2 model, suggesting the existence

of a true spin-liquid phase [17]. In particular, by considering cylindrical geometry,

DMRG results for the singlet and triplet gaps provided some evidence for a fully

gapped Z2 state in the region 0.4 . J2/J1 . 0.6, without local broken symmetry.

Moreover, the calculation of the so-called topological entanglement entropy γ was
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Figure 4.2: The mean field spectrum of the Hamiltonian Eq.(4.1). Four red points

are the Dirac points.

found to be consistent with the expected value of γ = ln(2) for a gapped Z2 spin

liquid. The most natural description of a fully gapped state is given in terms of

the Schwinger boson representation of the spin operators [87]. By performing a

full optimization of the many-body wave function on small sizes (36 sizes), it has

been shown that this kind of bosonic ansatz may qualitatively reproduce some of the

DMRG results, and suggested a Z2 gapped spin liquid with finite S = 1 spin gap [88].

However, while in the weakly-frustrated regime the bosonic ansatz has magnetic

order and excellent variational energy, for 0.45 . J2/J1 . 0.6 a state constructed

with Abrikosov fermions instead of Schwinger boson has better accuracy [88]. In fact,

in Ref. [81] the authors showed that, within this kind of fermionic representation,

it is possible to have a particularly accurate description of the ground state in the

strongly frustrated regime.

Here, we take the Abrikosov fermionic representation to construct our mean-

field states and study various mean-field ansatze with different projective-symmetry

groups (as described in Chapter 1). In particular, eight possible candidates for
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describing the frustrated regime have been proposed [50]. After a full numerical

optimization of these states (in presence of the Gutzwiller projector), we have found

that the state dubbed Z2Azz13 (see Section 1.4.1) is stable and has a best variational

energy in the strongly frustrated regime (see Fig. 4.1). This state has a Z2 gauge

structure (implying gapped gauge excitations) but gapless spinon excitations with

four Dirac points. By using the ansatz Z2Azz13, we also construct the variational

wave functions for low-lying excitations. The few Lanczos step technique will be

used to systematically improve the accuracy of the variational states. A reliable

estimate of the exact ground state, along with few relevant low-energy states, will

be obtained. This procedure allows us to extract the spin gap and show that a

gapless spin-liquid phase exists in the highly frustrated regime.

4.2 Model and Methods

The 2D Heisenberg J1−J2 model is defined by Eq.(1.6). Here, we focus on the case

where both super-exchange couplings J1 and J2 are antiferromagnetic. We consider

the square lattice Nsite = L× L sites and periodic boundary conditions.

In order to construct the Z2Azz13 state, we take a gauge in which the mean-field

Hamiltonian is real and defined by:

HMF =
∑
i,j,σ

ti,jc
†
i,σcj,σ +H.c.+

∑
i,j

ηi,j(c
†
i,↑c
†
j,↓ + c†j,↑c

†
i,↓) +H.c., (4.1)

where for each bond (i, j) there are hopping (ti,j) and/or pairing (ηi,j) terms. Given

any eigenstate |ΨMF 〉 of the mean-field Hamiltonian, a physical state for the spin

model can be obtained by a projection of it onto the subspace with one fermion per

site:

|Ψv〉 = PG|ΨMF 〉. (4.2)

Here we will consider a projected state that is obtained by taking a real pairing ηxy

(with dxy symmetry) in the mean-field ansatz on top of the U(1) state with nearest-

neighbor hopping t and real pairing ηx2−y2 (with dx2−y2 symmetry). A substantial

energy gain is obtained by considering ηx2−y2 pairing for (2, 1) (and symmetry related

ones) and (±3, 0) and (0,±3) bonds (for L > 6), on top of the nearest-neighbor
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bonds. The dxy term is crucial to break the U(1) gauge symmetry down to Z2. Here,

we consider ηxy terms for (±2,±2) bonds, which imply commensurate Dirac points

at k = (±π/2,±π/2) in the mean-field spectrum, see Fig. 4.2. On the contrary,

ηxy terms for (±1,±1) bonds will give rise to incommensurate Dirac cones, whose

positions depend upon the actual values of the variational parameters. Moreover,

the former choice gives more stable simulations for L > 6. We want to stress the

fact that both choices belong to the same Z2Azz13 ansatz. In order to minimize

the variational energy, suitable boundary conditions have to be considered in the

mean-field Hamiltonian.

