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Chapter 1

Introduction

For a long time the backbone of traditional condensed matter theory was comprised of two
pieces. The first to be formulated was Landau’s symmetry breaking theory [1–3], to be
supplemented later by the theory of renormalization group and the second was Landau’s
Fermi liquid theory [4]. For about half a century these two theories dominated condensed
matter physics since people could not find a system that was not described by Landau’s
theories. The exceptional success of these theories lead to the belief that we understood
in principle the structure and behavior of all forms of matter. The shock came in 1982
with the discovery of the fractional quantum Hall effect [5], wherein it was found that these
fractional quantum Hall liquids exhibit non-Fermi liquid behavior. Furthermore, different
fractional quantum Hall liquids have the same symmetries, and thus fall out of the realm of
Landau’s symmetry breaking theory. These discoveries marked a revolution in condensed
matter theory and acted as a passage to a whole new world beyond Landau’s theories.

The frustrated low dimensional quantum spin systems provide a very promising play-
ground to catch a glimpse of this new world of exotic non-Fermi liquid phases. These
systems are examples of strongly correlated many body systems and have been argued to
host states which lack long range order and do not spontaneously break any symmetries.
These quantum spin liquid states contain completely new types of orders which are “dy-
namic” in origin, i.e. related to symmetries of complex ground state wave functions, as
opposed to “static” positional crystalline orders which are related to symmetries of classical
probability distribution functions of atoms, thus these novel orders are called “quantum
orders” . In some cases quantum spin liquids also feature topological orders [6–8]. One
can alternatively view quantum orders as describing the pattern of quantum entanglement
in the many-body ground state, in this picture the conventional crystalline phase lacks
any non-trivial entanglement pattern [9]. To this effect, the spin-1/2 quantum Heisenberg
antiferromagnetic model on the kagomé lattice has been shown to host such an exotic quan-
tum paramagnetic state. This is made possible through the combination of low spin, low
dimensionality, low coordination number and frustrating antiferromagnetic interactions of
the Heisenberg type, all of which combine to amplify quantum fluctuations to an extent
needed to stabilize a quantum paramagnet, even at T = 0. The near perfect realization of
this model Hamiltonian is found in Herbertsmithite (ZnCu3(OH)6Cl2) [10] on which various
probes have established a quantum spin liquid behavior down to temperatures of 20 mK
(∼ J/104) [11]. However, the precise identification of this quantum paramagnetic phase is
still an open problem experimentally and even more so theoretically where this question
has and is being vigorously debated without any definitive conclusions, till date. Different
approximate theoretical approaches have yielded myriad of different possible ground states,
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which have been found to be competing within a very narrow spectrum of energy, and are
extremely sensitive to small perturbations. This extensive quasi-degeneracy of the ground
state manifold is what makes the problem of the ground state of the kagomé antiferromagnet
an extremely challenging puzzle.

In my thesis, I will revisit this problem within the realm of slave-particle approaches,
which form the traditional line of attack for studying spin systems featuring a magnetically
disordered ground state. In particular, I shall work within the SU(2) slave boson (Schwinger
fermion) approach. Within this formalism, it was argued in [12, 13] that a particular
algebraic spin liquid with a U(1) low energy gauge structure (so called U(1) Dirac spin liquid)
possesses the lowest energy and should occur as the ground state. In fact, all experimental
studies till date back up such a claim for a long range resonating valence bond state to
be stabilized [14]. However, such algebraic spin liquids are marginally stable and hence
“critical” [15], thus lending support to the thought that at least for spin-1/2 models such
spin liquids should destabilize into either the class of stable Z2 spin liquids or into valence-
bond crystals, and it has not been appreciated that such delicate phases can in fact be
robust, and exist as real physical spin liquids [8]. The existence of algebraic spin liquids is
quite a remarkable and revolutionary phenomenon as it disproves conventional wisdom, and
indirectly proves the existence of quantum orders which are in fact responsible for protecting
the gapless nature of the spin liquid excitations [7, 8]. This is another reason which makes
the kagomé Heisenberg model not only challenging but also exciting, since it involves a
frontier issue. The broad aim and conclusion of the work contained in the thesis is to study
and demonstrate the remarkable stability of the U(1) Dirac spin liquid with respect to a
very large class of perturbations, including Z2 spin liquids, valence bonds crystals and chiral
spin liquids, and thus to vouch for it as the ground state of the spin-1/2 quantum Heisenberg
model on the kagomé lattice.

The relevant numerical framework for tackling the above mentioned problems and issues
is provided by the fermionic variational quantum Monte Carlo methods. In practice, we
compute the energy of optimized variational wave functions that are constructed by apply-
ing the Gutzwiller projector to different states obtained from mean-field Hamiltonians of
Schwinger fermions. In this respect, by an exact treatment of the full projector that ensures
the one fermion per site constraint, we go much beyond the simple mean-field approach.
To carry out the optimization of wave functions representing these competing phases I have
used a state-of-the-art implementation of the stochastic reconfiguration optimization algo-
rithm [16, 17]. This method enables one to obtain an extremely accurate determination of
variational parameters, since small energy differences are effectively computed by using a
correlated sampling, which makes it possible to strongly reduce statistical fluctuations. This
feature is indispensable when one wants to literally “hair split” phases which are clustered
together in a narrow energy width, as is the case with the kagomé spin-1/2 Heisenberg
antiferromagnet problem. We also did an extension of the above scheme, by implementing
the Lanczos algorithm within a variational Monte Carlo framework [18], since, this is nec-
essary to improve the variational wave functions and also to extract the true ground state
properties.

The thesis is structured in the following manner: In Part I, I will set up the theoretical
framework and the numerical machinery, this part thus lays the necessary foundation for
the rest of the manuscript. In particular, chapter 2 is devoted to introducing frustration
and quantum paramagnetic phases in a qualitative manner and subsequently moves on to
describe the SU(2) slave boson formalism and the consequent classification of spin liquids
using projective symmetry groups, among other things. In chapter 3, the numerical methods,
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namely the fermionic variational Monte Carlo scheme, Green function Monte Carlo, the wave
function optimization algorithm and also the implementation of Lanczos algorithm within
a Monte Carlo framework are described.

In Part II, I will trace through the history and the current scenario of the problem of
finding the ground state of the kagomé Heisenberg antiferromagnet from both theoretical and
experimental side. In particular, chapter 4 is devoted to a survey of the various ground states
that have been proposed using different numerical techniques, and setting up the problem
of the kagomé antiferromagnet within the current scenario. In chapter 5, a brief survey of
the recent experimental developments on Herbertsmithite is given, the nature of the ground
state vouched by experiments is discussed, and other promising kagomé compounds hosting
a quantum spin liquid ground state are also discussed.

In Part III, I will present my PhD research projects. Chapter 6, deals with the complete
symmetry classification of valence bond crystals on the kagomé lattice and results are given
concerning the stability of the two critical spin liquids, the U(1) Dirac and uniform RVB spin
liquid towards dimerizing into these crystals. It is shown that the U(1) Dirac spin liquid
is robust to these perturbations and has the lowest energy for the spin-1/2 Heisenberg
antiferromagnet. However, upon addition of a small second nearest neighbor ferromagnetic
exchange coupling to the Hamiltonian, it is demonstrated that a non-trivial 36 site unit
cell valence bond crystal is stabilized [19]. In chapter 7, I present the study concerning
the stability of U(1) Dirac and uniform RVB spin liquids towards destabilizing into the
class of Z2 spin liquids. It is shown that for the spin-1/2 Heisenberg antiferromagnet, both
these gapless spin liquids are robust towards destabilizing into gapped Z2 spin liquids, one
of which was recently conjectured to be the ground state that has been found in recent
DMRG studies [20, 21]. The stability of these gapless spin liquids is also preserved on
addition of an exchange coupling of both ferromagnetic and antiferromagnetic type to the
Hamiltonian [22]. Finally, chapter 8 is concerned with extracting the true ground state
properties of the spin-1/2 Heisenberg antiferromagnet, by applying a few Lanczos steps to
the energetically lowest variational wave functions such as the U(1) Dirac spin liquid and
subsequently analyzing their properties using variational Monte Carlo and Green function
Monte Carlo. The ground state estimates of energy on the 48 site cluster and also larger
clusters are given. We also perform a finite size extrapolation and give the energy estimate
in the thermodynamic limit.
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Preliminaries

7



Chapter 2

Magnetic structures

It is well known that at low enough temperatures compared to energies of interaction be-
tween atoms, “conventional” condensed matter systems tend to freeze in some of their degrees
of freedom. Furthermore, if these systems are in thermodynamic equilibrium they acquire
ordering or regularity in those frozen degrees of freedom. A classic example is a solid, which
in thermodynamic equilibrium is crystalline. The subsequent variety of electrical and mag-
netic structures that occur in crystals is a consequence of their time-reversal symmetry
(t → −t), applied to a particular state within the space of equilibrium states. Precisely
speaking, the behavior under time-reversal of the time averaged microscopic charge den-
sity function ρ̄(x, y, z) and current density function j̄(x, y, z) determines the electric and
magnetic structure of the crystal, respectively [23]. A large number of materials existing in
nature are “dull”, in the sense that on time-reversal their state does not change, and since j̄
is odd under time-reversal, it implies that j̄ = 0 identically. Thus, such crystals do not have
any magnetic structure, but they must have an “electrical” structure, since ρ̄ is even under
time-reversal. We shall only concentrate on crystals which have a magnetic structure. It is
clear that for such crystals to exist (j̄ 6= 0) their state must change under time-reversal. A
further bifurcation can be done by noticing that even when j̄ 6= 0 the mean atomic magnetic
moment over a “magnetic” unit cell can be either non-zero or zero, in the former case we
call such bodies as ferromagnetic crystals and in the latter case antiferromagnetic crystals.

The above considerations also imply the existence of at least two magnetic sub-lattices
for an antiferromagnet, with equal and opposite mean atomic magnetic moments compen-
sating each other (in the absence of an external magnetic field) [24–26]. Multiple sub-lattices
may also exist for ferromagnets. We will use the term ferromagnet in a more restricted sense,
whereby assuming that all the atomic magnetic moments are aligned parallel to each other.
The simplest examples of ferromagnetically ordered crystals are Fe, Ni and Co; on the other
hand for antiferromagnets, the prominent examples are the transition metal oxides and flu-
orides. These magnetic structures exist only as long as the temperature is lower than a
certain critical value, called the Curie temperature for “ferromagnets” [27] and Néel temper-
ature for “antiferromagnets” [24, 26, 28]. Above these temperatures, thermal fluctuations
wash out the order leading to a paramagnetic state, through a second order phase transi-
tion [28]. Finally, we mention that it may happen that in a crystal the magnetic moments
of different sub lattices remain uncompensated, this gives rise to another type of magnetic
structure called “ferrimagnetic”, [29, 30] examples of which are salts like MnO.Fe2O3 and
magnetite, the oldest known magnetic substance.

Thus, the types of possible magnetic structures existing in nature are dictated by consid-
erations of symmetry only. However, to explain why these magnetic structures arise one has
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to delve into the microscopics and identify the forces which are purely quantum-mechanical
and relativistic in origin. But before we setup the Hamiltonian for these magnetic systems,
one can qualitatively identify the various interactions and their relative strengths as follows.
Firstly we recollect that, wave functions with different spatial symmetries give rise to dif-
ferent values of the energies of the system, in general. Also, the magnitude of the total spin
of the system depends on the spatial symmetry of the wave function due to the principle of
indistinguishability of physically identical particles. Thus its evident that the energy of the
system depends on the magnitude of the total spin. This mechanism or rather the peculiar
dependence of the energy on the total spin, is what is mainly responsible for the correlation
between the directions of the electron spins, thus giving rise to different magnetic struc-
tures. It is a purely quantum-mechanical effect and is called the exchange effect [31, 32].
Another interaction which exists in the system is the direct magnetic interaction between
the electron magnetic moments and between the electron’s magnetic moment and the lattice
electric field, however these are purely relativistic effects. Hence, compared to the exchange
interaction, these are weaker due to the presence of a factor of 1/c2, which also implies that
the dependence of the energy of the crystal on the direction of the total magnetization is
extremely weak [23]. From now on, we will neglect these interactions in our treatment, only
because we will study phases in thermal equilibrium and not kinetic processes. However,
it should be remembered that without the relativistic interactions, thermal equilibrium can
never be established.

2.1 Models for magnetic structures

2.1.1 The Hamiltonian for a ferromagnet

We can at once write down the microscopic Hamiltonian for a ferromagnet (in the non-
relativistic approximation) as consisting of the kinetic energy of the particles and the energies
of electrical interactions between the electrons, and between electrons and nuclei. However,
a direct solution to this Hamiltonian is too cumbersome in general cases. It so turns out
that the exchange Hamiltonian does the job and reproduces the correct energy spectrum
near the ground state, which is what we are interested in. On the other hand, it is clearly
mathematically much simpler to handle. Its mathematical form can be written down from
extremely general considerations of symmetry only [33]. In particular, if we demand isotropy
of the Hamiltonian for the interaction between a pair of identical particles, then the only
invariant is Ŝi ·Ŝj, where Ŝi are the spin operators at each site i of the crystal lattice. Hence,
the Hamiltonian is an arbitrary function of Ŝi · Ŝj, written as,

Ĥ = f (Ŝi · Ŝj ) (2.1)

Furthermore, when the spin of the particles is 1/2 then any arbitrary function of Ŝi · Ŝj
can be reduced to an expression linear in Ŝi · Ŝj. Thus, the exchange Hamiltonian of a
ferromagnetic crystal consisting of identical spin-1/2 particles takes the following form [34],

Ĥ =
∑
ij

J(rij)Ŝi · Ŝj (2.2)

where ij denotes sums over all pairs of sites and the Ŝi are spin-1/2 operators at each site
i. The J(rij) is a function of the distance between two sites and is called the exchange
integral. For a ferromagnet J(rij) < 0, in our notation. Thus, it is evident from 2.2 that
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in the ferromagnetic ground state the spins of all atoms are aligned parallel [35–37] and
the ground state is strongly correlated. The Hamiltonian in 2.2 is called the Heisenberg
Hamiltonian.

2.1.2 The Hamiltonian for an antiferromagnet

If we “picture” an antiferromagnet as an arrangement of alternating up and down spins,
then in principle there is no isotropic microscopic Hamiltonian analogous to the exchange
Hamiltonian for a ferromagnet, of which this Néel state is an exact eigenstate. Thus, any
physical theory of an antiferromagnet has to be macroscopic, whereby one associates a mean
magnetic moment with each of the magnetic sublattices [33, 38]. It is worth mentioning
that there is no exact proof, till date, which shows the existence of magnetic sublattices in
the Heisenberg antiferromagnetic model in three dimensions [39]. However, by using the
Hartree-Fock method we know that in the ground state of this model it is possible to identify
magnetic “sublattices”, say two of them, with the spins “principally” pointing up in one sub
lattice and “principally” pointing down in the other [40]. Using this picture, one obtains
an excellent agreement with experimental data on magnetic as well as thermal properties
of antiferromagnetic crystals, and also for neutron diffraction data which is a key probe for
such magnetic structures. The spin-1/2 Heisenberg antiferromagnetic model, i.e. eqn 2.2
with J(rij) > 0, also arises as a limit of the Hubbard model at half filling for large onsite
Coulomb repulsion [41]. Thus, the spin-1/2 Heisenberg antiferromagnetic model serves as
an effective model for the Mott insulator phase [42].

The Heisenberg model has had a long and distinguished career and is still a cherished
model due to the fact that it leads to physically reasonable results for magnetic systems
at low temperatures and is considerably simpler to handle as compared to an ab initio
Hamiltonian for the system. However, despite its deceptive simplicity, it has required the
most sophisticated techniques, even to yield approximate solutions.

2.2 Destruction of magnetic orders
The ferromagnetic, antiferromagnetic and ferrite magnetic orderings exist only at tempera-
tures much lower compared to J . Upon turning on the “heat”, thermal fluctuations wash out
these orderings and stabilize a paramagnetic state. The temperature at which this second
order phase transition occurs is called, as previously mentioned, the Curie temperature for
ferromagnets and the Néel temperature for antiferromagnets. The resulting paramagnetic
phases have uncorrelated spins and are in some sense a “liquid” of spins. Using conventional
wisdom they should not possess any physical “orders” enabling the distinguishing of these
paramagnetic phases from each other. In other words, since there is no breaking of any
physical symmetry such as space group symmetry or/and time-reversal, there is thus no
order parameter in the sense of Landau [1–3, 43], that one can associate to these thermally
driven (T 6= 0) paramagnetic phases, all such phases are the same. However, a natural
question that comes to mind is that “how do we know that there is no non-trivial internal
symmetry which can characterize ‘different’ paramagnetic phases?”. Well, for T 6= 0 para-
magnets we are sure that there are no non-trivial internal symmetries which can enable us
to distinguish the apparently ‘boring’ paramagnets. This can be understood if one keeps in
mind that thermal fluctuations are not phase coherent.

But there is another mechanism by which magnetic ordering can be washed out, namely
by turning on the “heat” of quantum fluctuations at zero temperature, see Fig. 2.1. If the
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Figure 2.1: Adapted from [45]. A generic phase diagram of quantum antiferromagnets is
shown w.r.t. to thermal and quantum fluctuation driven disorder. The nature of the phase
transition, the critical point and the paramagnetic states are very different for a quantum
fluctuation driver and a classical thermally driven transition.

system becomes hot enough at zero temperature, then one can have a quantum paramagnetic
state which is again a “liquid” of spins, with the on-site magnetization 〈Ŝi〉, and also more
complex SU(2) breaking order parameters, being identically zero. As opposed to a classical
(T 6= 0) paramagnet the quantum paramagnet is far more richer, due to the fact that
quantum fluctuations can be phase coherent, as opposed to thermal fluctuations. A quantum
spin liquid, thus possesses non-trivial internal symmetries/orders, non-trivial correlations
and excitations and completely falls out of the grasp of the two monumental backbones
of traditional condensed matter theory, i.e. the Landau’s theory of phase transitions [1–3]
and the Landau’s Fermi liquid theory [4, 44]. In the next section I will describe the key
ingredient which stabilizes such exotic phases, namely frustration.

2.2.1 Frustration: the “spice” of modern condensed matter

The key ingredient “spice” which helps, in part, to spoil long range magnetic order or
magnetic freezing is frustration which results in an accidental macroscopic ground state
degeneracy in the system at a classical level, this huge degeneracy is a defining characteristic
of frustration and in part, is what prevents long range order from setting in. However,
fluctuations about the classical state may select some preferred ground state out of the
huge manifold, by a mechanism called ‘order by disorder’ [46, 47]. This is a consequence of
the fact that the macroscopic ground state degeneracy is not related to any symmetries and
is just accidental. This mechanism succeeds on the kagomé lattice (Fig. 2.2a) Heisenberg
antiferromagnetic model [48], but fails for the three dimensional analogue, i.e. the pyrochlore
lattice (Fig. 2.2b) [49, 50].

Frustration is achieved when there are interactions in the system which can never be
simultaneously satisfied. On the one hand this can happen due to their competing nature,
like in the J1 − J2 Heisenberg model on the square lattice [51], while on the other hand de-
struction of Néel order can also result from considerations of lattice geometry only [52, 53],
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(a) Kagomé lattice (b) Pyrochlore lattice

Figure 2.2: (a) The kagomé lattice is formed from corner-sharing triangles, hence its non-
bipartite with a co-ordination number of 4. It is the most frustrated lattice in 2-d upon
inclusion of nearest neighbor antiferromagnetic couplings. (b) The pyrochlore lattice is
formed from corner sharing tetrahedra, and is in some sense the 3-d analogue of the kagomé
lattice.

a dramatic example of this meltdown occurs on the kagomé lattice Heisenberg antiferro-
magnetic model, see Fig. 2.2a. In three dimensions the equivalent example is the pyrochlore
lattice Heisenberg antiferromagnetic model, see Fig. 2.2b. This destruction of magnetic
order is further aided by amplifying quantum fluctuations by having a low spin value on
a lattice that is non-bipartite, with low dimensionality and a low coordination number.
Furthermore, if the interactions are dominantly of Heisenberg type then the quantum fluc-
tuations are stronger. Thus, if all these factors come together they can prevent magnetic
freezing or ordering from setting in, thereby stabilizing the colorful exotic zoo of T = 0
quantum paramagnetic phases about which much remains to be understood. In this zoo,
broadly speaking there are two species of quantum phases, namely “spin liquids” and “va-
lence bond crystals”, the former preserve lattice translation symmetry and the latter break
them, at the bare minimum level.

A “playground” where such phases can be stabilized is the spin-1/2 quantum Heisenberg
antiferromagnet on the kagomé lattice. This is an example of pure geometric frustration
inducing a spin disordered ground state, a fact which has been firmly established, both
theoretically and experimentally, but the exact nature of the ground state is still elusive.
The most promising candidate material to reproduce this environment is Herbertsmithite
(ZnCu3(OH)6Cl2) and in general other materials of the paratacamite family. However, it is
worth noting that in realistic systems there are other competing forces which try to align
or freeze the system and thus work against the effects of frustration. In the simplest case,
these can be interactions (of the same type) beyond nearest neighbor Heisenberg interaction,
generally occurring at an energy scale smaller than nearest neighbor J , but below which
order may set in, see [54, 55] for such a scenario on the pyrochlore lattice, and [56] for
the kagomé lattice. If the crystal lacks a centre of inversion symmetry then Dzyaloshinskii-
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Moriya interaction is also allowed and has been argued to play an important role in the
low energy dynamics of Herbertsmithite. But on the pyrochlore lattice nearest neighbor
Heisenberg antiferromagnet, its effect has been shown to be drastic at low temperature,
whereby in [57] it was shown that it can drive the a phase transition to a long range
ordered state at a temperature of the order of that corresponding to Dzyaloshinskii-Moriya
interaction. Furthermore, all realistic systems suffer from some inter-site defects which
also acutely affect the low energy dynamics [58, 59]. Finally, we mention that relativistic
interactions of the dipolar type, despite their relative weakness can also induce long range
order [60, 61].

2.2.2 Spin liquids and valence bond crystals: a qualitative discus-
sion

Spin liquids and valence-bond crystals are examples of insulating phases. Till date, we lack
a complete theory explaining the properties in general, of insulators, as opposed to metals
where the Landau’s Fermi liquid theory [4] does a marvelous job at explaining the physical
properties of the metallic state. This is simply due to the fact that a myriad of different
insulators can exist depending on the fine tuning of the constants governing microscopic
interactions. This situation is identical to what we have, if we compare ordinary gases and
ordinary liquids. For the former phase we can construct a general theory and for the latter,
no such general theory can be constructed due to precisely the same reason mentioned
above [3]. In the case of those insulating phases which possess magnetic long range order,
we have a much better understanding as opposed to those insulators which lack magnetic
long range order. It is only in the recent decades that we have been making headway in a
systematic manner to solve this long standing problem, namely that of constructing a general
framework to understand magnetically disordered insulating phases, like spin liquids.

The existence of spin liquids, surprisingly enough was first conjectured way back in 1941
by Pomeranchuk, whereby in [62, 63] he argued that in a S = 1/2 Heisenberg antiferromag-
netic model, quantum fluctuations can wash out long range order and stabilize a quantum
paramagnet with gapless fermionic excitations, as opposed to magnon or gapped singlet
excitations in a Néel state. Later in 1973, Anderson advocated these quantum phases as
viable alternate ground states of highly frustrated quantum lattice antiferromagnetic models
in two dimensions [64–66]. A common feature of both these spin rotation invariant Mott
insulating (i.e. an insulator with an odd number of electrons per unit cell) quantum “disor-
dered” phases, is that due to their paramagnetic nature, the two-spin correlation function
〈Ŝi · Ŝj〉 goes to zero as the distance between the spins tends to infinity. However, what
distinguishes these two phases is the behavior of the four-spin (dimer-dimer) correlation
function, which for a VBC, does not go to zero at large distances, but shows long range or-
der. On the other hand, for a spin liquid, the two, four and all higher order spin correlation
functions go to zero at large distances. It is worth mentioning that we shall not put the
constraint, as is usually done, that spin liquids should not spontaneously break any sym-
metry, this is unnecessary and restrictive. In one particular way of analyzing spin liquids,
called the projective construction [7, 8], one can construct spin liquid wave functions which
break point group and/or time reversal symmetry. Also, this constraint of no spontaneous
symmetry breaking can be satisfied by phases like the Haldane phase, which are not quan-
tum spin liquids, but are rather “valence bond solids”, this subtle distinction has its roots in
the Lieb-Schultz-Mattis-Hastings theorem and its generalizations [6, 67–70]. In this work,
when we talk about spin liquids, we shall mean a phase with an odd number of electrons
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(a) Dimer state (VBC) (b) RVB state

Figure 2.3: (a) A prototype of a VBC state: The solid red ovals represent spin singlets
(valence bonds), which are frozen into a specific regular pattern. The singlets in a VBC are
short ranged, here its nearest neighbor. Such a state in which the singlets form a crystalline
order is also called a spin-Peierls state, it breaks the translation symmetry of the lattice. (b)
A snapshot of a spin liquid RVB state. The spins are paired up into randomly distributed
singlets of all possible lengths, denoted here by different colors. There is resonance between
different configurations (ways of partitioning) spins into singlets. The total wave function
is a superposition of each such snapshot.

per unit cell which preserves lattice translation symmetry along with spin rotation, if it also
preserves lattice point group and time reversal symmetry, we shall the refer to it as a fully
symmetric spin liquid. A VBC on the other hand breaks the elementary lattice translational
symmetry with unit cells of varying sizes.

It is also commonly mentioned that fractionalization is another hallmark of quantum spin
liquids, this is not so, strictly speaking. Precisely speaking, fractionalization implies, firstly,
that the elementary excitations (quasiparticles) carry quantum numbers which are a fraction
of those corresponding to the local degrees of freedom and thus cannot be associated to
collective modes in the sense of Landau; secondly, and more importantly it should be possible
to separate these quasiparticles infinitely away from each other while expending only a finite
amount of energy, the quasi-particles are then said to be deconfined. If we focus on spin-
charge separation as a particular case of fractionalization, then e.g., the so called “critical”
or “algebraic” spin liquids do not satisfy the second condition for fractionalization mentioned
above, while Z2 and chiral spin liquids do so [7, 8]. Those phases of spin liquids that do admit
proper fractionalization, also then contain topological orders and not just “internal” patterns
(quantum orders). These states of matter are thus rightly called topologically ordered
phases. We also mention, that in one dimension a VBC phase may sustain fractionalization,
although this is, in general impossible in higher dimensions for ordered states (conventional
or otherwise). These exotic fractional excitations are well established in one-dimensional
systems where they occur as solitons, kinks or domain walls. However, in two dimensions,
the experimental search is still going on for a smoking gun signature of fractionalization. For
a recent review on these phases and their experimental search, see [71]. When dealing with
these quantum phases, I will concentrate solely on quantum spin liquids and valence bond
crystals in two dimensions arising in purely spin-1/2 models which are SU(2) invariant, of
the Heisenberg type.
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2.2.3 Building blocks of quantum paramagnets

From the above discussion it is evident that spin liquids and valence bond crystals are non-
magnetic in nature, so the wave function representing these phases should have spin-0. The
wave function for the simplest building block of such a phase should obviously then be an
anti-symmetrical spinor of rank two, i.e. γαβ, one index for each of the two electron spins
at two different lattice sites. However, an anti-symmetrical spinor is just a scalar and thus
corresponds to a system with total spin-0. Thus, we can picture the quantum spin liquid
state as being built out of singlets in which the two electron spins are anti-parallel, due
to antiferromagnetic interactions. This object is a valence bond [72, 73]. An additional
requirement is that the spins should be partitioned in such a way that each spin is part of
some specific singlet. This picture and requirement clearly leads to the full wave function
for the phase which is also spin-0 and thus non-magnetic, as it should be. The full wave
function, mathematically, will thus be a direct product of these singlets, this is of course an
approximation. However, this is not the complete picture, see Fig. 2.3a. We know, that a
valence bond is a highly quantum object and will therefore undergo strong quantum fluctu-
ations between different configurations of valence bonds, i.e. different ways of partitioning
the spins into valence bonds. There will thus be a resonance between different valence bond
partitions and the wave function will be a superposition of differently partitioned valence
bond configurations, see Fig. 2.3b. This is precisely the picture that was suggested by An-
derson for describing these quantum phases and he appropriately (for reasons mentioned
above) called them resonating valence bond (RVB) states [64, 65]. He further showed that
the electrons which bind into the valence bonds are also paired, thus there is “potential” for
superconductivity in such a RVB state. Thus, Anderson proposed a link between the physics
of a hole doped RVB state and high temperature superconductivity, since the introduction
of holes washes out Néel ordering and the spins then form a RVB state [66, 74].

It is worth mentioning that the RVB wave function should contain valence bonds of all
possible lengths and not necessarily nearest neighbor or short range, except for a VBC.
Depending on the distribution of weights on valence bond configurations of short or long
lengths, one may get either short range RVBs (e.g. gapped Z2 spin liquids) or long range
RVBs (e.g. algebraic spin liquids). Even among short range or long range RVBs, there can
be many different states. Depending on the lattice geometry and more so on the gauge
structure, the number of possible spin liquids may run from a few to infinite in number.
This problem of classifying spin liquids for spin-1/2 quantum Heisenberg models has been
pioneered by Wen [7]. A review of this technique will form the topic of section 2.3.

2.3 Spin liquids: a theoretical framework
In giving a brief qualitative account of the exotic quantum paramagnetic phases of matter
such as spin liquids, one may get the impression, that a completely new and radical frame-
work will be needed to understand these phases. This is to quite a good extent true, in
some sense. However, there are many general traits or observations of traditional condensed
matter theory which are also true for these exotic phases, when applied in a generalized
manner. The first and foremost issue to be addressed, is on the prescription to be used in
characterizing these phases, or, in other words what is the distinguishing feature of phases.
This question was answered most comprehensively by Landau in 1937, when he pointed
out in [1, 2] that all phases of matter are characterized and distinguished by symmetries,
or more precisely, by the set of symmetries of some mathematical object (function) which
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contains complete information about that particular phase or rather the “structure” of that
phase. Thus, the set of symmetries of a function representing the phase reveals information
about the structure/pattern of that phase, whence, we can distinguish the different phases.
From the above description it is also evident that transition between phases involves the
appearance or disappearance of some elements of symmetry. For conventional phases of
matter at finite temperature, these structures/patterns in phases pertain to spatial symme-
tries and are thus tangible, e.g. crystallographic structures or magnetic structures. These
phases then have physical order parameters. As opposed to this, exotic zero temperature
phases only have “internal” structures.

For classical (neglecting quantum effects) conventional phases at finite temperature, the
relevant mathematical object should be some function which determines the distribution of
atoms in the body1. This can, for example, be the time averaged microscopic charge density
function ρ̄(x, y, z). The set of coordinate transformations with respect to which ρ̄(x, y, z) is
invariant, i.e., its symmetry group, then naturally determines the pattern of distribution of
atoms in the phase and hence its crystallographic structure. We know now, that there are in
all 230 different types of symmetry groups (space groups) for ρ̄(x, y, z) possible, thus giving
rise to 230 different crystallographic structures [3]. The key observation to make here is
that we have studied the symmetry of a probability distribution function which is of course
positive. This is a generic feature for all types of classical orders, i.e. where quantum effects
are neglected.

However, by a naive extension we can attempt to describe the structure in phases where
quantum effects cannot be neglected at all, i.e. phases at zero temperature, by simply taking
ρ̄ to its quantum version. However, by doing so we immediately land into the following
difficulty; we know from theory and experiment that we can have “myriad” of different
quantum phases with all of these phases having the same lattice space group symmetry. In
other words, external tangible symmetries, structures and patterns that are visible to the
human eye are not enough to distinguish the different quantum phases, “we need something
more”. Thus, we can already intuitively see that quantum phases should possess deeper
“internal” structures, which enable us to distinguish these phases. These “internal” structures
are in fact the symmetries of the ground state wave function which is in general complex.
A particular set of such symmetries correspond to a particular quantum order for a given
phase. Here in lies the essential difference between classical orders and quantum orders, the
former are described by symmetries of a positive definite function corresponding to static
orders and the latter by symmetries of a complex wave function corresponding to motion to
electrons and are thus dynamic in nature [7, 8]. This, automatically implies that quantum
orders must be richer and varied than classical orders. It also enables us to clearly see the
limitations of Landau’s theory on phases and their transitions, namely that it holds only for
classical orders where there are physical spatial symmetries being broken and giving rise to
physical order parameters. However, the essence of the principal commandments laid out
by Landau on phases and phase transition in [1, 2] still hold true for quantum phases, the
only difference being that the inclusion of “internal” symmetries used to describe “internal”
orders along with the usual space group symmetries, will make the symmetry group more
intricate. The consequent mathematical framework used to study these phases is called
“projective symmetry group” (PSG), which is just an extension of the lattice symmetry
group. But, still quantum orders will correspond to some “broken” PSG symmetries and
phase transitions between quantum ordered states will involve appearance or disappearance

1If one wants to study magnetic orders then the relevant object should give the distribution of magnetic
moments in a body, this is the j̄(x, y, z) function.
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of some PSG symmetry elements, in this sense the essence of Landau’s idea’s still holds in
the quantum regime. For a certain class of quantum ordered states, there also exists another
type of order called topological order, this has no analogue within the Landau scheme and
requires a radically new formalism to study.

2.3.1 Mean field theory for spin liquids

At the onset we should mention that we shall focus only on developing the theory of spin
liquids (and valence bond crystals) arising in purely Heisenberg spin systems with spin-1/2.
The effective model for these Mott insulating phases is given by the spin-1/2 Heisenberg
antiferromagnetic model,

Ĥ =
∑
ij

JijŜi · Ŝj, (2.3)

the corresponding mean field Hamiltonian is one in which each spin couples to the mean
value of the other in the given state, and is written as,

ĤMF =
∑
ij

Jij(Ŝi · 〈Ŝj〉+ 〈Ŝi〉 · Ŝj − 〈Ŝi〉 · 〈Ŝj〉) (2.4)

However, since spin liquids are spin disordered and thus have an absence of on-site mag-
netization, 〈Ŝi〉 = 0, this implies that the conventional mean field procedure for spin systems
fails for these spin rotation invariant phases. The way out of this problem will be guided
by two factors, firstly, by allowing the possibility for spin-charge separation in spin liquids
and secondly, by incorporating some internal (gauge) symmetries which will allow different
quantum phases to be constructed with given lattice symmetries, these additional gauge
symmetries are the “something more” that we mentioned before are needed to distinguish
these phases. The procedure to be described below will enable us to construct mean-field
wave functions for a large class of quantum spin liquids with different gauge structures and
also for valence bond crystals.

SU(2) Slave boson (Schwinger fermion) formalism

The first step is to express or rather decompose the operators of spin-1/2 at every site i
in terms of pseudo-quasiparticle creation (c†i ) and annihilation operators (ci) representing
spin-1/2 charge (electrical) neutral excitations (spinons), [6–8, 75–84]

Ŝi =
1

2
c†i,ασ̂

αβci,β (2.5)

where α, β =↑, ↓ and σ̂ is the Pauli matrix vector operator. Intuitively speaking, we have
“cut” the spin operator into two halves, i.e. into a product of two spinon operators2. In
doing so, we are, at this stage, not tacitly implying that spin liquids harbor free spin-1/2
charge neutral excitations, since as we will see a generic feature of slave particle theories
is that they are strongly coupled, implying that the spinons most probably remain confined
and are then not well defined quasiparticles, they do not have a “life” of their own. In other
cases, by invoking special mechanisms the interaction between spinons can be made short
ranged and then the spin liquids will harbor true spin-1/2 excitations! [8]. Which of the
above two cases actually occurs is difficult to predict at the mean field level, since the actual

2From a mathematical perspective this is just a trick enabling us to do mean field on such systems.
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interactions between the spinons are mediated by a fluctuating dynamical gauge field, which
appears only beyond the mean field level. It should also be noticed that, till now we have
also not made any mention of the statistics obeyed by spinons, they may be either fermionic
or bosonic, the choice is to some extent arbitrary. From now on, with a view of obtaining
gapped as well as gapless quantum spin liquids, we will assume the spinons to be fermionic.
This translates into,

{c†i,α, cj,β} = δi,jδα,β

{ci,α, cj,β} = 0

{c†i,α, c†j,β} = 0 (2.6)

It is clear that the first requirement of the phenomenon of potential spin-charge separa-
tion has been captured in the fermionic picture, but it is not apparent at first sight if any
additional structure or symmetry has been introduced in this picture. To see this, we first
write eqn. 2.5 for each component explicitly, as follows.