The ground-state wave function is constructed by projecting the lowest-energy

mean-field state. Furthermore, few excited states can be also constructed. For that,

it is useful to consider a particle-hole transformation for the spin-down electrons on

the mean-field Hamiltonian (4.1), i.e., c†i,↓ → ci,↓, while keeping the spin-up electrons

unchanged, such that the transformed Hamiltonian conserves the total number of

particles. Then, the ground state is obtained by filling the lowest Nsite orbitals,

with suitable boundary conditions (either periodic or anti-periodic) in order to have

a unique mean-field ground state. Spin excitations can be obtained by creating the

appropriate Bogoliubov quasi-particles (spinons) and possibly changing boundary

conditions. Limited by states constructed from a single determinant, we consider

a S = 2 state with momentum k = (0, 0) by creating four spinons, and a S = 1

state with k = (π, 0) or (0, π) by creating two spinons with k = (π/2,±π/2) or

(±π/2, π/2) (see Fig. 4.2). A brief discussion on the boundary conditions of the

mean-field Hamiltonian is needed: when L = 2× odd integer, the ground state has

periodic boundary conditions in both directions, while excitations have antiperiodic

conditions. The opposite is taken for L = 2×even integer. By performing quantum

Monte Carlo calculations, we are able to compute separately the energies of these

three states, so as to assess the spin gaps of the J1−J2 model.

In order to systematically improve the variational wave functions of the ground

state and excitations, we apply a number p of Lanczos steps. Furthermore, if the

starting wave function is sufficiently accurate, we can obtain an estimate of the exact

energy Eex with zero variance by fitting energy Ep vs variance σ2
p for p = 0, 1, 2 (see

Section 2.4). The estimation of the gap is obtained by performing the variance

extrapolation independently for the ground state and excitations.
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Figure 4.3: Calculations with fixed parameters of S = 2 spin gap ∆2 by using

different wave functions (Z2 and U(1) spin liquids) for J2/J1 = 0 and J2/J1 = 0.55

on square lattice until 50× 50 cluster. The solid line is the linear fitting.
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Figure 4.4: Calculations with fixed parameters of spin-spin correlation function

S(q) by using Z2 spin liquid wave function at J2/J1 = 0.55 on 30× 30 and 50× 50

clusters.
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4.3 Calculations with fixed parameters

Let us start by briefly considering the properties of the variational wave function.

In order to do that, we fix the parameters (ηx2−y2/t = 1 at the nearest neighbors

(1, 0) and (0, 1) and ηxy/t = 0.5 for (±2,±2) bonds) and consider both the spin-spin

structure factor

S(q) = 〈SzqSz−q〉 =
1

Nsite

∑
lm

eiq(Rl−Rm)Szl S
z
m, (4.3)

and the S = 2 spin gap (the same parameters are used for the S = 0 and S = 2

states). In Figs. 4.3 and 4.4, we report the numerical results. First of all, for small

momenta, we have that

S(q) ∼ q2 log(q), (4.4)

which is the expected result in presence of Dirac points (to be contrasted with S(q) ∝
|q| in presence of a Fermi surface and S(q) ∝ q2 for gapped systems). We emphasize

that the structure factor is a property of the wave function only and does not

depend upon the excitation spectrum. The calculation of the gap instead requires

the definition of an Hamiltonian. Indeed, in general, the connection between the

behavior of correlation functions of the ground state and the properties of the low-

energy excitations (that is always assumed) is a prerogative of local Hamiltonians,

for which the exact ground-state properties mirror the low-energy spectrum. By

directly computing the S = 2 gap ∆2 of the variational wave function, we notice

a very different behavior for J2 = 0 and J2/J1 = 0.55. While for the latter case,

we clearly see that ∆2 is vanishing in the thermodynamic limit, for the former case,

the situation is less clear and a finite gap cannot be excluded. We want to stress

the fact that, while for the frustrated case the variational wave function represents

a good ansatz for the exact ground state, so that a consistency between S(q) and

the gap is expected, for the unfrustrated case this wave function has a rather poor

accuracy: in the language of the PSG, the spinon interactions can be so strong to

destabilize the mean-field ansatz.
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Figure 4.5: The dxy pairing as function of J2/J1 on 6 × 6 lattice for the ground

state. The value of dxy is nonzero for J2/J1 > 0.4.
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Figure 4.6: The spin-spin correlation function at momentum (π, π) divided by Nsite

at J2/J1 = 0.5 on different sizes (L = 14, 22, 30) are reported. The quadratic fit is

performed to show the non-magnetic order in the thermodynamical limit.
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Figure 4.7: The dimer order parameter Dd as function of 1/L at J2/J1 = 0.45, 0.5

and 0.55 are reported. No dimer order is shown by the quadratic fit.