Ŝx
i =

1

2
(c†i,↑ci,↓ + c†i,↓ci,↑)

Ŝy
i =

1

2
ı(c†i,↓ci,↑ − c†i,↑ci,↓)

Ŝz
i =

1

2
(c†i,↑ci,↑ − c†i,↓ci,↓) (2.7)

Since ci,↑ and ci,↓ form a SU(2) doublet, and so do c†i,↓ and −c†i,↑; it implies that we can
merge these two doublets into a 2× 2 matrix, Φi, which is expressed below as, [80]

Φi =

(
ci,↑ ci,↓
c†i,↓ −c†i,↑

)
Now, the key step en route to making the additional internal symmetry transparent, lies

in recasting each component of the spin operator given in eqn. 2.7 in terms of Φi. This takes
the following form,

Ŝαi =
1

4
Tr[Φ†iΦi(σ̂

α)T] (2.8)

where, α = x, y, z. It is trivial to verify that eqn. 2.8 is equivalent to eqn. 2.7. Also,
Φi transforms under SU(2) transformations as Φi → WiΦi, where Wi ∈ SU(2). Thus, it
is now evident from eqn. 2.8 that, at every site, each spin component operator remains
invariant under a SU(2) transformation. Thus, we see that the fermionic representation of
spin is endowed with a local (site-dependent) SU(2) symmetry under which the physical spin
operator at that site remains invariant, i.e. Ŝi → Ŝi [66, 78–80, 85, 86]. Now, the feature is
that since the Hamiltonian is a function of only the spin operators, this local SU(2) symmetry
becomes a gauge symmetry. It was precisely this additional “internal” gauge symmetry that
we sought after. This together with global spin rotations, the usual lattice space group and
time-reversal symmetries of the Heisenberg model are the ingredients which enable one to
distinguish different spin liquid phases [7, 8, 87].

It is worth mentioning that the SU(2) nature of the local gauge symmetry arose simply
because we chose to write the original spin Hamiltonian in a particular way, in this sense
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this SU(2) gauge group is the full “high energy” gauge group [7, 8, 84]. On the other hand,
we could have also chosen to express the spin operators in a way, so as to have a U(1)
or a Z2 local gauge symmetry. Depending on the choice of the high energy gauge group,
this fermionic approach is called the SU(2), U(1) or Z2 [88] slave-boson approach, all three
are completely equivalent descriptions of the Heisenberg model and lead to the same spin
liquids, working in one or the other gauge structure is purely a matter of convenience, to a
great extent [84]. This can be physically understood if we keep in mind that, in part the
role of the gauge fluctuations is to restore back the Hilbert space of the original Heisenberg
model. So, if the fluctuations of the SU(2), U(1) or Z2 lattice gauge fields in the SU(2), U(1)
or Z2 slave boson approaches, respectively, are taken into account exactly, we get the same
result. We shall work only within the SU(2) slave boson approach. It is worth mentioning,
that the high energy gauge group can be made even more complicated as per our choice, all
we need to do is to “cut” the physical spin operator Ŝi into an even number of fermions.

Another artifact of the fermionic representation is that it enlarges the Hilbert space from
two states per site to four states per site, which now include doubly occupied and empty
sites. Hence, to have a faithful equivalence between the original Heisenberg model and its
fermionic representation, we need to impose the constraint of one fermion per site. That is,

c†i,↑ci,↑ + c†i,↓ci,↓ = 1 (2.9)

this constraint automatically implies that there are no doubly occupied and empty sites,
these constraints are respectively written as,

ci,↓ci,↑ = 0

c†i,↓c
†
i,↑ = 0 (2.10)

We can tidily write up all the three constraints using the Φi matrix as,

1

2
Tr[Φ†i σ̂

αΦi] = 0 (2.11)

with α = x, y, z. The α = z gives the constraint of eqn. 2.9 and α = x, y give the constraints
of eqn. 2.10. These constraints are not gauge invariant, as can be seen.

Fermionic representation of the Heisenberg model

To obtain the fermionic representation of the spin-1/2 Heisenberg model, we simply substi-
tute the form of Ŝi from eqn. 2.8 into 2.3. Upon doing so, we get the following expression
of the Heisenberg Hamiltonian,

Ĥ =
∑
ij

Jij
16

(Tr[Φ†iΦi(σ̂)T]) · (Tr[Φ†jΦj(σ̂)T])

= −1

8

∑
ij

JijTr[ΦiΦ
†
jΦjΦ

†
i ] (2.12)

Thus, the two-spin Heisenberg interaction Hamiltonian in eqn. 2.3 has been mapped into
a Hamiltonian composed of four-fermion interaction terms. Now, we observe that, since Φi

transforms by a right SU(2) multiplication (Φi → ΦiV, where V ∈ SU(2)) under global
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SU(2) spin rotations, it is manifest that the object “ΦiΦ
†
j” is SU(2) spin-rotation invariant.

We shall call this object, which is a “link” operator, as Uij from now on. Its explicit form is
given below,

Uij = ΦiΦ
†
j =

(
ci,↑c

†
j,↑ + ci,↓c

†
j,↓ ci,↑cj,↓ − ci,↓cj,↑

c†i,↓c
†
j,↑ − c†i,↑c

†
j,↓ c†i,↓cj,↓ + c†i,↑cj,↑

)
From the above structure of Uij it is also evident that it is in fact composed of two SU(2)

spin rotation invariant operators defined between pairs of sites, these are namely,

χij = c†i,↑cj,↑ + c†i,↓cj,↓ (2.13)

∆ij = c†i,↑c
†
j,↓ − c†i,↓c

†
j,↑ (2.14)

In terms of these operators, the Uij matrix can be compactly written as,

Uij =

(
−χ†ij −∆†ij
−∆ij χij

)
From the definition of Uij, we see that under local SU(2) gauge transformations, it

transforms as Uij → WiUijW
†
j . Now, finally in terms of the Uij matrix operator, the

Heisenberg Hamiltonian in the fermionic representation can be concisely cast as,

Ĥ = −1

8

∑
ij

JijTr[UijU
†
ij] (2.15)

The advantage of working explicitly with the Φi matrix representation of all operators,
rather than with a two-component spinor is now obvious. First and foremost is that the
invariance of the theory under global SU(2) spin rotations and local SU(2) gauge transfor-
mations, is manifest. Secondly, it enables one to figure out the transformation properties
of any object/operator at once, under both the above symmetry operations, since, global
SU(2) spin rotations are effected by a right SU(2) multiplication of Φi, i.e. Φi → ΦiV
and local SU(2) gauge transformations are effected by a left SU(2) multiplication of Φi, i.e.
Φi →WiΦi. Thus, Φi →WiΦiV and Φ†i → V†Φ†iW

†
i . It is also apparent that, global SU(2)

spin-rotations and local SU(2) gauge transformations commute with each other.
We are now faced with the task of solving a strongly coupled problem between fermions,

represented by eqn. 2.15 with four-fermion interactions. This is a generic feature of all slave
particle constructions. However, this implies that the fields which mediate the interactions
between the spinons (in our case) fluctuate extremely rapidly, hence, any picture provided
by just a mean field type approximation cannot be trusted, in general. We would have
to go beyond mean field and include some type of fluctuations, to get a physically and
quantitatively reasonable picture [8]. In passing, we would like to mention that working
in the fermionic representation has the advantage that Wick’s theorem can be exploited,
this considerably simplifies the use of perturbation theory, when needed in handling certain
types of “marginally” stable spin liquids.

Hubbard-Stratonovich transformation and the mean field approximation

As we saw that the fermionic formulation of the spin-1/2 Heisenberg model leads to a
Hamiltonian which involves many body interaction terms (four fermion interactions), which
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in general represent strong coupling, as they should since the Heisenberg spin model has no
small parameters. The key step now is to re-express exactly, the Hamiltonian of eqn. 2.15 in a
form on which the nature of mean field approximation becomes clear and the approximation
can be transparently applied, this is the role of the Hubbard-Stratonovich transformation.
The basic philosophy of the Hubbard-Stranonovich transformation, which is a purely formal
technique, albeit exact, is to map the problem of a system of particles interacting “directly”
with each other via many body interaction potentials into a system of free particles inter-
acting with a fluctuating field which mediates the interactions between the particles. The
degree of fluctuations of this “auxiliary” scalar (in general complex) field introduced in the
transformation, depends on the strength of the “direct” interaction between the particles.
Thus, in summary the Hubbard-Stratonovich transformation maps a particle theory into a
field theory. The mean field approximation can thus be applied on the field variables. After
the transformation, the fermionic Heisenberg model reads as,

ĤHS =
∑
ij

Tr[Φ†i ŨijΦj + h.c.] +
∑
ij

8

J ij
Tr[Ũ†ijŨij] (2.16)

Here, Ũij is the “auxiliary” field introduced by the Hubbard-Stratonovich transformation
and is defined between every pair of sites. These “link” fields are 2× 2, in general complex
matrices, which are time dependent. This implies, that w.r.t. local SU(2) gauge symme-
try, the Ũij must now transform under time dependent local SU(2) gauge transformations,
Ũij(t)→Wi(t)Ũij(t)W

†
j(t).

It should be recalled that the above Hamiltonian of eqn. 2.16 is still not equivalent to
the original Heisenberg model of eqn. 2.3, it is an incomplete representation, since, as we
know, the fermionic representation enlarges the Hilbert space, and we need to impose the
constraints of eqns. 2.9 and 2.10. This can be trivially done, by introducing three Lagrange
multiplier terms, which impose the three constraints. Each such term at a given site i
is, aαi (1

2
Tr[Φ†i σ̂

αΦi]), where α = x, y, z and aαi are the three Lagrange multipliers. After,
absorbing the factor of 1/2 in aαi , and including the three constraint terms at every site, one
lands up with the following Hamiltonian,

ĤHeisenberg
HS =

∑
ij

Tr[Φ†i ŨijΦj + h.c.] +
∑
ij

8

J ij
Tr[Ũ†ijŨij] +

∑
i

Tr[Φ†i (ai · σ)Φi] (2.17)

The ai’s are time dependent, i.e. ai(t). It is also worth noting that the Ũij(t) and ai(t)
transform as the spatial and temporal components of a lattice SU(2) gauge field, respectively,
under time dependent local SU(2) gauge transformations.3

We shall now apply the mean field approximation on eqn. 2.17 [6–8]. The zeroth order
mean field approximation consists of completely neglecting all the fluctuations of the SU(2)
lattice gauge field, i.e. neglecting the time dependence of Ũij(t) and ai(t). This physically
implies taking the non-interacting limit wherein the fermions (spinons) are free quasiparticles
on a lattice, i.e. spinon gas. Mathematically, we implement it by replacing the oscillating
fields Ũij(t) and ai(t) by their ground state expectation values, denoted by Ūij(= 〈Uij〉 =

3The coupling of the gauge field (which mediates the interaction between spinons) to the spinons is
strong (infinite), this implies that the coupling constant g →∞ in (1/8πg)FµνFµν term in the Lagrangian
(Fµν is the field strength tensor). This limit corresponds formally to the Heisenberg model limit in which
the fluctuations of the gauge field are large, and there is thus no “small” parameter in which we can expand,
as we mentioned before.
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〈ΦiΦ
†
j〉). The Ūij are time-independent matrices of complex numbers and the āi are now

simply time independent. Implementing this prescription, we arrive at the following zeroth
order mean field Hamiltonian,

Ĥ0
MF =

∑
ij

Tr[Φ†i ŪijΦj + h.c.] +
∑
ij

8

J ij
Tr[Ū†ijŪij] +

∑
i

Tr[Φ†i (āi · σ)Φi] (2.18)

We see now, that mathematically the above Hamiltonian is soluble, since it is quadratic
in the fermion operators and hence, represents a system of free spinons. Thus, the mathe-
matical obstruction to the solution of Heisenberg model in the fermionic representation has
been cured by taking the above mean field approximation. However, on the other hand, it of
course cannot be even a vaguely true representation of the physics of the Heisenberg model,
since there are no correlations present in a free spinon systems, while the Heisenberg model
is an interacting model with strong correlations. The inconsistency at this mean field level
lies in the fact that in the beginning when giving the fermionic expression for spin operators
in eqn. 2.7 we split the physical spin operator into a product of spinon operators and the
zeroth order mean field approximation clearly forgot to “glue” the spinons back together to
get back the spin operator. The absence of the “glue” implies that excitations around the
mean field state described by eqn. 2.18 are free spinons, a conclusion which is clearly an
artifact of the slave boson approach at the zeroth order mean field level [7, 8].

Also, if we diagonalize the above Hamiltonian and obtain the mean field ground state
|Ψ0

MF(Ūij, āi)〉 then it will contain sites which are empty and some which are doubly oc-
cupied, because the constraint of one-fermion per site is satisfied only on an average, i.e.
〈1

2
Tr[Φ†i σ̂

zΦi]〉 = 0. Thus the mean field ground state is not even a legitimate wave function
for the original Heisenberg spin model. If we compare the situation here, or in general for
slave particle approaches with that of ordinary mean field theory, we see a striking differ-
ence, namely that the Hilbert space is changed in mean field approximation within slave
particle approaches, this doesn’t happen in ordinary mean field theory.

From the above considerations it is clear, that we must go beyond mean field theory
at all costs, not only to improve quantitative estimates but also to obtain a physically
sound and logically consistent picture. The most important type of fluctuations that are
absolutely needed and should be incorporated first, are those which recover back the original
Hilbert space of one-fermion per site of the Heisenberg model. The fluctuations, i.e. time
dependence of az

i , precisely perform this one-fermion per site constraint enforcing job. What
one can do numerically, is to take the mean field Slater determinant |Ψ0

MF(Ūij, āi)〉 and to
remove empty and doubly occupied sites, this procedure is called Gutzwiller projection
and can be implemented in a Monte Carlo scheme [89, 90], since implementation of the
projection operation is extremely complicated by analytical means. The resulting state that
one obtains, is then at least a legitimate trial wave function for the original spin Heisenberg
model of eqn. 2.3, and can be expressed as |Ψtrial(Ūij, āi)〉 = PG|Ψ0

MF(Ūij, āi)〉, where PG
is the full Gutzwiller projector which removes empty and doubly occupied sites. In other
words, this Gutzwiller projected state has incorporated in itself exactly, the fluctuations
of the az

i , i.e. the oscillations of the temporal component of the SU(2) lattice gauge field4.
Thus, the fact that after projection the one-fermion per site constraint is satisfied exactly at
all times implies, that the Gutzwiller projected wave function has in built strong correlations.

4Thus, Gutzwiller projection amounts to integrating over exactly the temporal component of the gauge
field, or in other words taking the Heisenberg limit of g → ∞. This naturally amounts to incorporating
strong correlations in the spinon system.
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We mention that this projection leaves out the fluctuations of Uij, i.e. the spatial component
of the SU(2) lattice gauge field; in principle if we include them then we would of course
solve the original Heisenberg spin model exactly.

Now we would like to address the very important question of, “how good a starting point
is provided by the zeroth order mean field state?”. In other words, we wish to understand
to what degree and in what manner the mean field state is altered when one includes
fluctuations. To answer this question we have to study the behavior of the ratio of interaction
strength between spinons with that of the energy of the system, in the low energy limit. We
recall that the strength of interaction between spinons scales directly with the strength of
fluctuations about the mean field state. So, the behavior of this ratio is the relevant quantity
to look it. In the simplest case, if this ratio goes to zero, then of course the interactions
between spinons at low energies are irrelevant operators in the RG sense. This implies
that the fluctuations of the gauge field are weak and thus will not drive the system into a
quantum phase transition, so we can get a qualitatively relevant picture for the physical spin
liquid phase, by just studying the zeroth order approximated mean field state. However, on
the quantitative level the critical exponents for various quantities will change after inclusion
of fluctuations. Such type of spin liquids are called “stable” spin liquids. Examples of which
are gapped and gapless Z2 spin liquids, and chiral spin liquids [6–8]. These spin liquids
can harbor free spin-1/2 excitations because the gauge field is only able to mediate short
range interactions due to its gapped nature, and the spinons can thus be deconfined. So,
the business of formally “cutting” the spin operator into two halves, has actually produced
two independent spinons.

In the opposite case this ratio can diverge in the low energy limit. Then of course the
interactions between the spinons are relevant operators. This implies that the fluctuations
of the gauge field are strong and will definitely drive the system into a quantum phase
transition. In such cases, even qualitative estimates from mean field theory will not carry
over to the real physical spin liquid phase. Such spin liquids are thus called, “unstable”
spin liquids. Examples are spin liquids with in general, U(1) or SU(2) low energy gauge
structures. A third situation occurs, if in the low energy limit the ratio approaches a finite
constant. This implies that the interactions between the spinons are marginal operators.
Analyzing the stability of such states is a tricky business in general. If this finite ratio is
small, then the situation can be studied by perturbation theory. On the other hand, if this
ratio is of the order of unity, then the question of stability of such spin liquids is extremely
hard [15]. There exists till now, no general field theoretical framework within which one
can address such a question. One then has to analyze the effect of various perturbations
one by one, which is a tedious task. An example of such a “marginal” spin liquid is given by
the U(1) Dirac spin liquid on the kagomé lattice. In such a spin liquid, the the gauge field
is confining and the business of cutting the spin operator into two halves is just a formal
picture. We shall be addressing the issue of its stability in great detail in this thesis.

It is worth mentioning that there is a small but important caveat regarding what we have
mentioned above. Up to now, we only emphasized the role of fluctuations in the low energy,
i.e. large distance limit. However, if the short distance fluctuations are strong enough, then
they may also drive the system into a quantum phase transition [8]. Therefore, for zeroth
order mean field theory to give a physically reliable picture, it is necessary that, firstly, the
mean field states must be either “stable” or at most “marginal”, and furthermore the short
distance fluctuations should be weak5. However, we should not give a message of despair

5This is precisely a catch-22 situation, in reality these fluctuations are never weak because the Heisenberg
spin model has no “natural” small parameters in it.
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since by invoking special mechanisms the fluctuations of the gauge field can be suppressed.
We shall see how this is done later in the text.

Now, finally we would like to recast the zeroth order mean field Hamiltonian of eqn. 2.18
into a convenient form, which we will use throughout. First, we notice that the second term
of eqn. 2.18 is a constant and we shall drop it henceforth. This leaves us with the following
expression,

Ĥ0
MF =

∑
ij

Tr[Φ†i ŪijΦj + h.c.] +
∑
i

Tr[Φ†i (āi · σ)Φi] (2.19)

The time-independent, 2× 2 complex matrices Ūij are explicitly written as,

Ūij =

(
−χ̄∗ij −∆̄∗ij
−∆̄ij χ̄ij

)
where,

χ̄ij = 〈χij〉 = 〈c†i,↑cj,↑ + c†i,↓cj,↓〉 (2.20)

∆̄ij = 〈∆ij〉 = 〈c†i,↑c†j,↓ − c†i,↓c
†
j,↑〉 (2.21)

In terms of these amplitudes the above Hamiltonian of eqn. 2.19 can be recast into the
following convenient and transparent form,

Ĥ0
MF =

∑
ij

[χ̄ijc
†
j,αci,α + ∆̄ij(ci,↑cj,↓ − ci,↓cj,↑) + h.c.]

+
∑
i

āz
i (c
†
i,αci,α − 1) + [(āx

i + ıāy
i )(ci,↓ci,↑ − ci,↑ci,↓) + h.c.] (2.22)

We see, that the mean field Hamiltonian consists of the following parts, (i) a spinon
hopping term, with amplitude χ̄ij, (ii) a spinon pairing term, with amplitude ∆̄ij, (iii)
an onsite chemical potential āz

i , (iv) real and imaginary onsite pairing terms, āx
i and āy

i

respectively. From now on, we shall denote the chemical potential āz
i as µi and the complex

imaginary pairing āx
i + ıāy

i as ζi. The zeroth order mean field Hamiltonian can then be
finally written as [7, 8],

Ĥ0
MF =

∑
ij

[χ̄ijc
†
j,αci,α + ∆̄ij(ci,↑cj,↓ − ci,↓cj,↑) + h.c.]

+
∑
i

µi(c
†
i,αci,α − 1) + [ζi(ci,↓ci,↑ − ci,↑ci,↓) + h.c.] (2.23)

The above Hamiltonian is clearly isotropic in spin space, and therefore leads to a spin
singlet ground state. Thus, the slave boson approach is biased towards capturing spin
disordered ground states. The complementary approach using slave fermions is also able to
capture magnetic long range order. In retrospect, we see that χ̄ij and ∆̄ij arise from the
two ways we can represent that Heisenberg exchange term in the fermionic representation,
after a mean field decoupling.

A specification of χ̄ij, ∆̄ij, µi and ζi is called a mean field Ansatz [6–8]. By definition
these quantities are not gauge invariant and therefore, e.g. χ̄ij cannot serve as a local order
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parameter in the conventional sense of the word. It is also useful to note that the Ūij matrix
given above can be expanded as,

Ūij =

(
−χ̄∗ij −∆̄∗ij
−∆̄ij χ̄ij

)
= χ̄R

ijσ3 + ıχ̄I
ijσ0 + ∆̄R

ijσ1 + ∆̄I
ijσ2

where, σ1, σ2 and σ3 are the three Pauli matrices and σ0 is the identity matrix. The χ̄R
ij and

χ̄I
ij denote the real and imaginary hoppings, respectively; the ∆̄R

ij and ∆̄I
ij denote real and

imaginary pairings, respectively. The Ūij matrix is clearly seen to be not Hermitian. The
mean field Ansatz labels the mean field ground state wave function, |Ψ0

MF(χ̄ij, ∆̄ij, µ, ζ)〉.
Due to the gauge non-uniqueness in the choice of the Ansatz, the labeling is not one-to-
one, but rather many-to-one. This has non-trivial consequences, among them being the
fact that two mean field Ansätze connected by a SU(2) gauge transformation but being
“apparently” unrelated, will after projection, actually give rise to the same physical spin
wave function, hence representing the same quantum phase. This observation highlights
the physical meaning of the SU(2) local gauge symmetry in the fermionic representation.

However, one should not get the impression that this local SU(2) gauge symmetry is just
a “junk” redundancy acquired in dealing with the SU(2) slave boson approach, and of no
use, and in fact complicating the problem by introducing many labels for the same quantum
phase. This gauge redundancy was powerfully exploited by Wen in [7], whereby he showed
that different spin liquids can in fact be distinguished by these different gauge symmetries,
when compounded with lattice space group and time reversal symmetries. The relevant
mathematical framework to do so is called “Projective symmetry groups”, the review of
which, will form the topic of our next section.

2.3.2 Classification of spin liquids: projective symmetry groups

If one considers the class of fully symmetric spin liquids, then as the name suggests, the
projected physical spin wave functions corresponding to each and every one of these “dif-
ferent” spin liquids, have all the space-time symmetries of the Heisenberg model. Thus, all
these “different” quantum phases are invariant under the same symmetry group, namely the
lattice space group and time reversal, and hence can not be distinguished only on the basis
of the symmetries present in the original spin model. The fermionic representation, adds to
our arsenal another symmetry, namely the local SU(2) gauge symmetry. So, the symmetries
we now have in our hand are the following, (i) lattice space group, (ii) time-reversal, and
(iii) local SU(2) gauge. If we apply a particular lattice space group and/or time-reversal
operation on a mean field Ansatz for a given spin liquid, then of course the Ansatz will
change. We are permitting the Ansatz to change only because we are now armed with a
local SU(2) gauge symmetry also. So, the only key reservation is that the change should be
such that there exists a local SU(2) gauge transformation which can “undo” this change and
restore back the original Ansatz. It is also obvious, that, in general, the change of mean field
Ansatz due to different lattice space group operations, will be “restored” by different SU(2)
gauge transformations. Now, if we apply a particular lattice symmetry and/or time-reversal
operation simultaneously on the different Ansätze for the n different fully symmetric spin
liquids, all the Ansätze will change, but the gauge transformation (corresponding this this
lattice symmetry operation) which restores/undoes this change is actually different for the
“different” spin liquids. This statement applies, in general, to all lattice symmetry oper-
ations. Thus, the difference in the “restoring” gauge transformations (for each and every
lattice symmetry) enable us to distinguish the n different fully symmetric spin liquids, de-

25



spite them all having the same space-time symmetries. This implies, in particular, as we
mentioned before, that classical orders are not sufficient to distinguish different spin liquids,
and that the internal quantum orders that are present, need to be revealed, this is the role
of gauge symmetries, as explained above. It was this extremely important observation that
was made by Wen [7, 8] and forms the basis for the mathematical framework of projective
symmetry groups which enables us to distinguish and classify different spin liquids. We
shall now present the formal mathematical framework for it,

Let R be a lattice space group symmetry operation which maps a site i → R(i). Then
the operation R maps Ūij to Ū′ij in the following manner,

Ū′ij = R(Ūij) = ŪR(i)R(j) (2.24)

Now, we introduce a site-dependent (time-independent) SU(2) gauge transformation
corresponding to R which undoes the change in the Ansatz, we call it WR

i . Now, the
sequential operation of R and WR

i acting on Ūij is expressed as,

Ūij = (WR
i )ŪR(i)R(j)(W

R
j )† (2.25)

similarly the same relation can be written for the onsite components āi of the mean field
Ansatz as follows,

āi · σ̂ = (WR
i )āR(i) · σ̂(WR

i )† (2.26)

Thus, the PSG consists of all symmetry transformations (lattice space group, time-
reversal and local SU(2) gauge) that keep the mean field Ansatz invariant. From the above
two mathematical relations, it is clear that the lattice symmetries act “projectively” on the
fermions. Hence, for a given mean field Ansatz {Ūij, āi}, the set of all possible lattice sym-
metry operations (and time-reversal) {R} taken together pairwise with the corresponding
gauge transformations WR

i , which satisfy eqn. 2.25 and 2.26 form a group called the “pro-
jective symmetry group” (PSG), {R,WR

i } of that particular mean field Ansatz {Ūij, āi}.
From the qualitative arguments above, it follows that different spin liquids will have differ-
ent PSGs and can thus be distinguished from each other. So, just as classical orders are
classified by crystal and magnetic space groups, we see that quantum orders are classified
by projective symmetry groups (at the mean field level), which are just extensions of the
ordinary lattice symmetry groups. Since, there are many different extensions possible of
the ordinary symmetry group, these different extensions each correspond to a particular
quantum order. This is another way of seeing why PSG is needed to classify quantum
orders.

We also know that two Ansatz connected by a local SU(2) gauge transformation actually
describe the same physical spin liquid, i.e. the same quantum ordering. Thus, their PSG’s
should also be the same up to a local SU(2) gauge transformation. We will show this
explicitly below,

From eqn. 2.25 we have,

Ūij = (WR
i )ŪR(i)R(j)(W

R
j )† (2.27)

Let Gi be the local SU(2) gauge transformation on the Ansatz Ūij. Then on applying
this transformation to the above equation and rearranging, we get,
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GiŪijG
†
j = Gi[(W

R
i )ŪR(i)R(j)(W

R
j )†]G†j

= Gi[(W
R
i )RŪij(W

R
j )†]G†j

= Gi[(W
R
i )RG†i (GiŪijG

†
j)Gj(W

R
j )†]G†j

= [Gi(W
R
i )RG†iR−1]R(GiŪijG

†
j)[Gj(W

R
j )†G†j]

= [Gi(W
R
i )G†R(i)]R(GiŪijG

†
j)[Gj(W

R
j )†G†j] (2.28)

Thus, we see that when the mean field Ansatz is gauge transformed from {Ūij, āi} →
{GiŪijG

†
j,Gi(āi·σ̂)G†i}, then the corresponding change in PSG is {R,WR

i } → {R,Gi(W
R
i )G†R(i)}.

This, implies that the “restoring” SU(2) gauge transformations WR
i have been transformed

under SU(2) gauge transformation Gi in the following manner, WR
i → GiW

R
i G†R(i). We

thus see clearly, that the gauge restoring transformations WR
i for the two Ansatz are the

same up to an SU(2) gauge transformation and thus the two PSGs describe the same spin
liquid.

The Invariant Gauge Group and Low energy dynamics

The PSG of an Ansatz has an extremely important subgroup which determines the nature
of the low energy effective theory of the spin liquid and is called the invariant gauge group
(IGG) [7, 8]. It is defined as the set of all local SU(2) gauge transformations which keep the
Ansatz invariant, i.e., the set of all Wi ∈ SU(2) such that,

Ūij = WiŪijW
†
j (2.29)

The above equation is clearly seen to be a special case of eqn. 2.27 when the lattice
symmetry operation R is just the identity I. So, the subset of transformations of the full
PSG satisfying eqn. 2.29 is {I,WI

i}, which constitutes the IGG, and is a normal subgroup of
the full PSG for the Ansatz Ūij. We shall denote the IGG subgroup as W and its elements
as WI. From the way the IGG is defined above one will get the impression that its just a
property of the mean field ground state and that it does not have any influence on what
happens beyond mean field. On the contrary, the IGG completely determines the nature
of the low energy effective theory of the spin liquid and hence enables us to answer all
the key questions related to stability of spin liquids, symmetry group of the gauge field,
deconfinement among others. We shall now elucidate precisely how this comes about. In
the mean field Hamiltonian of eqn. 2.19, we can do two types of fluctuations about the
mean field Ansatz Ūij, the first are amplitude fluctuations (δUij) which are massive and
cost an energy proportional to Tr[δU†ijδUij], hence we do not consider them. The other
type of fluctuations are the pure phase fluctuations about Ūij parameterized by a real “link”
field Aij, these are the important low energy fluctuations that we shall incorporate in going
beyond mean field.

Let us first choose a mean field Ansatz Ūij such that its IGG is the U(1) group, for the
sake of simplicity in exposition. This means,

Ūij = WI
iŪijW

I†
j , where WI

i ∈ U(1) (2.30)

henceforth, we shall drop the superscript I in WI
i. A generic IGG element at site i is given

by,
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Wi = eıθin̂i·σ̂ (2.31)

where, in general, at every site the axis about which the U(1) rotation by angle θi is done,
points in different directions n̂i. This unnecessary complicacy can always be removed by
exploiting a SU(2) transformation, say Qi which rotates the n̂i vectors at each site to the
ẑ direction. That is, at every site we have,

QiWiQ
†
i = eıθiσ̂3 , where Qi ∈ SU(2) (2.32)

it is obvious that we must simultaneously change the mean field Ansatz Ūij to account for
the change in gauge. The new gauge rotated mean field Ansatz is,

Ū′ij = QiŪijQ
†
j (2.33)

we now do a phase fluctuation about the mean field Ansatz in the new gauge, this gives,

Ũ′ij = Ū′ije
ıAij σ̂3 (2.34)

where, the Ũ′ij is the fluctuated Ansatz. We shall now determine how the fluctuated Ansatz
transforms under the IGG, effecting the gauge transformation we get,

eıθiσ̂3Ũ′ije
−ıθj σ̂3 = eıθiσ̂3Ū′ije

ıAij σ̂3e−ıθj σ̂3

= eıθiσ̂3QiŪijQ
†
je
ıAij σ̂3e−ıθj σ̂3

= Qie
ıθiσ̂3ŪijQ

†
je
ıAij σ̂3e−ıθj σ̂3

= QiŪije
ıθiσ̂3Q†je

ıAij σ̂3e−ıθj σ̂3

= QiŪijQ
†
je
ıθiσ̂3eıAij σ̂3e−ıθj σ̂3

= Ū′ije
ıθiσ̂3eıAij σ̂3e−ıθj σ̂3

= Ū′ije
ı(Aij+θi−θj)σ̂3

= Ū′ije
ı(A′

ij)σ̂3 (2.35)

where A′ij = Aij+θi−θj. Whence, we see that under an IGG transformation, the fluctuated
Ansatz Ũ′ij just undergoes a phase shift, ∆θ = θi−θj. Thus, both describe the same physical
spin liquid, and so the Aij actually describes the gauge fluctuations.

Now, if we incorporate the phase (gauge) fluctuations in the zeroth order mean field
Hamiltonian, eqn. 2.19, then it becomes,

Ĥ1
MF =

∑
ij

Tr[Φ†i Ū
′
ije

ıAij σ̂3Φj + h.c.] +
∑
i

Tr[Φ†i (āi · σ)Φi] (2.36)

under the action of the IGG, the Aij → Aij + θi − θj. On the other hand, we also know
that being in the low energy sector (much below the Mott-Hubbard gap), we have another
local gauge symmetry, namely that of rotating the spinon operators at every site i, i.e.,
Φi → eıθiΦi, this symmetry is a consequence of the constraint/conservation of one fermion
per site [79]. Thus, we see that the Hamiltonian describing the low energy fluctuations is
invariant under following combined gauge transformations,

Aij → Aij + θi − θj, and Φi → eıθiΦi (2.37)
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But, the above transformations are precisely those which keep invariant the Hamiltonian
of a U(1) lattice gauge theory, and in fact eqn. 2.36 is precisely the Hamiltonian of a U(1)
lattice gauge theory [7, 8, 79]. This implies, that the fluctuations of Aij and ai are simply
the fluctuations in the spatial and temporal components, respectively, of a U(1) lattice gauge
field. Since, the fluctuations of a gauge field mediate the interactions between spinons, we
see clearly that in first order beyond mean field the spinons are coupled via a fluctuating
compact U(1) lattice gauge field.6 If we had chosen an Ansatz with a Z2 or SU(2) IGG,
then beyond mean field the spinons would have been coupled by a fluctuating Z2 or SU(2)
gauge field respectively, since we would have then obtained a Z2 or SU(2) lattice gauge
theory Hamiltonian, by a similar construction as for U(1). In the above example, the fact
that the interaction between the elementary particles (spinons) is described by a gauge
theory automatically implies that the interaction takes place by the exchange of gauge
bosons, which are the quanta of the fluctuations of the gauge field. In this case, since
the gauge group is simply U(1), there is just one type of gauge boson, which is furthermore
uncharged in contrast to SU(2) gauge bosons, in all three, all of which have a non-zero gauge
charge. Furthermore, since considerations of gauge invariance require the gauge bosons to
be massless, it implies that the interactions mediated by them between spinons are long
ranged. Whence, the U(1) and SU(2) spin liquids are always in the confined phase7, and
are marginally stable or unstable. The key to obtaining stable spin liquids with deconfined
spinons is to give mass to the gauge boson via the Anderson-Higgs mechanism, i.e. with or
even without using the Higgs boson. We shall discuss how this works, later in the text.

The reason why the IGG occupies a special status is now manifest. Although it is defined
purely to be a property of a mean field Ansatz by eqn. 2.29, it remarkably turns out that
the low energy effective theory controlling the dynamics of excitations has the same gauge
group/structure, namely that of the IGG. Thus, the IGG can rightly be called as the “low
energy” gauge group. One should contrast this with the high energy gauge group which
we introduced earlier as being the gauge group of the fermionic partons8. The two gauge
groups/structures have absolutely nothing to do with each other and should never be mixed
up [7, 8]. For e.g. when we use the term, Z2 spin liquid, the “Z2” here means the “low energy”
gauge group (IGG). On the other hand, when we say Z2 slave boson approach, the Z2 here
means the “high energy” gauge group. Similar interpretations hold when for the usage of
U(1) and SU(2) gauge structures. It is wrong to think that a Z2 spin liquid is constructed
from a Z2 slave boson approach. Any slave boson approach, be it Z2, U(1), or SU(2) can be
used to construct spin liquids with any low energy gauge structure9. For e.g., later we shall
study the U(1) and Z2 spin liquids within a SU(2) slave boson formalism. In summary, the
physical difference between the two gauge structures that are present can be put as follows;

6Strictly speaking, the lattice gauge field is compact, i.e. Aij ≡ Aij +2π, this is the case in our treatment
as seen from the way we have defined the link field as a phase. For a non-compact gauge field we would have
an extra symmetry being introduced in the problem, which was not originally present [87]. The compactness
of a gauge field is also intimately connected to problem of confinement [84].

7Mathematically speaking, the invariance of the energy (and action) under Aij → Aij + θi − θj , i.e.
E(Aij) = E(Aij + θi − θj) is what is responsible for making the fluctuations of Aij behave as gauge
bosons [84].

8Precisely, the most general transformations between the partons which keeps the physical spin operator
invariant.

9The low energy gauge structure can also be larger than the high energy gauge structure. This happens
when the low energy excitations occur with several different finite crystal momenta. For each momenta we
have a gauge field, the IGG for which contains site independent gauge transformations if one is at q = 0,
and site dependent gauge transformations if one is at q 6= 0. e.g. SU(2)×SU(2) spin liquids in SU(2) slave
boson approach [7, 8].
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a1

a2

(a) U(1) Dirac spin liquid Ansatz

a1

a2

(b) Time-reversed U(1) Dirac spin liquid

Figure 2.4: (a) The mean field Ansatz of the U(1) Dirac spin liquid in a particular gauge.
The solid lines denote positive hoppings (sij = +1) and the dashed lines denote negative
hoppings (sij = −1). The U(1) flux ϕ (eıϕ =

∏
plaquette χij) is zero through all triangles and

π through all hexagons. Hence, the original geometrical 3 site unit cell has to be doubled
to accommodate the fluxes. (b) The sign structure of hoppings and the corresponding flux
pattern is shown for the time-reversed Ansatz of the U(1) Dirac spin liquid with respect to
its (a) version.

the “low energy” gauge group/structure (IGG) reveal the internal quantum orders in the
mean field ground state. On the other hand, the “high energy” gauge structure tells the way
in which the spin Hamiltonian is expressed.