4.4 Main Results

In this section we present the main results for the J1 − J2 Heisenberg model on the

square lattice. Therefore, we perform a numerical optimization of the variational

wave function by using the technique described in Chapter 2. After optimization,

the best possible ansatz for the variational wave function of the form (4.2) has a non-

vanishing dxy pairing, in the whole regime 0.45 . J2/J1 . 0.6, which is important

for having a Z2 spin liquid, see Fig. 4.5. Most importantly, in this regime both the

spin structure factor S(q) at q = (π, π) and the dimer-dimer correlations [89]:

Dd = 9 lim
r→∞
|Dy,y(r − y) +Dy,y(r + y)− 2Dy,y(r)|, (4.5)

with

Dµ,ν(r − r′) = 〈SzrSzr+µSzr′Szr′+ν〉 − 〈SzrSzr+µ〉〈Szr′Szr′+ν〉, (4.6)

do not show any evidence for the occurrence of ordered phases (see Figs. 4.6 and

4.7), in agreement with DMRG calculations [17].
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In order to extract the information about the exact spin gap, a systematic im-

provement on the variational wave function is performed, which allows us to extract

(i) the ground state energy, (ii) the energy of the lowest S = 2 state, and (iii) the

energy of a state with S = 1 and k = (π, 0) [or (0, π)]. The state with S = 1 and

k = (π, 0) is particularly interesting, since it is certainly gapped in the Néel phase

and it is not expected to play any important role in a gapped non-magnetic regime

(while it is one of the gapless modes in the collinear magnetic phase that appears

for large J2 values). On the contrary, this state is gapless in the Z2Azz13 ansatz.

In the following, we will show that this S = 1 excitation becomes indeed gapless

in a region around J2/J1 = 0.5, and, therefore, a spin liquid with gapless triplet

excitations at k = (π, 0), (0, π), and (π, π) may represent a suitable candidate to

describe the magnetically disordered state.

Before presenting the results of the spin gaps, in Fig. 4.8, we report calculations

of energies of the ground state and the two excitations (S = 1 at k = (π, 0) and

S = 2 at k = (0, 0)) for different sizes of the cluster at J2/J1 = 0.5. For L = 6, where

the exact results can be obtained by Lanczos diagonalizations, our extrapolations are

extremely accurate. Moreover, for the ground state, our best variational p = 2 state

gives the energy E/J1 = −0.503571(3), while Eex/J1 = −0.50381; remarkably, the

Lanczos step procedure remains effective even for larger sizes, the difference between

the energy of the best variational state with p = 2 and the extrapolated one being

very weakly size dependent (for L = 10, the p = 2 energy is E/J1 = −0.497549(2),

while the extrapolated one is E/J1 = −0.49781(2)). The same applies also for

excited states (see Fig. 4.8). The almost perfect alignment of the Lanczos steps,

together with the impressive accuracy obtained up to relatively large clusters, clearly

indicates that the exact ground state should be essentially described by the starting

Z2 gapless state.

In Figs. 4.9 and 4.10, we show the results for the S = 1 spin gap ∆1 at k = (π, 0)

and the S = 2 spin gap ∆2 for the 6×6 cluster, in comparison with the exact results.

Remarkably, our approach based upon a spin-liquid wave function gives excellent

accuracy on ∆1 in the whole region 0.2 ≤ J2/J1 ≤ 0.55. A similar accuracy is also

obtained for ∆2 in the strongly frustrated region (i.e., 0.4 ≤ J2/J1 ≤ 0.55), even

though this is not a simple excitation since it involves four spinons. At J2/J1 =

0.2 and 0.3, with the help of the noise δnoise in the mean-field determinant (see
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Figure 4.8: Energies per site for the S = 0 ground state (a), the S = 1 state with

k = (π, 0) (b), and the S = 2 with k = (0, 0) (c) versus the variance for J2/J1 = 0.5.

The results with p = 0, 1, and 2 are reported for L = 4, 6, 8, and 10, and with only

p = 0 and p = 1 for L = 14 and L = 18. The variance extrapolated results are also

shown.
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Figure 4.9: Spin gap for the S = 1 excitation at k = (π, 0) for the 6 × 6 cluster.