An example of a mean field Ansatz

To illustrate the concept of IGG and also the equivalence of two Ansätze upto a SU(2)
gauge transformation, we shall take a concrete example, namely that of an algebraic spin
liquid on the kagome lattice, called the U(1) Dirac spin liquid. At the mean field level, its
defined to be the ground state of the following Hamiltonian [13],

Ĥ0
MF = χ̄

∑
〈ij〉

sijc
†
j,αci,α + h.c. (2.38)

here, 〈ij〉 denotes nearest neighbor bonds, we shall fix χ̄ = 1 as the unit of hopping, and
sij is ±1 is distributed in the manner shown in Fig. 2.4a. The mean field Ansatz of such
a spin liquid is conveniently expressed as Uij = ±σ3. In Fig. 2.4b we have given another
Ansatz which on the face of it looks different. A careful observation reveals that it is in fact
obtained by simply flipping the sign of the Ansatz of Fig. 2.4a globally, i.e. Uij → −Uij.
Furthermore, this flip in sign turns out to be effected by a SU(2) gauge transformation, i.e.
(ıσ2)Uij(−ıσ2) = −Uij. Hence, the gauge transformation is Wi = ıσ2, thus both Ansätze
of Fig. 2.4 describe the same same spin liquid. It is worth noting that Uij → −Uij is in
fact the time-reversal operation in the SU(2) slave-boson approach [7, 8]. Hence, the two
Ansätze in Fig. 2.4 are related by a time-reversal symmetry, and since the U(1) Dirac spin
liquid is time reversal invariant, they describe the same physical state, as they should.

From the form of the Ansatz, Uij = ±σ3 we can explicitly obtain its IGG in the following
manner. Plugging Uij = ±σ3 into Uij = WiUijW

†
j and re-arranging we get, Wj = σ3Wiσ3.

If we now focus on say, a triangle on the kagome lattice and imagine its sites to be numbered
1, 2 and 3 counterclockwise, then W2 = σ3W1σ3 and then W3 = σ3W2σ3, implying that
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W3 = W1. Finally, circulating once more, we get W1 = σ3W3σ3, implying W1 = σ3W1σ3,
leading to [W1, σ3] = 0. Hence, W ∈ U(1), and is the same for all i. This is why this
spin liquid is called a “U(1)” algebraic spin liquid. For its full PSG, please see Ref. [91]. In
the later chapters we shall be dealing extensively with the nature of this rather exotic spin
liquid.

Mean field phase transitions between spin liquids

We will now give a general qualitative discussion of phase transitions between different spin
liquids/quantum orders at the mean field level. First we recall some generic features of
phase transitions of the second kind between classical orders. Such phase transitions always
involve some definite change in symmetry of the body, so that at every moment the body
has either one symmetry or the other, so we can always assign the body to one of the phases.
Another extremely important and general feature is that the symmetry group of either one
of the two phases should be a subset of the symmetry group of the other phase, this is a
necessary condition for a phase transition to take place, but by no means is it sufficient.
For e.g. if one is studying phase transitions between different crystal modifications, then
a transition between a rhombohedral class to tetragonal class is forbidden. Also, at the
transition point itself, the symmetry group of the body contains all the symmetry elements
from both the phases on either side [3].

The mean field phase transitions between different fully symmetric spin liquids share the
same generic features of classical transitions mentioned above. The symmetry group of the
spin liquid is just its PSG. A phase transition between spin liquids thus involves a definite
change in the PSG. Thus, at every moment we have one quantum order or the other, so
that we can always associate the phase to one spin liquid or the other. A phase transition
between two spin liquids will only take place, if the PSG of one spin liquid is a subgroup
of the PSG of the other spin liquid10. For, e.g. a spin liquid with PSG1 can undergo a
phase transition to a spin liquid with PSG2 if and only if, PSG1 ⊂ PSG2 or PSG2 ⊂ PSG1.
Since, both PSG1 and PSG2 are the extensions of the same (lattice) symmetry group SG
with different IGG’s, namely IGG1 and IGG2, it automatically implies that these phase
transitions do not not change any physical symmetry, in that sense they are continuous in
the lattice symmetry sector. Such exotic phase transitions are also present in the classical
regime, the Berezinskii-Kosterlitz-Thouless transition [92–94] presents such a case where
no symmetry breaking takes place across the transition point and the transition is thus
continuous.

PSG beyond the mean field level

It is clear from the way we have introduced PSG’s, that they describe quantum orders
at the mean field level only, since PSG are mathematically defined to be the group of
transformations that keep the mean field Ansatz unchanged. Based on PSG, the Ansatz
can be grouped together into classes such that the Ansatz within each class have the same
physical properties. Since, the PSG is a universal property these classes of Ansatz are
just the universality classes, where each class corresponds to a particular quantum order.
However, one may ask as to why we didn’t directly classify (group into universality classes)
the projected physical spin many body wave functions which represent the real quantum

10To study these mean field phase transitions one can construct Landau-Ginzburg free energy functionals,
just as we do for classical phases, but now these functionals should be invariant under the full PSG, and
not just the lattice symmetry group as is done for studying classical phase transitions
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phases?. The answer to this question is very simple and honest, we simply don’t know till
present any way/property/structure on the basis of which we can group together projected
wave function into classes such that when going from a wave function of one class to another
we encounter a singularity in the ground state energy [7, 8]. Intuitively this is because in
general correlated many body wave functions are a complete “mess” and trying to group
them together into classes by simply “looking” at them is near impossible11.

That is why we are only able to classify those many body (projected real physical spin)
wave functions which can be obtained from an Ansatz12. Then, we simply classify the
Ansatz, which we know how to do based on PSG. The important link still missing is, how
are we sure that the PSG would also hold beyond mean field or in other words would the
PSG still classify the real quantum spin phases after quantum fluctuations (which are in
general strong) have been incorporated?. The thumb rule is that if the mean field state
is stable against quantum fluctuations, i.e. there is no phase transition, then the PSG
classification can safely be extended beyond mean field, and it will classify the real spin
liquids13 [7, 8]. This is a consequence of the fact that fluctuations (δŪij) in the Ansatz
(Ūij) at the perturbative level have the same PSG as the Ansatz itself, and hence cannot
change the symmetries and the low energy gauge structure of the spin liquid. For, e.g. they
cannot drive a phase transition from a fully symmetric spin liquid into a chiral spin liquid,
and similarly cannot drive a fully symmetric U(1) gapless spin liquid into a fully symmetric
gapped Z2 spin liquid, the former would involve breaking of time-reversal symmetry and
parity, and the latter would involve breaking the IGG from U(1) to Z2. This symmetry
preserving property under perturbations is what makes the PSG a property also of a real
quantum spin liquid. This property can sometimes lead to dramatic consequences, whereby
certain mass terms are actually generated by these perturbative fluctuations, but none of
them is invariant under the PSG and thus are forbidden, and the system remains gapless.
Such spin liquids are thus very delicately balanced, and owe their existence to the PSG
(quantum orders) which “protects” them, examples of which are algebraic spin liquids. Thus,
we see that PSG of a particular quantum order protects gapless excitations (both gauge
bosons and fermions) even in the absence of any symmetry breaking![7, 8]. Thus, the very
existence of algebraic spin liquids points towards the fact that quantum orders do “really”
exist.

Recipe for obtaining stable spin liquids and the concept of SU(2) flux

We know that beyond the mean field approximation, the interactions between spinons is
mediated via massless gauge bosons which implies that that the interactions are long ranged
and that the spinons are confined, this gives rise to either marginally stable or unstable spin
liquids. The corresponding gauge group of such gauge bosons is either U(1) or SU(2), which
is in fact the IGG for the mean field Ansatz. In order to obtain stable spin liquids we need
to find those mean field Ansatz, whose fluctuations (gauge bosons) are massive. In such

11A possible way out will be provided by performing some mathematical transform on the real space spin
wave function, so that some universal property becomes visible. e.g. This is precisely how one groups free-
fermion wave functions into classes, by performing a Fourier transform on the real space Slater determinant
and then observing that the Fermi surface topology provides a universal basis on which to group free fermion
wave functions. Well, for spin wave function we still don’t know the appropriate transform.

12There exist many spin liquids for which the projected physical spin wave function cannot be obtained
from an Ansatz, these correspond to some “algebraic” PSG’s. We are restricting ourselves only to the
subgroup of algebraic PSG called as “invariant” PSGs.

13The PSG classification can also hold for some marginally stable spin liquids, but then it depends case
to case and one cannot make such sweeping statements.
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spin liquids, the gapped nature of the gauge bosons will ensure that they mediate only short
range interactions between the spinons, which implies free or deconfined spinons, and thus
such spin liquids are bound to be stable. In other words, such spin liquids will “survive”
Gutzwiller projection. However, the procedure to construct such stable Ansätze depends
on whether the one wants to give mass to U(1) gauge bosons or SU(2) gauge bosons. We
shall now take up the first case, namely of U(1) gauge bosons.

If the mean field Ansatz of the spin liquid has an IGG which is U(1), then the low energy
effective theory is given by a compact U(1) lattice gauge theory with gapless U(1) gauge
bosons which do not carry any gauge charge. However, in order to make the U(1) gauge
bosons massive we have to invoke the Anderson-Higgs mechanism which in fact requires
charged bosons, which we don’t have. But, on the other hand we do have charged fermions
(spinons), so we can cook charged bosons by pairing up the spinons. This is achieved by the
fermion pair condensation term (∆̄ij) in the mean field Hamiltonian of eqn. 2.23 [7, 8]. The
U(1) chargeless gauge bosons then couple to these charged bosons (condensed) and become
massive, and are thus able to mediate only short range interactions between the spinons.
So, we see that if an Ansatz contains only spinon hopping amplitudes (χ̄ij) then the gauge
bosons are gapless and if the Ansatz is made to include ∆̄ij pairing term then there will
be no gapless gauge bosons, and we expect that such an Ansatz will describe a stable spin
liquid.

If the mean field Ansatz of the spin liquid has an IGG which is SU(2), then the low energy
effective theory is given by a SU(2) lattice gauge theory with three species of gapless SU(2)
gauge bosons, which in contrast to U(1) gauge bosons, are charged. So, we do not need to
cook up additional charged bosons in order to invoke the Anderson-Higgs mechanism, which
can surprisingly enough be realized without Higgs boson, and just requires the condensation
of non-abelian gauge fluxes. We shall only give some qualitative analysis and important
conclusions. The relevant quantity we need to look at, is the SU(2) flux for a given mean
field Ansatz, which is defined for a closed loop on the lattice, with a given fixed base point
i. It is defined in the following manner[7, 8],

P(Ci) = ŪijŪjkŪkl . . . Ūli (2.39)

from the above definition we see that the SU(2) can always be written as a linear combination
of the Pauli matrices and the identity, in the following manner,

P(Ci) = m0σ0 +
∑
α

mασα (2.40)

whence, we can always associate a sense of direction to the SU(2) flux, except in the trivial
case when all mα = 0. Also, under local SU(2) gauge transformations the flux transforms
as,

P(Ci)→WiP(Ci)W
†
i (2.41)

from the above observation it follows that it is meaningless to compare directions of SU(2)
fluxes for loops with different base points, since the local SU(2) gauge transformations
can be used to change the directions of SU(2) fluxes for loops with different base points,
independently. On the other hand, comparison of SU(2) flux directions for loops with the
same base point is quite useful. Broadly we can divide the Ansätze into three classes, (i)
Those with SU(2) fluxes through all loops being proportional to the identity, (ii) Those with
collinear SU(2) fluxes through all loops, and (iii) Those with non-collinear SU(2) fluxes.
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In case (i), one has SU(2) gapless spin liquids which are marginally stable or unstable
and the SU(2) gauge structure remains intact. In case (ii), one has U(1) gapless spin
liquids which are again either marginally stable or unstable and the SU(2) gauge structure
is broken down to U(1)14. In case (iii), one obtains Z2 spin liquids which are always stable,
this is because for non-collinear fluxes all three SU(2) gauge bosons become massive and the
gauge field is thus fully gapped. The SU(2) gauge structure in this case, is directly broken
down from SU(2) to Z2, since the ansatz for such a spin liquid is invariant only under the
trivial transformation Wi = ±I because of the presence of off-diagonal ∆̄ij terms in the
mean field Ansatz Ūij. Thus, we finally see that the key to obtaining stable spin liquids is
to construct Ansatz with IGG being Z2 so that we have non-commuting SU(2) fluxes for
different plaquettes corresponding to the same base point15, see Ref. [7, 8] for details.

14Two out of the three gauge bosons acquire mass terms and the third (Az
ij) remains gapless, thus, giving

rise to a U(1) gapless spin liquid.
15The Z2 lattice gauge field is always gapped, thus even if the spinons are gapless, the corresponding spin

liquid is a stable one. Thus both gapped (spinon) and gapless (spinon) Z2 spin liquids are stable and can
thus occur as real physical spin liquids.
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Chapter 3

Numerical methods

3.1 The quantum variational Monte Carlo method
One of the fundamental tasks of quantummechanics is the calculation of average/expectation
values of operators, and also equally important is the calculation of matrix elements. If the
quantum system is a many-body one then the above mentioned quantities can not be com-
puted by hand. This is because of the impossibility of factorizing a strongly correlated
quantum many body wave function into a single particle wave functions. Therefore, the
task of computing such quantities in quantum many body systems is the job of Monte
Carlo methods which exploit stochastic sampling to evaluate these quantities which are
integrals over a multi-dimensional space.

As is well known that a Monte Carlo method is based on the Metropolis algorithm which
generates a random walk in the configuration space, this chain of configurations is called a
Markov chain. The sampling of configurations during the random walk is done according
to a given time-independent probability distribution, and upon equilibration after a certain
number of steps, the configurations are distributed according to the same probability distri-
bution. The Variational quantum Monte Carlo approach simply applies this methodology
to probability distributions which are the square of the modulus of quantum many body
trial wave functions. Thus, by computing different observables of such wave functions one
can finally extract out the nature of the quantum state. It is also worth mentioning that
within this scheme it is also possible to optimize trial wave functions in order to obtain the
lowest variational energy. The various intricacies of implementing these schemes so as to
have an efficient algorithm are presented in the ensuing text.

3.1.1 The quantum Metropolis algorithm

We take as our wave function, the Gutzwiller projected state (Ψ) whose squared modulus
serves as a probability distribution function in the sampling. We shall now describe how to
compute expectation values, which, as is known, involve integrals bilinear in Ψ and Ψ∗.

In the variational quantum Monte Carlo method, the first step is to choose the starting
point configuration of the to be random walk. This amounts to randomly choosing for
t = 0, the coordinates xi for all the particles i = 1, 2, 3, . . . N on the lattice. We have to of
course avoid choosing those configurations of electrons, for which |Ψ(x)|2 = 0. We denote
this configuration as {xi}0. We then propose a new trial configuration {xi}T0 by permuting
two electrons. Based on the Metropolis algorithm the Markov chain is constructed in the
following manner. Generically, if we are at the nth point (configuration) {xi}n of the
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Markov chain and we propose a move to a new trial configuration {xi}Tn . Then, this new
configuration is accepted (i.e., {xi}n+1 = {xi}Tn ) with a probability which is equal to,

P = Min[1,R] where R =

∣∣∣∣Ψ({xi}Tn )

Ψ({xi}n)

∣∣∣∣2 (3.1)

subsequently we generate a random number ε such that 0 < ε ≤ 1. If it turns out thatR ≥ ε
then we accept the move that was proposed, i.e., {xi}n+1 = {xi}Tn otherwise we reject it, i.e.
{xi}n+1 = {xi}n, and stay where we were. In order to compute R we need to evaluate two
Slater determinants, if one deals with a fermionic system. The ratio of two determinants
can be computed with O(1) cost. The cost of updating scales as O(N2), this fact is made
possible because the new configuration differs from the old one by just a single permutation
of particles and thus, the computation of the ratio of two determinants can be reduced to
just computing a single matrix element. It is worth noting that we do not need to have
a knowledge of the normalization constant of the wave functions, since only the ratio’s of
the wave functions enter into the computations. Also, we mention that the configurations
{xi}n in the Markov chain are independent of the starting point {xi}0 if thermalization
has been achieved, i.e. after a “sufficient” number of steps and are distributed according to
|Ψ({xi})|2, upto a normalization factor.

The construction of the Markov chain with a given probability distribution enables one
to calculate the expectation values of any operator Â in that state. This is effected by simply
taking the average over the values taken by Â along the Markov chain configurations, and
for a sufficiently large Markov chain the central limit theorem ensures that the average over
the chain tends to the true expectation value of the observable. That is,

〈Â〉 = lim
L→∞

1

L

L∑
n=1

Â({xi}n) (3.2)

where Â({xi}n) is the value of the observable Â corresponding to the configuration {xi}n.
However, since in any finite time we can sample only a finite number of configurations leads
to the appearance of a statistical error which is computed from the variance,

σ2(
¯̂
A) = 〈( ¯̂

A− 〈Â〉)2〉 (3.3)

then from statistical considerations it is easy to show that the statistical error
√

(σ2(
¯̂
A))

scales inversely with the square root of the length L of the Markov chain, and directly with
the auto-correlation time, i.e., the number of steps in the Markov chain which separate two
statistically independent configurations. Thus, it is better to compute expectation values
over uncorrelated samplings, which is done using the “binning” technique, as described
below. Whence, the average values obtained from the Monte Carlo are extremely good
estimates of the true expectation values for a large number of samplings.