Results for p = 0, 1, and 2 Lanczos steps are reported, together with the extrapolated

and the exact energies.
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Figure 4.10: Spin gap for the S = 2 excitation with k = (0, 0) for the 6 × 6

cluster. Results for p = 0, 1, and 2 Lanczos steps are reported, together with the

extrapolated and the exact ones.
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Figure 4.11: The S = 2 spin gap as a function of the system size for the variational

wave function and the Lanczos extrapolation for J2/J1 = 0.5. The thermodynamic

extrapolation is consistent with a vanishing gap within the errorbar, i.e., ∆2 =

−0.04(5). The DMRG results on 2L× L cylinders (with open boundary conditions

along x and periodic along y) for the S = 1 excitation are also shown [17]. Exact

results (stars) of the S = 2 gap and the lowest S = 1 gap on the 6× 6 cluster (with

periodic boundary conditions) are reported.
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Figure 4.12: The S = 2 spin gap as a function of the system size for the variational

wave function and the Lanczos extrapolation for J2/J1 = 0.55. The thermodynamic

extrapolation is consistent with a vanishing gap within the errorbar, i.e., ∆2 =

−0.07(7). The DMRG results on 2L× L cylinders (with open boundary conditions

along x and periodic along y) for the S = 1 excitation are also shown [17]. Exact

results (stars) of the S = 2 gap and the lowest S = 1 gap on the 6× 6 cluster (with

periodic boundary conditions) are reported.
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Figure 4.13: The S = 1 spin gap with k = (π, 0) as a function of the system size

for the variational wave function and the Lanczos extrapolation at J2/J1 = 0.45.

The Lanczos step procedure reduces the gap on each size. The thermodynamic

extrapolation shows a finite gap within the errorbar, i.e., ∆1 = 0.10(4).
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Figure 4.14: The S = 1 spin gap with k = (π, 0) as a function of the system size

for the variational wave function and the Lanczos extrapolation at J2/J1 = 0.5.

The Lanczos step procedure reduces the gap on each size. The thermodynamic

extrapolation is consistent with a vanishing gap within the errorbar, i.e., ∆1 =

−0.00(3).
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Section 2.4), the S = 2 spin gap ∆2 is consistent with the exact values. Instead,

at J2/J1 ' 0.6 the accuracy deteriorates because a first-order transition to the

collinear magnetic state takes place in the thermodynamic limit [17, 43, 91]: in

this region, a quasi-degeneracy of levels in the energy spectrum occurs, leading

to a reduced overlap between the variational wave function and the lowest exact

eigenstate. [81, 90]

Then, we consider larger cluster and perform a finite size scaling of the gaps, see

Figs. 4.11 and 4.12 for the S = 2, and Figs. 4.13 and 4.14 for S = 1 with k = (π, 0),

respectively. For L ≥ 6, the extrapolations obtained with two (p = 0 and 1) or three

(p = 0, 1, and 2) points are perfectly consistent (i.e., the three points lie along a

straight line, see Fig. 4.8). Therefore, we perform the computationally demanding

second Lanczos step only for relatively small clusters (up to L = 10), while we limit

to the first Lanczos step for large clusters (up to L = 18).

The S = 2 gap is reported for two values of the frustrating ratio J2/J1, together

with the S = 1 gap obtained by DMRG calculations of Ref. [17] in Figs. 4.11

and 4.12. We find that the Lanczos step procedure clearly reduces the gap on

each size. In contrast with the DMRG picture, we have a clear evidence that the

spin gap closes when L → ∞ for J2/J1 = 0.5 and 0.55. Indeed, the values that

we obtain in the thermodynamic limit are both compatible with a vanishing gap,

i.e., ∆2 = −0.04(5) and −0.07(7) (see Figs. 4.11 and 4.12). We want to stress

that our calculations are done on square clusters, having all the symmetries of

the infinite lattice, and periodic boundary conditions, while DMRG calculations

employed cylinders with 2L × L sites and open boundary conditions along x. A

possible explanation for having a finite gap within DMRG is that it favors low-

entangled states with finite gaps. On the contrary, our variational approach is more

flexible, allowing both gapped and gapless states. At the pure p = 0 variational

level, the best wave function of the form (4.2) is found to be gapless, its energy being

the lowest one among all states constructed from Schwinger bosons and Abrikosov

fermions for 0.45 . J2/J1 . 0.6 [88]; moreover, by applying few Lanczos steps, the

finite-size gap lowers with no evidence for a finite value in the thermodynamic limit.