In the “binning” technique, one first takes the average of the operator Â over some fixed
number of configurations Lbin where Lbin = L/Nbins. Thus, we compute the average of
eqn. 3.2 for a bin, as follows

¯̂
Abin =

1

Lbin

Lbin∑
n=1

Â({xi}n) (3.4)

subsequently we average over the binned expectation values, as follows,
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¯̂
A =

1

Nbins

Nbins∑
n=1

(
¯̂
Abin)n (3.5)

thus, we see manifestly the advantage of the binning procedure. Firstly, the autocorrelation
time is now of the order of unity and thus ¯̂

A = 〈Â〉 which simply illustrates the fact that
¯̂
Abin are less correlated compared to Â({xi}n). The expression for the variance then takes
the following form,

σ2(Â) =
1

(Nbins − 1)

Nbins∑
n=1

((
¯̂
Abin)n − 〈Â〉)2 (3.6)

3.1.2 The wave function optimization algorithm

The task of the algorithm is to tune the variational wave function Ψ{αk}(x) in a manner
which minimizes the expectation value of the energy, given by,

E(Ψ) =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (3.7)

for later use it is worth re-casting the above expression for the energy into the following
form,

E(Ψ) =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=

∑
x〈Ψ|x〉〈x|Ĥ|Ψ〉∑
x〈Ψ|x〉〈x|Ψ〉

=

∑
x |Ψ(x)|2 〈x|Ĥ|Ψ〉〈x|Ψ〉∑

x |Ψ(x)|2

=

∑
x |Ψ(x)|2eL(x)∑

x |Ψ(x)|2 ≥ E0 (3.8)

where E0 is the ground state energy. The object eL(x) is called the local energy of the given
configuration {xi} (henceforth denoted as |x〉 for convenience of exposition). The above last
relation is extremely important and shows that the expectation value of the Hamiltonian in
a given state can be evaluated as the weighted average of the local energy eL(x) computed
over all possible configurations |x〉, with the weights given by the squared modulus of the
wave function. This can be implemented stochastically by averaging the local energy over
the Markov chain points, generated according to |Ψ(x)|2.

E(Ψ) = lim
L→∞

1

L

L∑
n=1

eL(xn) (3.9)

The way in which the variational parameters {αk} in the wave function will be tuned so as
to reach an energy minima in a stable and optimum way will now be described, as given
in [16, 17]. It is worth noting that these variational parameters can also belong to the
correlation terms in the wave function, in addition to the Slater determinant.
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If we do an infinitesimal change in the variational parameters, then {αk} → {α′

k} =
{αk}+ {δαk}. To linear order, the corresponding change in the wave function reads as,

Ψ{α′
k}

(x) = Ψ{αk}(x)

[
1 +

p∑
k=1

Ok(x)δαk

]
(3.10)

where Ok(x) is the logarithmic derivative of the wave function Ψ{αk}(x), given by,

Ok(x) =
∂

∂αk
lnΨ{αk}(x) (3.11)

this derivative has to be evaluated numerically for each of the variational parameters αk (k =
1, 2, 3 . . . , p) and for each of the configurations |x〉 of the Markov chain1. One can further
simplify the writing of eqn. 3.10 by formally introducing an operator Ôk corresponding to
Ok(x) defined in the following manner,

〈x|Ôk|x
′〉 = Ok(x)δxx′ (3.12)

in terms of this operator eqn. 3.10 takes the following form,

|Ψ{α′
k}
〉 =

[
1 +

p∑
k=1

δαkÔk

]
|Ψ{αk}〉 (3.13)

The usefulness of computing Ok(x) and eL(x) is that the derivatives of the energy w.r.t
the variational parameters (called generalized forces) are completely determined in terms of
Ok(x) and eL(x). These generalized forces determine how the variational parameters change
iteratively in such a manner so as to minimize the variational energy. We shall now show
this explicitly. The generalized forces fk are expressed as,

fk = −∂E(Ψ{αk})

∂αk

= −〈Ψ{αk}|[ÔkĤ + ĤÔk]|Ψ{αk}〉
〈Ψ{αk}|Ψ{αk}〉

+ 2E(Ψ{αk})
〈Ψ{αk}|Ôk|Ψ{αk}〉
〈Ψ{αk}|Ψ{αk}〉

= − 2

L

L∑
n=1

Ôk(xn)eL(xn) + 2
¯̂
OkēL (3.14)

where ēL and ¯̂
Ok are given by,

ēL =
1

L

L∑
n=1

eL(xn)

¯̂
Ok =

1

L

L∑
n=1

Ôk(xn) (3.15)

1To evaluate Ok(x), one first needs to calculate |Ψ{αk+δαk}〉 using perturbation theory on ĤMF. Subse-
quently, we determine Ψ{αk+δαk}(x) from which Ok(x) can be computed. Such a route is required because
the variational parameters {αk} are explicitly defined in the Hamiltonian but only implicitly present in the
variational wave function
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thus we see explicitly that once we stochastically compute eL(x) and Ok(x) for a Markov
chain, then we can compute fk in a straightforward manner. Now, all we need to show is
that convergence to an energy minimum is achieved upon iteratively changing the variational
parameters {αk}. The difference in the energy E(Ψ) to linear order is expressed as follows,

∆E = E(Ψ{α′
k}

)− E(Ψ{αk})

= −
p∑

k=1

fkδαk (3.16)

now if δαk is small enough it can be written as fkδt, where δt > 0 and is determined within
the minimization method at each iteration step. Thus, the above expression can be re-cast
as,

∆E = −
p∑

k=1

f 2
k δt (3.17)

thus, we see transparently that the change in energy is negative at each iteration and
convergence to the energy minimum is achieved when all fk = 0. This forms the content
of the method of steepest descent. An important point to note is that the “distance”
between the two sets of variational parameters, {αk} and {α′

k} is measured via their squared
Cartesian distance in the parameter space of p dimensions. That is,

∆αSD =

p∑
k=1

(α
′

k − αk)2 (3.18)

however, this way of measuring distance between iterations is not the only choice possible. In
fact, there are various other better choices possible which lead to convergence to an energy
minima in a much more controlled manner compared to the standard steepest descent
method. We describe below one such possibility.

The small change in variational parameters δαk can, in general be written as,

δαk =

p∑
m=1

s−1
kmfmδt (3.19)

the matrix skm should be positive definite, with this condition satisfied it is trivial to show
that convergence to an energy minimum will be achieved, since the change in energy at each
iteration can now be expressed as,

∆E = −
p∑

k=1

p∑
m=1

s−1
kmfkfmδt (3.20)

where δt is positive constant at each iteration. Whence, ∆E is always negative, until the
energy minima is reached, i.e. all fk = 0. From the above considerations it is also clear that
the steepest descent method forms a special case when the matrix s = I, the unit matrix.
Our choice of the matrix s is the following,

smk =
〈Ψ{αk}|ÔmÔk|Ψ{αk}〉
〈Ψ{αk}|Ψ{αk}〉

− 〈Ψ{αk}|Ôm|Ψ{αk}〉
〈Ψ{αk}|Ψ{αk}〉

〈Ψ{αk}|Ôk|Ψ{αk}〉
〈Ψ{αk}|Ψ{αk}〉

(3.21)
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thus, we see that once we have computed stochastically theOk(x) for the set of configurations
along the Markov chain (as described before), the matrix smk can be computed at once in
an efficient manner. This is also transparently seen if one re-casts the above expression for
smk in the following manner,

smk =
1

L

L∑
n=1

[Om(xn)− ¯̂
Om][Ok(xn)− ¯̂

Ok] (3.22)

the above expression for smk also shows that if we associate Om(xn)− ¯̂
Om to a vector in the

L dimensional space, then the matrix smk is just an overlap matrix and is always positive
regardless of the nature of the Markov chain. When one uses the above choice of the
matrix for optimization, then the method is called “stochastic reconfiguration optimization”
method.

Within the stochastic reconfiguration optimization method, the squared distance be-
tween the variational parameters {αk} and {α′

k} for two consecutive iterations is measured
via the corresponding normalized wave functions, instead being directly measured in the
variational parameter space as in eqn. 3.18 for the steepest descent method. Thus we have,

∆αSR = 2− 2
〈Ψ{αk}|Ψ{α′

k}
〉√

〈Ψ{αk}|Ψ{αk}〉〈Ψ{α′
k}
|Ψ{α′

k}
〉

(3.23)

such a scheme of distance measurement has the obvious advantage that it captures the
cases when during optimization a small change in the variational parameters leads to a
large change in the wave function and vice versa when a large change in the variational
parameters only leads to a small change in the wave function. Thus, this new definition
of distance is more sensitive and leads to a more accurate determination of the variational
parameters2. Also, it is interesting to note that ∆αSR can be expressed in terms of the s
matrix elements in the following manner,

∆αSR =

p∑
k=1

p∑
m=1

skm(α
′

k − αk)(α
′

m − αm) (3.24)

hence, once we have computed the s matrix as mentioned before, the ∆αSR can be deter-
mined. All the results on optimization, in the current thesis have been obtained using this
stochastic reconfiguration optimization method.

To highlight the advantage of this scheme over the steepest descent, we shall now present
the results of a case study on the spin-1/2 quantum Heisenberg antiferromagnet on the
kagomé lattice of 432 sites, using stochastic reconfiguration optimization. The variational
wave function is chosen to be that of a particular Z2 spin liquid on the kagomé lattice,
and is labelled by five real variational parameters. These are the 1st NN real hopping (χ1),
2nd NN real hopping (χ2), 2nd NN real spinon pairing (∆2), and two onsite terms, one for
the chemical potential µ and the other for the real onsite pairing ζR. After fixing χ1 = 1,
the variational wave functions can symbolically be written as |ΨVMC(χ2,∆2, µ, ζR)〉. For a
generic unbiased starting point in the four-dimensional variational space, the variation of
parameters and energy in the stochastic reconfiguration optimization is shown in Fig. 3.1.

2In other words, this feature is possible because the changes in parameters {δαk} are related not only
to energy differences and generalized forces but also on the s matrix.
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Figure 3.1: A typical variational Monte Carlo stochastic reconfiguration optimization run
for the Z2 spin liquid wave function: (a) variational parameters ∆2, χ2, µ, and ζR and
(b) energy, as a function of stochastic reconfiguration iterations. In (a), the initialized
parameter values are: ∆2 = χ2 = 1, µ = −0.8, and ζR = 0.3. The Z2 spin liquid wave
function optimizes to that of the U(1) 2nd NN Dirac spin liquid which corresponds to
∆2 = 0, χ2 = −0.0186(2), ζR = 0. The final optimized parameter values are then obtained
by averaging over a much larger number of converged iterations than shown above.

Here, we bring attention to the important fact that, despite the energy having converged
after about 400 iterations (see point B in Fig. 3.1(b)), the parameters did not converge and
were still varying, converging to their final values much later than the energy. This fact is
possible because, as we mentioned before, in the energy minimization forces are calculated
through correlated sampling and not just by energy differences. Thus, in general whenever
the energy landscape is relatively flat and many competing phases occur in a narrow width
of energy, the optimization using stochastic reconfiguration becomes indispensable in order
to arrive at unambiguous conclusions.

3.1.3 Green function Monte Carlo

A problem of utmost importance is that of extracting the ground state |Φ0〉 of a particular
Hamiltonian H, from a variational trial wave function |Ψtrial〉, provided these two have a
finite overlap, i.e., 〈Φ0|Ψtrial〉 6= 0. This can be achieved by using the power method, which
consists of iteratively applying the operator G = Λ − H to the trial wave function, in the
following manner,

Gn|Ψtrial〉 = (Λ− E0)n
{
a0|Φ0〉+

∑
i 6=0

(
Λ− Ei
Λ− E0

)n
ai|Φi〉

}
(3.25)
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here, the Ei and |Φi〉 are the eigenvalues and eigenvectors of H respectively, and the ai =
〈Φi|Ψtrial〉. Λ is a constant chosen in a way so as to allow convergence to the ground state.
Whence, it follows from the above definition that,

lim
n→∞

Gn|Ψtrial〉 ≈ |Φ0〉 (3.26)

thus, the convergence to the true ground state of the Hamiltonian H is guaranteed by
this procedure, when n → ∞. However, an exact brute force evaluation of these iterative
recursion relations proves to be impossible, especially on large clusters. This is because the
application of G generates transitions to a very large number of different states even after
just a few applications, thus costing a huge amount of memory. The way to go about is to
use a stochastic technique to implement the power method, this is the essence of the Green
function Monte Carlo method [95].

We first define the electron spin configuration on the lattice, i.e., the basis |x〉 and then
iteratively apply the operator Gx′x, for which a single iteration on Ψn(x) yields,

Ψn+1(x′) =
∑
x

Gx′xΨn(x). (3.27)

The key step is to stochastically evaluate using Markov process, the matrix vector product
in eqn. 3.27.

It so turns out that for an efficient implementation it is convenient to deal not with the
original symmetric matrix G, but rather with the following non-symmetric one [96],

Ḡx′x =
ΨG(x′)

ΨG(x)
Gx′x (3.28)

where, ΨG(x) is called the guiding wave function which should be chosen such that it can
be implemented efficiently in the calculation of matrix elements in eqn. 3.27, and should be
as close as possible to the ground state of G. The simplest wave function satisfying these
criteria should be chosen. Furthermore, if Φi(x) is an eigenvector of G with eigenvalue Ei,
then it is easy to show that ΨG(x)Φi(x) is an eigenvector of Ḡ with the same eigenvalue.
Thus, G and Ḡ are iso-spectral. The advantage of using Ḡ instead of G is seen if we write
the expression of the local energy Ex,

Ex =
∑
x′

ΨG(x′)

ΨG(x)
Hx′x =

∑
x′

H̄x′x (3.29)

thus we see clearly that if ΨG(x) is exactly equal to the ground state of H then Ex = E0

and hence the LHS of the above expression is independent of x. Herein lies the power of
the method, namely that, if the guiding wave function approaches an exact eigenstate of H,
the method is essentially free of statistical fluctuations, this is called as the zero-variance
property. Finally, after having expounded the advantage of working with Ḡ, we can write
the recursion relation of eqn. 3.27 in terms of Ḡ as,

Ψn+1(x′)ΨG(x′) =
∑
x

Ḡx′xΨn(x)ΨG(x) (3.30)

The fixed-node approximation

We mentioned previously that the recursive relation in eqn. 3.27 has to be evaluated stochas-
tically, and that the operator G generates transitions to a number of states which scale as
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O(N). A feature of this calculation is that there are always some walkers whose weights
are not positive, although this does not hinder the determination of the transition proba-
bility of the stochastic process it nevertheless leads to an instability in the calculations due
to wild cancellations between positive and negative weights. It is worth mentioning that
the Markov process may still converge to a probability distribution corresponding to the
ground state wave function. Thus, to cure this instability one needs to make some kind
of approximation. The fixed-node approximation [97] does the job, wherein one defines an
effective Hamiltonian H̄eff from the original Hamiltonian H̄, by setting to zero the positive
off-diagonal elements of H̄. Thus, the H̄eff reads as,

H̄eff
x′x =

{
H̄x′x, if H̄x′x ≤ 0

0, if H̄x′x > 0

however, in order to have variational results for the energies, it is in addition necessary that
the diagonal terms undergo a sign flip, i.e.,

H̄eff
xx = H̄xx + V(x) (3.31)

where,

V(x) =
∑

H̄x′x>0, x′ 6=x

H̄x′x (3.32)

this redefined effective Hamiltonian constitutes the essence of the fixed-node approximation.
It is interesting and important to note that the fixed-node approximation actually gives

us an upper bound of the ground state energy. If we consider any variational state |Ψtrial〉
and we compute and compare its energy for H and Heff , we get,

∆E = 〈Ψtrial|(Heff −H)|Ψtrial〉

=
∑

H̄x′x>0, x′ 6=x

|Hxx′|
∣∣∣∣Ψtrial(x)

√∣∣∣∣ΨG(x′)

ΨG(x)

∣∣∣∣−Ψtrial(x
′)

√∣∣∣∣ΨG(x)

ΨG(x′)

∣∣∣∣sgn(Hxx′)

∣∣∣∣
2

(3.33)

thus, we see that ∆E > 0 for any wave function. Hence, it follows at once that the ground
state energy Eeff

0 of Heff serves as an upper bound of the ground state energy E0 of H.
Thus, if Ψeff is the ground state wave function, we can write down the following extremely
important inequality,

Eeff
0 ≥

〈Ψeff |H|Ψeff〉
〈Ψeff |Ψeff〉 ≥ E0 (3.34)

Hence, it is now manifest that the fixed-node energy serves as an upper bound to the true
ground state energy. Also, the fixed-node approximation improves the energy of the guiding
wave function, expressed in the following inequality,

Eeff
0 ≤

〈ΨG|Heff |ΨG〉
〈ΨG|ΨG〉

=
〈ΨG|H|ΨG〉
〈ΨG|ΨG〉

(3.35)
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3.2 The Lanczos algorithm and its implementation within
a Monte Carlo scheme

3.2.1 The Lanczos method

The Lanczos method is an iterative procedure used to determine the eigenspectrum of
Hermitian matrices. It is much better than the power method because of the manner
in which the ground state is reconstructed. In the power method, the ground state is
approximated by a single state, |Ψ0〉 ≈ Gn|Ψtrial〉, in contrast the Lanczos method uses the
information contained in all powers Gi|Ψtrial〉, with i = 1, 2, . . . , n to reconstruct the ground
state which is then approximated as,

|Ψ0〉 ≈
n∑
i=1

αiHi|Ψtrial〉 (3.36)

The starting point is chosen to be an arbitrary vector |Ψ1〉 in the Hilbert space, satisfying
〈Ψ0|Ψ1〉 6= 0. If there is no a priori information about the ground state, then a prescription
is to choose random coefficients in the wave function, for the given basis vectors. In some
cases, from general considerations, there is information about the ground state available, like
its momentum, or total spin, or its transformation properties under point group symmetry
operations. In these cases it is better to choose the starting vector |Ψ1〉 in the relevant
subspace having the right quantum numbers.

The Lanczos iterations generate a set of orthogonal vectors, in the following manner; we
first normalize the initial random state |Ψ1〉 and define a new vector obtained by applying
the Hamiltonian H to |Ψ1〉, and finally subtract the projection over |Ψ1〉, this gives,

β2|Ψ2〉 = H|Ψ1〉 − α1|Ψ1〉 (3.37)

where α1 and β2 are such that 〈Ψ2|Ψ2〉 = 1 and 〈Ψ1|Ψ2〉 = 0, this gives for the coefficients
the following expression,

α1 = 〈Ψ1|H|Ψ1〉
β2 = 〈Ψ2|H|Ψ1〉 (3.38)

we can subsequently construct a new state which is orthogonal to the previous ones, in the
following manner,

β3|Ψ3〉 = H|Ψ2〉 − α2|Ψ2〉 − β2|Ψ1〉 (3.39)

with,

α2 = 〈Ψ2|H|Ψ2〉
β3 = 〈Ψ3|H|Ψ2〉 (3.40)

Thus, we see that a general iteration takes the following form,

βn+1|Ψn+1〉 = H|Ψn〉 − αn|Ψn〉 − βn|Ψn−1〉 (3.41)

with,
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Figure 3.2: Plot of Energy vs Variance for the Lanczos iterative convergence to the ground
state starting from two random state vectors. As one gets closer to the ground state the
relation between the energy and variance becomes essentially linear (marked by red line),
see inset for magnification near the ground state region. This implies that to extract the
ground state energy it is sufficient to choose (if possible) a “good” enough starting wave
function and perform only a few Lanczos steps followed by a zero variance extrpolation.
This extrapolation scheme will be used extensively when performing Lanczos within a Monte
Carlo scheme, since within the scheme it is only possible to perform a few Lanczos steps.