Finally, the S = 1 gap with k = (π, 0) has been computed for various values of

J2 and cluster sizes (see Fig. 4.15). This gap is finite in the Néel phase for small

J2/J1, where the only gapless S = 1 excitations have k = (0, 0) and k = (π, π).
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Figure 4.15: The behavior of the extrapolated gap as a function of J2/J1 is reported.

The line is a guide to the eye. The Lanczos extrapolated gap as a function of L for

different values of J2/J1 are also reported in the inset.
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Indeed, this is what is found for J2/J1 . 0.48 when the Lanczos extrapolation is

considered, even if the starting variational wave function is gapless before Gutzwiller

projection. Remarkably, in agreement with the theoretical picture of the Z2Azz13

spin liquid, this gap vanishes for the two cases we investigated within the spin liquid

region: J2/J1 = 0.5 and 0.55 (before the transition to the collinear magnetic phase,

which occurs for J2/J1 & 0.6). We expect that the S = 1 gap at k = (π, 0) closes

for J2 → J c2 with a non-trivial exponent smaller than one, whose value is however

not possible to estimate with our numerical results. Nevertheless, by performing a

linear fit of our data, we can obtain an upper bound of the critical J c2 of the Néel

phase to spin liquid transition, which can be located at J c2 = 0.48(2).

In the following we report detailed tables for all the energies of the ground state

and excitations estimated with our methods, namely with the p = 0, 1, and 2 Lanczos

step wave functions and variance extrapolation at different J2/J1 and cluster sizes.
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Table 4.1: p=0
J2/J1 = 0.4 J2/J1 = 0.45 J2/J1 = 0.5 J2/J1 = 0.55

L = 6 S = 0 −0.52715(1) −0.51364(1) −0.50117(1) −0.48992(1)
S = 1 −0.49582(1) −0.48557(1) −0.47541(1) −0.46538(2)
S = 2 −0.46265(2) −0.44974(2)

L = 8 S = 0 −0.52302(1) −0.50930(1) −0.49656(1) −0.48487(1)
S = 1 −0.50835(1) −0.49635(1) −0.48453(1) −0.47299(1)
S = 2 −0.48095(1) −0.46806(1)

L = 10 S = 0 −0.52188(1) −0.50811(1) −0.49521(1) −0.48335(1)
S = 1 −0.51362(1) −0.50080(1) −0.48830(1) −0.47625(1)
S = 2 −0.48722(1) −0.47443(1)

L = 14 S = 0 −0.52124(1) −0.50745(1) −0.49447(1) −0.48242(1)
S = 1 −0.51772(1) −0.50425(1) −0.49131(1) −0.47904(1)
S = 2 −0.49141(1) −0.47880(1)

L = 18 S = 0 −0.52107(1) −0.50728(1) −0.49426(1) −0.48215(1)
S = 1 −0.51921(1) −0.50553(1) −0.49249(1) −0.48018(1)
S = 2 −0.49274(1) −0.48026(1)

Table 4.2: p=1
J2/J1 = 0.4 J2/J1 = 0.45 J2/J1 = 0.5 J2/J1 = 0.55

L = 6 S = 0 −0.52928(1) −0.51538(1) −0.50323(1) −0.49303(1)
S = 1 −0.50042(1) −0.49020(1) −0.48082(1) −0.47238(1)
S = 2 −0.46807(1) −0.45605(1)

L = 8 S = 0 −0.52501(1) −0.51101(1) −0.49855(1) −0.48777(1)
S = 1 −0.51157(1) −0.49963(1) −0.48857(1) −0.47847(1)
S = 2 −0.48489(1) −0.47305(1)

L = 10 S = 0 −0.52368(1) −0.50973(1) −0.49718(1) −0.48622(1)
S = 1 −0.51610(1) −0.50344(1) −0.49165(1) −0.48090(1)
S = 2 −0.49041(1) −0.47867(1)

L = 14 S = 0 −0.52287(1) −0.50899(1) −0.49638(1) −0.48519(1)
S = 1 −0.51966(1) −0.50632(1) −0.49398(1) −0.48270(1)
S = 2 −0.49387(1) −0.48221(1)

L = 18 S = 0 −0.52259(1) −0.50874(1) −0.49611(1) −0.48475(1)
S = 1 −0.52083(5) −0.50137(1) −0.49475(1) −0.48327(1)
S = 2 −0.49485(1) −0.48319(1)
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Table 4.3: p=2
J2/J1 = 0.4 J2/J1 = 0.45 J2/J1 = 0.5 J2/J1 = 0.55

L = 6 S = 0 −0.52957(1) −0.51558(1) −0.50357(1) −0.49399(1)
S = 1 −0.50130(1) −0.49108(1) −0.48197(1) −0.47419(1)
S = 2 −0.46929(1) −0.45750(1)

L = 8 S = 0 −0.52539(1) −0.51125(1) −0.49886(1) −0.48841(2)
S = 1 −0.51224(2) −0.50033(1) −0.48952(1) −0.48008(4)
S = 2 −0.48583(4) −0.47443(2)

L = 10 S = 0 −0.5240(1) −0.51001(1) −0.49755(1) −0.48693(3)
S = 1 −0.51671(7) −0.50398(1) −0.49243(1) −0.4825(2)
S = 2 −0.49121(3) −0.4800(2)

L = 14 S = 0
S = 1
S = 2

L = 18 S = 0
S = 1
S = 2

Table 4.4: extrapolation
J2/J1 = 0.4 J2/J1 = 0.45 J2/J1 = 0.5 J2/J1 = 0.55

L = 6 S = 0 −0.52972(1) −0.51566(1) −0.50382(1) −0.49521(7)
S = 1 −0.50204(5) −0.49187(4) −0.48312(6) −0.4766(1)
S = 2 −0.4706(1) −0.4587(1)

L = 8 S = 0 −0.52556(1) −0.51140(1) −0.49906(1) −0.48894(3)
S = 1 −0.51282(1) −0.50085(1) −0.49039(2) −0.48194(3)
S = 2 −0.48677(1) −0.47602(3)

L = 10 S = 0 −0.52429(2) −0.51017(2) −0.49781(2) −0.48766(6)
S = 1 −0.51718(3) −0.50445(3) −0.49329(5) −0.4842(1)
S = 2 −0.49203(5) −0.48157(8)

L = 14 S = 0 −0.52351(2) −0.50953(1) −0.49722(2) −0.48696(5)
S = 1 −0.52052(2) −0.50724(3) −0.49562(5) −0.48594(7)
S = 2 −0.49539(4) −0.48524(9)

L = 18 S = 0 −0.52333(1) −0.50940(1) −0.49717(2) −0.48698(5)
S = 1 −0.52180(4) −0.50828(3) −0.49645(3) −0.48656(5)
S = 2 −0.49636(3) −0.48638(5)
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4.5 Conclusions

In this chapter, by using the variational Monte Carlo techniques, we have studied

the properties of the J1−J2 Heisenberg model on the square lattice. The spin liquid

Z2Azz13 has been used to construct the variational wave functions for not only the

ground state (S = 0) but also the S = 2 and S = 1 with momentum (0, 0) and

(π, 0) spin excitations, respectively. The results of the spin-spin and dimer-dimer

correlations show no ordered phase in the strongly frustrated regime. In order to

extract important information on the spin gap in the J1− J2 Heisenberg model, the

energy values of these three states have been computed.

The few Lanczos step technique has been performed to improve the accuracy

of these three variational wave functions. With the help of p = 1, 2 Lanczos steps,

the energy values of the ground state and excitations are highly improved. Though

the variational calculations with Lanczos steps are not size consistent, we can do

the variance extrapolation by the p = 0, 1, 2 variational results. On a small cluster

like L = 6, the exact energies of the ground state and excitations are obtained

by the linear extrapolation with the p = 0, 1, 2 calculations. On larger sizes, the

calculations also show very high accuracy.

According to the systematic simulations on spin gaps until 324 clusters, we have

showed that, at J2/J1 = 0.5 and 0.55, the S = 2 spin gaps go to zero when L→∞.

The phase diagram can be obtained by the S = 1 spin gap which vanishes at

J2/J1 = 0.48(2). This is a solid evidence that the spin-liquid phase of the J1−J2

model on the square lattice is gapless and may be very well described by using a

Abrikosov-fermion mean field with a Z2 gauge structure and gapless spinons with

four Dirac points at k = (±π/2,±π/2). The latter statement is further supported

by the occurrence of a vanishing S = 1 gap at the non-trivial momenta k = (π, 0)

and (0, π). Our calculations give the first direct evidence for the existence and the

stability of highly-entangled gapless spin liquids in SU(2) spin models.