αn = 〈Ψn|H|Ψn〉
βn+1 = 〈Ψn+1|H|Ψn〉 (3.42)

It is worth noting that, by construction, the vector |Ψn〉 are orthogonal to all the previous
ones, despite the fact that we subtract only the projections of the previous two vectors. It
is also transparent that, in the Lanczos basis, the Hamiltonian acquires a tridiagonal form,

H =


α1 β2 0 0 · · ·
β2 α2 β3 0 · · ·
0 β3 α3 β4 · · ·
0 0 β4 α4 · · ·
· · · · · · · · · · · · · · ·


In this form, the Hamiltonian can be easily diagonalized using standard routines. In order,
to obtain the exact ground state of a given Hamiltonian, it is necessary to perform a number
of iterations equal to the dimension of the Hilbert space. However, in practice an extremely
accurate approximation of the ground state is obtained after only a few iterations (≈ 100),
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this is the greatest advantage of the of the Lanczos method. The ground state can then be
expressed as,

|Ψ0〉 ≈
∼100∑
n=1

cn|Ψn〉 (3.43)

The limitation due to the exponential growth of the Hilbert space can be controlled by
exploiting the symmetries of the Hamiltonian, e.g. in the case of periodic boundary condi-
tions on a chain, there is translational invariance and the momentum is thus a conserved
quantity.

The results of a case study for the spin-1/2 J1 − J2 XXZ chain of 24 sites are given
in Fig. 3.2, wherein we start from two random states and show the manner in which the
convergence to the ground state is reached, within very few iterations, by plotting the
energy (〈H〉) versus variance (σ2 = 〈H2〉 − 〈H〉2) of the iterated states. As can be seen the
relation between the energy and variance becomes essentially linear as one approaches near
the ground state. This is discussed in more detail in sec. 3.2.3.

3.2.2 Improvement of variational wave functions by application of
Lanczos steps within a Monte Carlo scheme

After one has “guessed” (of course by using some prescription) a trial wave function |Ψtrial〉
for a given Hamiltonian, then the question arises as to how should one “improve” it so as to
get closer to the true ground state. This improvement can be systematically carried out by
applying the Hamiltonian operator a given number, say p times on the trial wave function
and then constructing a linear combination of all the p terms [18]. That is,

|Ψα1,...,αp〉 =
∑

i=1,...,p

αiHi|Ψtrial〉 (3.44)

the resulting variational wave function |Ψα1,...,αp〉 contains p variational parameters (the
coefficients αi) in addition to its internal ones.

We shall first take up the case of p = 1, i.e. one Lanczos step wave function and show
how to go about calculating the expectation value of the Hamiltonian for the following state,

|Ψα〉 = (1 + αH)|Ψtrial〉 (3.45)

assuming that the value of α is already fixed and determined in a way so as to yield the
minimum energy. The energy of the one Lanczos step wave function reads as,

E(α) =
〈Ψα|H|Ψα〉
〈Ψα|Ψα〉

=

∑
xx′ Ψα(x′)Hx′xΨα(x)∑

x |Ψα(x)|2

=

∑
xEx(α)|Ψα(x)|2∑

x |Ψα(x)|2
(3.46)

where Ex(α) is the local energy, defined as,
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Ex(α) =
∑
x′

Hx′x
Ψα(x′)

Ψα(x)
(3.47)

The ratio Ψα(x′)/Ψα(x) is the central quantity entering the Metropolis algorithm can be
expressed as,

Ψα(x′)

Ψα(x)
=
〈x′|(1 + αH)|Ψtrial〉
〈x|(1 + αH)|Ψtrial〉

=
Ψtrial(x

′)

Ψtrial(x)

(
1 + αEx′

1 + αEx

)
(3.48)

Therefore, at each Monte Carlo step, we have to compute the local energy of the trial
wave function |Ψtrial〉 on both the configurations |x〉 and |x′〉. This calculation involves
computing all the matrix elements 〈x′|H|Ψtrial〉, whether or not the move from |x〉 → |x′〉
is accepted, and requires operations of the order of number of lattice sites. The exact
computation for, say p Lanczos steps requires evaluating matrix elements 〈x′|Hi|Ψtrial〉 for
i = 1, . . . , 2p+1, and the algorithm scales in time exponentially with the number of Lanczos
steps, since one has to take into account all the possible configurations that arise when Hi is
applied to |x′〉. However, using the stochastic reconfiguration technique it proves feasible to
perform a few Lanczos steps on a given trial wave function, within a reasonable amount of
time. If one has a good enough trial wave function as the starting point, then only a couple
of Lanczos steps are needed in order to have an energy quite close to the true value from
exact diagonalization. Subsequently, one can perform a variance extrapolation to obtain the
ground state energy to an extremely good degree of accuracy, even the exact one sometimes
if the symmetry sectors of the trial wave function and the ground state wave function are
the same.

3.2.3 The method of variance extrapolation

Any variational Monte Carlo calculation of an observable, e.g. the energy, of a trial wave
function has statistical fluctuations, except if one is exactly at an eigenstate of the Hamilto-
nian, in which case the fluctuations vanish. Therefore, the extent to which |Ψtrial〉 deviates
or is away from the ground state is indicated by the width of the energy distribution of the
trial wave function |Ψtrial〉. The variance of the energy distribution is a quantitative estimate
of this width and provides a criterion for determining how close a trial wave function is, to
the true ground state. The variance is given by,

σ2 =
1

N2
(〈H2〉 − 〈H〉2)

=
1

N2

(〈Ψtrial|H2|Ψtrial〉
〈Ψtrial|Ψtrial〉

−
(〈Ψtrial|H|Ψtrial〉
〈Ψtrial|Ψtrial〉

)2)
(3.49)

the variance thus measures the “quality” of the trial wave function. A good variational state
has an energy close to E0 and also a small variance. This additional information provided
about the quality of the variational state is one of the advantages of the variational approach.

The calculation of the variance can be done within the variational Monte Carlo scheme,
as can be seen from the expression below,

〈Ψtrial|H2|Ψtrial〉
〈Ψtrial|Ψtrial〉

=

∑
x〈Ψtrial|H|x〉〈x|H|Ψtrial〉∑

x |Ψtrial(x)|2
=

∑
xE

2
x|Ψtrial(x)|2∑

x |Ψtrial(x)|2
(3.50)
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Figure 3.3: Adapted from Ref. [98]. The energy is plotted as a function of variance for
various wave functions, for the t-J model. It shows that for good enough starting variational
wave functions, only a few Lanczos steps are necessary to obtain an excellent estimate of
the exact ground state energy. In the case of the state “with pairing” (the best one of the
three), if one takes only the points for 0, 1 and 2 Lanczos steps and perform a quadratic
fit extrapolation, we land up with an energy which is within error bars of that obtained by
following all the Lanczos steps. Hence, given such good starting wave functions, the method
of variance extrapolation after a couple of Lanczos steps forms an excellent and economical
tool to extract the exact ground state energy.

where Ex is the local energy as previously defined. Therefore, the variance can be computed
by sampling the square of the local energy, in addition to the local energy itself.

If the trial wave function |Ψtrial〉 is close enough to the true ground state |Ψ0〉. Then,
|Ψtrial〉 = |Ψ0〉+ ε|η〉, with 〈Ψ0|η〉 = 0 and 〈Ψ0|Ψ0〉 = 〈η|η〉 = 1. The energy per site can be
expressed as,

E

N
=

1

N

(
E0 + ε2〈η|H|η〉

1 + ε2

)
≈ E0

N
+
ε2

N
(〈η|H|η〉 − E0) (3.51)

thus we see that the difference between the variational and exact ground state energy van-
ishes linearly with ε2. Analogously the variance can be expressed as,
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σ2 =
1

N2

(
E2

0 + ε2〈η|H2|η〉
1 + ε2

−
(
E0 + ε2〈η|H|η〉

1 + ε2

)2)
(3.52)

to leading order in ε2 the above expression reads as,

σ2 ≈ ε2

N2
〈η|(H− E0)2|η〉 (3.53)

Whence, when the trial state is close enough to the ground state, the following relation
holds between the energy and the variance,

E

N
≈ E0

N
+ constant×N × σ2 (3.54)

We have manifestly seen the validity of the above expression in Fig. 3.2, for a pure Lanczos
calculation, and in Fig. 3.3 for the implementation of Lanczos algorithm within a Monte
Carlo scheme. The above relation is extremely important and can be used to extract the
ground state energy of a Hamiltonian on a given cluster size. For a given starting trial wave
function and for the hierarchy of wave functions obtained by applying p Lanczos steps on
it, we calculate the energies E and variances σ2 for each one of them, and subsequently
extrapolate to σ2 = 0 to obtain an estimate of the ground state energy E0, see Fig. 3.3.3 In
this hierarchy, each variational state descends from the previous one and has a lower energy
and variance compared the previous one. It is worth mentioning that we can also compute
the energies for each of these states using Green’s function Monte Carlo and similarly
extrapolate to σ2 = 0 to obtain a possibly better estimate of the ground state energy of
the Hamiltonian on a given cluster. Finally, it is worth mentioning that we can obtain
these ground state energies E0 for many different cluster sizes and perform a finite-size
extrapolation to obtain an estimate of the ground state energy for the infinite system.

3As a proof of principle, it is necessary to validate the extrapolated energy by repeating this procedure
starting from different wave functions and verifying that the extrapolations indeed match within error bars.
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Part II

The spin-1/2 Heisenberg
antiferromagnet on the kagomé lattice
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Chapter 4

History and mystery associated to the
kagomé Heisenberg model

4.1 The spin-1/2 Heisenberg antiferromagnetic model on
two dimensional lattices

It is well known from the Mermin-Wagner theorem that in two (and one) dimensional
isotropic Heisenberg spin systems at non-zero temperature, there can never be magnetic
long range ordering as long as the range of exchange interactions is finite [99]. However, at
zero temperature the presence of magnetic long range order is “permitted”, but its presence
or absence depends on the strength of quantum fluctuations and no sweeping statements can
be made. The extent to which quantum fluctuations are amplified depends on the lattice
topology and geometry, and the manner in which it interplays with exchange interactions.

In two dimensions there are 11 possible uniform Archimedean tilings formed from dif-
ferent arrangements of regular polygons. Out of these 11 lattices only 3 are made of a
single type of regular polygon which is periodically arranged, these are the triangular lat-
tice, the square lattice and the hexagonal (honeycomb) lattice. The other 8 lattices are
composed of periodic arrangement of two or more types of regular polygons with the same
edge length, e.g. combining triangles and hexagons gives rise to the kagomé lattice or com-
bining triangles, squares and hexagons gives rise to the bounce lattice. Only the square
and triangular lattices have a primitive unit cell, rest all have at least two sites per unit
cell. Among these 11 lattices, 4 of them are composed of only even sided polygons and
are thus unfrustrated, these are termed as bipartite lattices. The rest 7 lattices are also
composed of odd sided polygons, they are thus frustrated geometrically and are termed as
non-bipartite lattices. Also, the triangular, square, hexagonal and kagomé lattices all have
equivalent nearest neighbor bonds, the rest 7 lattices have non-equivalent bonds. These 11
lattices have coordination numbers ranging from z = 3 to z = 6. Thus, from the above
considerations it is clear that these lattices differ in their topology and geometry, these
geometrical properties in turn have a strong influence on the magnetic properties of the
spin system on the respective lattices. Precisely speaking, the non-bipartite nature of a
lattice and a low coordination number greatly enhance quantum fluctuations and thereby
aid the stabilization of a quantum paramagnetic state. The kagomé lattice serves as the
ideal playground to stabilize these exotic phases, since it has a coordination number on the
lower side z = 4 and possesses the maximum geometric frustration [100–102].
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4.2 The spin-1/2 Heisenberg antiferromagnetic model on
the kagomé lattice

The spin-1/2 Heisenberg antiferromagnetic model on the kagomé lattice has had a decently
long and a very distinguished career, both in terms of challenges it has posed and still
poses to theoretical and numerical methods, and more recently in pushing developments
in experimental techniques used to study these novel systems. The story began just after
it was realized that the ground state of the spin-1/2 Heisenberg antiferromagnetic model
on the triangular lattice is actually Néel ordered [103–113] contrary to the conjecture by
Anderson and Fazekas that the ground state should be a rotationally invariant RVB spin
liquid [64, 65]. Subsequently the limelight shifted to the kagomé lattice in search for an exotic
quantum paramagnetic ground state since, despite being as frustrated as the triangular
lattice, it has a lower coordination number z = 4. Indeed, all studies have pointed at a
quantum paramagnetic ground state of the kagomé spin-1/2 Heisenberg antiferromagnetic
model [56, 104, 113–127].

The geometrical unit cell of the kagomé lattice contains 3 sites and the Bravais lattice
is a triangular one. The classical ground state of the Heisenberg antiferromagnetic model
consists of neighboring spins pointing at an angle of 120◦ relative to each other, see Fig. 4.1.
The energy per site comes out to be E/site = −s2 = −0.25. The classical ground states on
the kagomé lattice have a non-trivial infinite degeneracy [48, 128, 129] and this feature is
responsible, in the quantum version of the model, for the unusually high number of singlet
excitations below the triplet gap.

  

A

A

A

BC

Figure 4.1: The two different ground states of the classical kagomé Heisenberg antiferro-
magnetic model. The state on the left is called the q = 0 state and it does not break the
elementary (3-site unit cell) translational symmetry of the kagomé lattice. The state on
the right is called the

√
3×
√

3 state and it breaks the elementary translational symmetry
of the kagomé lattice because its magnetic unit cell is three times larger compared to the
underlying geometrical unit cell. The infinite degeneracy of both these states is reflected in
the fact that we can freely rotate in a synchronized manner, the spins at every site.
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The identification of the precise nature of the quantum paramagnetic ground state of
the kagomé spin-1/2 quantum Heisenberg antiferromagnetic model is still a wide open,
intensely debated and a controversial issue. This is because the ground state manifold is
extensively quasi-degenerate with a stiff competition between myriad of different phases all
concentrated within a very narrow energy range. The problem is further aggravated by the
fact that the respective stability and nature of these phases can be changed upon minor
perturbations. Some of these phases are extremely “delicate” while others are robust and
occupy a finite region in phase space. The combined presence of such unique features have
pushed the envelope of theoretical and numerical ideas, and techniques aimed at solving
this delicately balanced Hamiltonian on the kagomé lattice. This delicate balancing in the
vicinity of a quantum critical point has the effect that it is extremely difficult to even
broadly claim if the ground state is a spin liquid or a valence bond crystal. This is because
nearby a critical point the VBC may also have strong quantum fluctuations suppressing its
order parameter leading to a very weak breaking of translational symmetry which cannot be
unambiguously captured by all methods, and is very difficult to distinguish from signatures
of a spin liquid behavior. Thus, it can safely be said in retrospect that any development
towards a solution to this problem has also lead and will lead to progress in theoretical and
numerical techniques. On the other hand, in order to extract thermodynamic properties one
has to use approximate numerical techniques in the absence of an exact method of solution
in 2d and also because exact diagonalization studies are restricted to relatively small system
sizes, the current limit being 48 sites. Each technique is biased in some way or another
towards capturing a particular type of quantum order, as a consequence many competing
phases of very different nature’s have been vouched for as ground states. The claims of
ground state made using one technique have not generally been backed up or verified by
other techniques unanimously, which is an unpleasant situation and is a reflection of the
difficulty of the problem at hand. We shall now present a survey of the kagomé ground state
landscape within various approaches and also outline the current situation on this infamous
lattice.

First, we survey the “hot” competitors which have been proposed within the framework of
the SU(2) slave boson (Schwinger fermion) approach, where in particular the gapless/critical
spin liquids with a U(1) low energy gauge structure have been argued to be a good approx-
imation to the true ground state. The competing spin liquids within this approach are the
following,

• An algebraic spin liquid, the so called U(1) Dirac spin liquid. Its mean field band
structure consists of two Dirac cones (at the Fermi energy) at which the spectrum
becomes relativistic (linear) with Dirac conical excitations described by 4 flavors of
massless two component Dirac fermions coupled to a dynamical U(1) compact lattice
gauge field. Its mean field Ansatz is given by nearest neighbor uniform hopping
amplitudes (|χij| = 1) with phases such that 0 flux threads through the triangles and
π through the hexagons, hence its also called the [0, π] spin liquid. After projection,
its energy per site on a 48 site cluster is computed (using variational Monte Carlo) to
be E/site = −0.4293510(4) which is within 2% of the exact diagonalization value on
the 48 site cluster, which is quite remarkable keeping in mind the fact that the wave
function has no variational parameters. The real space spin-spin correlations in the
projected state decay as a power law, being proportional to 1/L4. It is an example of
a fully symmetric long range RVB spin liquid and is marginally stable. For a detailed
study of the properties of this spin liquid, see [12, 13, 130].
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• A uniform RVB spin liquid, which is also a U(1) gapless spin liquid. Its mean field
band structure consists of large circular spinon Fermi surfaces coupled to a compact
U(1) lattice gauge field. Its mean field Ansatz is given by nearest neighbor uniform
hopping amplitudes (|χij| = 1) with phases such that 0 flux threads through both
triangles and hexagons, hence its also called as the [0, 0] spin liquid. After projection,
its energy per site on a 48 site cluster is computed (using variational Monte Carlo)
to be E/site = −0.4114624(8), which is higher compared to the U(1) Dirac spin
liquid, and within 6% of the exact diagonalization value. This wave function also
does not require any fine tuning of variational parameters. Upon addition of a small
ferromagnetic exchange coupling (J2) to the Hamiltonian this state becomes lower in
energy than the U(1) Dirac spin liquid. The [0, 0] spin liquid is also an example of a
fully symmetric long range RVB spin liquid. For more details see [131].