Conclusions

In this thesis, we have applied state-of-the-art quantum Monte Carlo techniques,

including the variational and the Green’s function Monte Carlo with the fixed-node

approximation, to two-dimensional strongly-correlated systems. Few Lanczos steps

have been used to systematically improve the accuracy of the trial wave functions.

By introducing a suitable regularization scheme for the variational calculations with

few Lanczos steps, stable and controllable simulations can be performed up to very

large cluster sizes with good accuracy. We have studied two systems: the doped

antiferromagnet described by the two-dimensional t − J model and the frustrated

Néel antiferromagnet described by the J1−J2 Heisenberg model on the square lattice.

For the t − J model at J/t = 0.4, based on the previous variational [70] and

fixed-node Monte Carlo [20] work, we have improved the accuracy of the uniform

RVB state by few Lanczos steps and performed calculations up to the 162-site clus-

ter. The final accuracy of the fixed-node Monte Carlo on top of few Lanczos steps is

competitive with recent DMRG and iPEPS calculations [16], as far as the variational

energy is concerned. Our main outcome is that the ground state is homogeneous

and no evidence of stripes is detected around the doping δ = 1/8. Indeed, our best

approximation to the ground state does not show any evidence towards charge in-

homogeneity. Furthermore, we confirm previous fixed-node calculations [20], where

a uniform state containing superconductivity and antiferromagnetism is stabilized

at low hole doping. By contrast, DMRG and iPEPS calculations suggested a stripe

phase at doping δ = 1/8 [15, 16]. Actually the conflict between the different methods

is an open issue and deserves further investigations. In our work, we only considered

charge and spin modulations Eqs.(3.10) and (3.11). It would be interesting to take

into account other kinds of stripes, for example the π-phase domain RVB states
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Figure 5.1: A continuous phase transition between antiferromagnetic order (AF)

and the gapless Z2 spin liquid. At the critical point, the vison gap (green line) and

the S = 1 spin gap with k = (π, 0) (red line) vanish. A state with four gapless modes

with momenta (0, 0), (π, π), (π, 0), and (0, π) is obtained not only in the spin-liquid

regime but also at the critical point.

suggested in Ref. [69]. Another direction is to choose the so-called tensor network

state as a variational wave function in quantum Monte Carlo simulations, because

this new class of variational wave functions for two-dimensional systems is largely

unbiased, as pointed out in Ref. [92]. This may help us to understand the reason

for the present discrepancy between quantum Monte Carlo and DMRG/iPEPS and

draw a final conclusion on the properties of the ground state in the two-dimensional

t− J model.

For the J1− J2 Heisenberg model on the square lattice, according to the projec-

tive symmetry group classification [50] of different spin liquids (see Chapter 1), we

searched among many possible candidates and obtained the best variational energy
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at J2/J1 = 0.5 by means of the ansatz classified as Z2Azz13. No spin or dimer

order has been found in the strongly frustrated regime and our calculations implied

that a Z2 spin liquid phase may faithfully represent the exact ground state around

J2/J1 = 0.5. This is in agreement with the recent DMRG results [17], which also

suggested a Z2 spin liquid phase in the region 0.4 . J2/J1 . 0.6. However, a

finite triplet gap was obtained by DMRG in the spin-liquid phase. Instead, our

results of the S = 2 and S = 1 spin gaps clearly support gapless excitations around

J2/J1 = 0.5. In particular, we found gapless triplet excitations at momenta (π, 0)

and (0, π), which are compatible with the presence of four Dirac points at momenta

(±π
2
,±π

2
) in the mean-field part of the Z2Azz13 ansatz.

The disagreement between quantum Monte Carlo and DMRG may arise from

the following reasons: in DMRG, calculations are done on 2L × L clusters with

cylindrical boundary condition, i.e., open boundary along x direction and periodic

boundary along y direction. These boundary conditions may induce strong finite

size effects, since the rotational symmetry of the lattice is broken. Moreover, the

accuracy of the DMRG calculations exponentially decreases with the number of

chains. Although further studies are necessary to completely clarify the nature of

the ground state of the J1 − J2 model in the highly-frustrated regime, we believe

that quantum Monte Carlo provides a reasonable and accurate description of the

thermodynamic limit and suggests a very interesting effect from strong frustration,

namely the vanishing of the S = 1 spin gap with (π, 0) that may be observed in

experiments.

We would like to remark that our results are not compatible with the standard

Landau theory of continuous phase transitions. Here, a system described by a three-

dimensional (n = 3) spin vector should have only n− 1 = 2 gapless modes, even at

the transition point [93]. Instead, our results suggest the existence of four gapless

triplets at the transition between the antiferromagnetic and the spin-liquid phases:

the ordinary magnons with k = (0, 0) and (π, π), but also two more excitations

with k = (π, 0) and (0, π). Moreover, the spin-spin correlations of a gapless Z2 spin

liquid with Dirac points decay as 1/r4 because the correlation, namely the Gutzwiller

projection, does not affect the long-range mean-field behavior. This implies that,

if a Z2 spin liquid remains stable down to the transition point, a critical exponent

η = 3 of the spin correlations (decaying as 1/r1+η) is implied. This value is much



102 Conclusions

larger than the value η ' 0.03 obtained by the standard n = 3 continuous phase

transition theory (i.e., based upon the φ4 field theory) [94]. An alternative and rather

interesting point of view is that the vison gap, which is finite in the Z2 spin-liquid

phase, vanishes when approaching the continuous transition to an antiferromagnetic

phase. This implies that the mean-field state at the critical point should have a U(1)

gauge structure. In our parameterization of the Z2Azz13 ansatz, we should obtain

the standard projected BCS wave function with dx2−y2 symmetry and dxy → 0. This

mean-field state is instead unstable against the Gutzwiller projection as for example

a finite antiferromagetic order parameter appears for small J2/J1. For a continuous

phase transition between an ordered antiferromagnet and a gapless Z2 spin liquid,

which becomes a critical U(1) state at the transition, the exponent η can be therefore

strongly modified by critical fluctuations. The scenario in which both the S = 1

excitations with k = (π, 0) and (0, π) and the vison gap vanish at the critical point

is depicted in Fig. 5.1. The field theory describing this possibility is not known so

far and, therefore, we believe that our numerical work requires further theoretical

studies on this fascinating picture of the transition between an antiferromagnetic

phase and a gapless Z2 spin liquid.
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[92] P. Corboz, R. Orús, B. Bauer, and G. Vidal, Phys. Rev. B 81, 165104(2010).

[93] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M.P.A. Fisher, J. Phys.

Soc. Jpn. 74, 1 (2005).

[94] R. Guida and J. Zinn-Justin, J. Phys. A: Math. Gen. 31 8103 (1998).



Acknowledgment

I would like to express my deep gratitude to my supervisors Prof. Sandro Sorella

and Dr. Federico Becca for their great scientific support, kindness, patience and

encouragement to me. Also I am very grateful to the stimulating collaborations with

Alberto Parola and Tao Li. Special thanks to my friends for their helpful discussion

on rich topics, Zhenyi Cai, Xiaochuan Ge, Ye Luo, Riccardo Sabatini, Sebastiano

Saccani, Xiaoquan Yu, Hongyi, Xie, Mohammad Zhian, and Simone Ziraldo.

I am grateful to all the members of the Condensed Matter Theory group, for

the inspiring work atmosphere that they create, and to the people of the Computer

Staff, for their precious support. I remember with pleasure all the SISSA members,

for the friendly atmosphere they provide, and my present office mates, Guglielmo

Mazzola and Travis Jones.

I would like to thank my lovely flatmates Michele, Alberto and Daniel. Last but

not the least I thank my parents and my sister for their continued support and my

wife Yanhua Hou for these wonderful years in Italy with her.

109





List of Publications

• Wen-Jun Hu and Ning-Hua Tong,

Dynamical Mean-Field Theory for the Bose-Hubbard Model,

Phys. Rev. B 80, 245110 (2009).

• Wen-Jun Hu, Federico Becca, and Sandro Sorella,

Absence of static stripes in the two-dimensional t − J model by an accurate

and systematic quantum Monte Carlo approach,

Phys. Rev. B 85, 081110(R) (2012).

• Tao Li, Federico Becca, Wen-Jun Hu, and Sandro Sorella,

Gapped spin-liquid phase in the J1−J2 Heisenberg model by a bosonic resonat-

ing valence-bond ansatz,

Phys. Rev. B 86, 075111 (2012).

• Wen-Jun Hu, Federico Becca, Alberto Parola, and Sandro Sorella,

Direct evidence for a gapless Z2 spin liquid by frustrating Néel Antiferromag-
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