• Chiral spin liquids: These spin liquids are not fully symmetric, specifically, they
break time-reversal symmetry due to chiral mass terms acquired by the fermions, and
hence these are gapped states and belong to the category of stable short range RVB
spin liquids. In general, their mean field Ansatz are obtained by having a flux different
from 0 and π through the triangles and hexagons, this is implemented by having com-
plex hoppings (χij). It is these spin liquids which host fractionalized excitations which
are free spinons obeying fractional statistics, this is because the gauge field becomes
gapped via the Chern-Simons mechanism [132, 133]. If we perturb the U(1) Dirac
spin liquid by inserting a θ flux through the triangles and remove π− 2θ flux through
the hexagons, one finds that the energy increases, and this increase is monotonic till
the limit [π/2, 0], see [12]. Thus, these class of chiral spin liquids are energetically
unfavorable compared to the U(1) Dirac spin liquid. The energetics of two more chi-
ral states was investigated in [12], these were the staggered flux state with +π/2 flux
through up triangles and −π/2 flux through down triangles, and zero flux through
hexagons, hence called the [±π/2, 0] spin liquid. The other spin liquid has π/2 flux
through the triangles and π flux through hexagons is called the [π/2, π] spin liquid.
Both these spin liquids were found to have higher energies compared to the U(1) Dirac
spin liquid and also the [0,0] spin liquid. It is worth noting that at the mean field
level (without projection), the [π/2, 0] chiral state has the lowest energy [134], and the
Dirac spin liquid has the lowest mean field energy among non-chiral spin liquids [130],
albeit higher than the [π/2, 0] spin liquid. However, upon incorporating fluctuations
the scenario is reversed and the chiral [π/2, 0] spin liquid becomes higher in energy
compared to the U(1) Dirac spin liquid.

• The Z2 spin liquids: There are in all 20 fully symmetric Z2 spin liquids that can
exist on the kagomé lattice [91]. Out of these, 5 spins liquids are gapped and the rest
are gapless. Since, the Z2 gauge field is gapped all Z2 spin liquids are stable and hence
more likely to occur as real physical spin liquids. Among these 20 spin liquids only 12
are likely to occur as ground states of a nearest neighbor Heisenberg Hamiltonian, and
all of them are continuously connected to some U(1) gapless spin liquid. The energies
of all these 12 Z2 spin liquids was found to be higher compared to the U(1) Dirac spin
liquid for the nearest neighbor Heisenberg Hamiltonian [22].

• Valence bond crystals: The valence bond crystals break the elementary 3 site
unit cell translational symmetry with different unit cell sizes. If one restricts to sizes
upto 36 sites, then in all 20 symmetry distinct valence bond crystals can exist on the
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kagomé lattice. Some of them, in particular a 12 site C6v symmetric valence bond
crystal was proposed as an instability of the U(1) Dirac spin liquid in Ref. [130], but
a computation of the energy shows that in fact this Valence bond crystal is higher in
energy compared to the U(1) Dirac spin liquid, and that even the [0, 0] spin liquid
is stable against this perturbation [12, 19, 131]. The competing 18 site and 36 site
unit cell valence bond crystal was also shown to be higher in energy compared to the
U(1) Dirac spin liquid, see Ref. [19, 131]. In fact, in a recent study we showed that
the U(1) Dirac spin liquid is robust (locally and globally) against destabilizing into all
20 valence bond crystals. It is worth mentioning that the valence bond crystal state
is stabilized as the ground state upon addition of a very weak 2nd nearest neighbor
ferromagnetic exchange coupling in the Hamiltonian.

Thus, in conclusion we can safely say that within the SU(2) slave boson (Schwinger
fermion) formalism, the U(1) Dirac spin liquid has the lowest variational energy for the
nearest neighbor spin-1/2 Heisenberg antiferromagnetic model on the kagomé lattice. We
will now describe the scenario regarding the competing states proposed within the slave
fermion (Schwinger boson) approach, all of which are hence gapped.

• The Z2 spin liquids: There are in all 8 fully symmetric Z2 spin liquids that can exist
on the kagomé lattice [135]. Among these 8 spin liquids, only 4 of them are likely
to be stabilized as ground states of a nearest neighbor Heisenberg Hamiltonian. In
Ref. [136], the energies of these 4 spin liquids were computed and were found to be
higher compared to the U(1) Dirac spin liquid for the nearest neighbor Hamiltonian.
However, the study found that upon addition of a small 2nd nearest neighbor antifer-
romagnetic coupling to the Hamiltonian, the energy of a particular Z2 spin liquid, the
so called q = 0 state [137] becomes lower than the U(1) Dirac spin liquid.

• Chiral spin liquid: A particular gapped chiral topological spin liquid called the
cuboc1 phase, was argued in Ref. [138] as the ground state of the spin-1/2 Heisenberg
antiferromagnetic model. The claims were made purely at a mean field level, and the
claim is partly supported by exact diagonalization results for dynamical and static
spin structure factors. However, an energetic analysis using projected wave functions
on e.g. the 48 site cluster would be needed to categorically comment on the viability
of such a state being stabilized as the ground state.

Whence, we can safely conclude that, till date, within the slave particle formalisms, the
best variational energy is given by the projected U(1) Dirac spin liquid, for the nearest
neighbor spin-1/2 quantum Heisenberg antiferromagnet.

We now turn our focus to other formalisms and numerical techniques that have been
used to attack this problem and survey the ground states that have been proposed using
those techniques for the spin-1/2 Heisenberg antiferromagnet,

• Density matrix renormalization group (DMRG): An early DMRG study [139]
pointed towards a spin liquid ground state of the short range RVB type which is
fully symmetric, and is furthermore gapped in the spin-triplet channel but gapless
in the spin-singlet channel. On a 48 site cluster using periodic boundary conditions
its ground state energy per site was computed to be E/site = −0.43663, which is
within 0.4% of the exact diagonalization value. It is worth noting that this energy
estimate is lower than that for the U(1) Dirac spin liquid. A subsequent study using
multi scale entanglement renormalization ansatz (MERA) [140], claimed that the best
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approximation to the ground state of an infinite system is a 36 site unit cell valence
bond crystal. But, this claim cannot be treated as conclusive since MERA is biased
towards capturing low entanglement solutions as compared to relatively more entan-
gled states such as algebraic spin liquids. Hence, a spin liquid ground state cannot be
categorically excluded by using this technique alone.

On the other hand, relatively recent large scale and improved DMRG studies [20, 21]
have made a strong claim for a fully gapped, fully symmetric Z2 spin liquid ground
state of the spin-1/2 Heisenberg antiferromagnetic model, which has been further
supported by computations of topological entanglement entropy using DMRG, finding
a scaling of entanglement entropies consistent with a Z2 spin liquid.

• Series expansion: The series expansion studies carried out in Refs. [141, 142] have
unanimously claimed the ground state to be a 36 site unit cell valence bond crystal.
The energy of such a crystal is slightly lower than for the U(1) Dirac spin liquid.

• Quantum dimer models: The study of the kagomé Heisenberg antiferromagnet
using an effective quantitative quantum dimer model have claimed the ground state
to be a 36 site unit cell valence bond crystal. It also found a topological Z2 dimer
liquid nearby, in an extended parameter space [143, 144]. A more recent generalized
quantum dimer model study [145] found a new (possibly chiral) valence bond crystal
of 12 site unit cell to be competing with the 36 site unit cell valence bond crystal.
Also, a 6 site columnar valence bond crystal was found to be competing for the ground
state.

• Contractor renormalization (CORE): On mapping the spin-1/2 Heisenberg anti-
ferromagnet to an effective Hamiltonian using CORE, one finds a variational ground
state which is a 6 site valence bond crystal possessing columnar dimer order [146].
This claim has also been backed up by a generalized quantum dimer model study
mentioned above.

The “jungle” of proposed ground states and their corresponding frameworks are summa-
rized in the table below.

1st Author GS proposed Energy/site Method used
Ran U(1) algebraic SL ≈ −0.42866 J Proj. Schwinger fermion
Messio Chiral topological gapped SL Schwinger boson mean field
Singh 36 site HVBC ≈ −0.433 J Dimer series expansion
Budnik 6 site CVBC CORE
Poilblanc 6, 12 (chiral) & 36 site VBCs Quantum dimer models
Evenbly 36 site HVBC ≈ −0.43221 J MERA
Yan Z2 fully gapped SL ≈ −0.4379 J DMRG

Depenbrock Z2 fully gapped non-chiral SL ≈ −0.4386 J DMRG

Thus, even a brief survey of the manifold of possible ground states of the spin-1/2
Heisenberg antiferromagnet proposed using different approximate methods highlights the
muddle that infects this difficult problem. We shall address this problem only within the
SU(2) slave boson (Schwinger fermion) variational approach and confront the question of
construction of variational wave functions for these myriad of different phases which have
been proposed from different techniques. Since, within this formalism the best variational
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wave function is that of a U(1) Dirac spin liquid which is critical and hence marginally stable,
we shall subsequently analyze the question of local and global stability of this critical phase
towards destabilizing into other stable competing phases. To this effect, we will use the
fermionic variational quantum Monte Carlo method. This issue is extremely exciting and
important, since if this critical phase survives perturbations/fluctuations, it demonstrates
that conventional wisdom is incorrect [8], and the existence of this algebraic spin liquid
would be a truly remarkable and revolutionary phenomenon, it would also be an indirect
evidence for the existence of quantum orders, which would then be responsible for protecting
gapless excitations. The PhD research projects dealing with this problem form the content
of Part III of this thesis.
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Chapter 5

Experimental realizations of the kagomé
spin-1/2 Heisenberg antiferromagnet

Ever since the story began on the kagomé network in the late eighties, with intriguing and
novel ground states being proposed regularly for the spin-1/2 Heisenberg antiferromagnet,
there has been a desire to have some experimental playgrounds so as to directly test the
theoretical proposals. An experimental backing was desperately required for this problem,
since the theoretical scenario regarding the nature of the ground state is in a complete
“mess”. The long wait finally came to an end in 2005 when a structurally perfect kagomé
compound called Herbertsmithite (ZnCu3(OH)6Cl2) was first synthesized at M. I. T [10].
This is also a naturally occuring rare mineral. In it the combination of low dimensionality,
low coordination number, low spin value S = 1/2 and frustrating antiferromagnetic inter-
actions lead to an amplification of quantum fluctuations to an extent needed to stabilize a
quantum paramagnet [147, 148]. Indeed, no magnetic freezing or order has been detected in
Herbertsmithite at temperatures well below J , from any experimental technique [149, 150].

5.1 Structure and interactions in Herbertsmithite
The in-plane structure of Herbertsmithite consists of Cu2+ ions, which are distributed on
the vertices of a perfect kagomé lattice, with the (OH) group mediating an in-plane super
exchange interaction of moderate strength between the Cu2+ ions. The non-magnetic Zn2+

ions occupy the positions in between two kagomé planes and are distributed on a trian-
gular lattice, see Fig. 5.1. The magnetic coupling between the kagomé planes is virtually
non-existent, thus the material is in essence a 2d kagomé network with spin-1/2 at each
vertex. The dominant interactions are in-plane and isotropic of the Heisenberg type with
antiferromagnetic couplings (J) between nearest neighbor Cu2+ spin-1/2’s. The strength
of J ≈ 180(10) K, and no sign of spin freezing has been observed down to 50 mK, i.e.
≈ J/4000. Recent studies [11] on the Mg version of Herbertsmithite (MgCu3(OH)6Cl2)
have pushed this limit to 20 mK, i.e. ≈ J/10000 without observing any sign of magnetic
ordering, i.e. a quantum paramagnetic behavior.

The absence of inversion symmetry implies that Dzyaloshinskii-Moriya (DM) interac-
tions (Dij · Ŝi × Ŝj) are permitted in the Hamiltonian. The results from electron spin reso-
nance (ESR) measurements tell us that there is a small in-plane DM interaction, Dp ≈ 0.01J
and the out-of-plane DM interaction is considerably stronger Dz ≈ 0.04− 0.08J [152–154],
see Fig. 5.1. If the ground state of the spin-1/2 pure Heisenberg antiferromagnet is a spin
liquid phase, then upon inclusion of DM interactions (as perturbations) the original spin liq-
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Figure 5.1: Top: Adapted from [151]. A simplified structure of ideal Herbertsmithite is
shown. The blue balls depict the Cu2+ ions in the top and bottom kagomé layers, the small
red balls are the (OH) group which bridge two Cu2+ ions and finally the yellow balls depict
the Zn2+ ions which lie in between the planes. Bottom: The Dzyaloshinskii-Moriya vectors
are given. The Cu2+ ions are marked by small and the O by large solid circles.

uid phase survives1. In contrast, in the classical case even a small amount of DM interaction
induces magnetic ordering [158].

1Even for spin-1/2 a quantum critical point at D/J ≈ 0.1 appears and separates the spin liquid and
Néel phases [155–157].
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Figure 5.2: Adapted from [151]. Shown, is the variation with temperature, of the suscepti-
bility of the kagomé planes, measured from the 17O NMR shift (in red) and the susceptibility
from macroscopic measurements (in green). The difference between the in-plane suscepti-
bility and macroscopic susceptibility is significant, this is because the latter gets significant
contributions at low temperature, from out-of-plane defects. The important observation to
make is that T = 0 susceptibility is non-zero.

5.2 Structural defects in Herbertsmithite
The first class are the out-of-plane defects, where the magnetic Cu2+ ions occupy the Zn2+

ion positions in between the kagomé layers and therefore behave as quasi-free spin-1/2
moments. The extent of this substitution is estimated to be 15(2)% from X-ray scattering
on single crystals [159]. But, it has been argued that these defects have negligent impact on
the in-plane kagome physics till temperatures ≈ 1 K, below that temperature there is just
an effective interaction between the spin moments.

The other class of defects are the in-plane vacancies, whereby the non-magnetic Zn2+

ions occupy the positions in the kagomé layers thereby creating spin vacancies. Their extent
is estimated to be ≈ 5% as determined from X-ray scattering [159] and NMR studies [160].

5.3 Nature of the ground state of Herbertsmithite
The physics of the kagomé planes, which is what we are interested in, is best and most
reliably captured by local probes, in particular O-nuclei NMR, since oxygen is responsible
for providing exchange pathways between two Cu2+ ions. The susceptibility measurements
using 17O NMR point to a gapless ground state of Herbertsmithite [160, 161]. Also, dynam-
ical susceptibility measurements using NMR T1 and inelastic neutron scattering strongly
suggest a gapless ground state [150, 160, 162, 163]. It is also worth mentioning that using
optical techniques, in particular Raman spectroscopy, a gapless (in the singlet channel) spin
liquid behavior of the algebraic type, has been claimed [14].

From some theoretical studies, it is known that the energy of a particular Z2 fully gapped
spin liquid [20, 21] and also a 36 site valence bond crystal [141, 142] are lower compared
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to the energy of the best gapless spin liquid state, a fact which is in direct contradiction
to the experimental findings. The theoretical winner is thus a gapped spin liquid ground
state, pro tem. In all experiments carried out on Herbertsmithite, no singlet gap has been
observed even way below J/100, this fact is inconsistent with the relatively large singlet
gap ≈ J/20 predicted from DMRG studies [20]. Regarding the 36 site valence bond crystal,
there is absolutely no signature in the data accumulated on Herbertsmithite to suggest the
formation of localized singlets (dimers) being formed in a pattern consistent with the 36
site valence bond crystal. However, it is worth emphasizing that a valence bond crystal
may have strong quantum fluctuations which suppress the order parameter, hence such
crystals are near the critical point and only weakly break translational symmetry, which
is extremely difficult to detect and distinguish from spin liquid signals. The possibility of
such a valence bond crystal being stabilized cannot thus be categorically ruled out. Exact
diagonalization studies, which have now reached cluster sizes of 48 sites, also provide support
to the claim that in the thermodynamic limit the ground state can be gapless. So, all in all,
the conclusion from the experimental side is that Herbertsmithite is a gapless spin liquid.
The duty of theory is now to better understand in what manner and how much the ground
state of the pure Heisenberg model is affected by the presence of in- and out-of-plane defects
and Dzyaloshinskii-Moriya anisotropy.

5.4 Other spin-1/2 kagomé antiferromagnet compounds
Finally, we would like to briefly mention about other spin-1/2 kagomé antiferromagnetic
compounds, one is volborthite (Cu3V2O7(OH)2 ·2H2O) featuring a distorted kagomé lattice,
but its ground state is magnetic [164–166]. The other compound is vesignieite Cu3Ba(VO5H)2

with a nearly ideal kagomé geometry, and nearest neighbor J ′ ≈ J = 53 K. A freezing of
some percentage of spins has been observed at T ≈ 9K, but to categorically establish the
nature of the dynamic component exhibiting quantum spin liquid behavior further investi-
gations are needed [167–170]. Another promising and recently proposed candidate is kapel-
lasite (Cu3Zn(OH)6Cl2), which is polymorphous to Herbertsmithite and has been shown
to exhibit quantum spin liquid behavior of gapless nature down to 20 mK, using inelastic
neutron scattering and muon spin relaxation [171–173]. The nearest neighbor exchange
couplings in kapellasite are ferromagnetic while further neighbor are antiferromagnetic.
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Research projects
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Chapter 6

On the stability of critical spin liquids
towards dimerizing into valence-bond
crystals for the spin-1/2 Heisenberg
antiferromagnet

6.1 Parent spin liquid states
We shall focus on the two energetically lowest, critical spin liquids on the kagomé lattice for
the spin-1/2 quantum Heisenberg antiferromagnet, these states will be called as parent spin
liquids. They are the U(1) Dirac spin liquid ([0, π] state) and the uniform RVB spin liquid
([0, 0] state). They belong to the class of non-chiral, space-group symmetric, U(1) gapless
spin liquids. The projective symmetry group of the Ansätze (see Fig. 6.1(a)) of both these
states permits us to add 2nd nearest neighbor mean field hopping amplitudes (χn.n.n.) with-
out changing any of their above mentioned properties, including the Dirac spectrum and the
large spinon Fermi surface for the U(1) Dirac spin liquid and the uniform RVB spin liquid,
respectively. This extension has the advantage that it leads to considerably lower energies
when one adds further neighbor exchange couplings to the Heisenberg antiferromagnetic
Hamiltonian.

The addition of 2nd nearest neighbor hopping amplitudes leads to the appearance of
two new plaquettes (triangles abc and acd), see Fig. 6.1. Space group symmetric, non-chiral
spin liquids may now be labelled by four fluxes, but only three are independent (i.e. by
[α, β; γ, δ], α and β are fluxes through the original triangles and hexagons, respectively; γ
and δ instead are the fluxes through the new triangles abc and acd, respectively). The only
possible states built upon the [0, π] state are the [0, π; π, 0] or the [0, π; 0, π] states, and
those built upon the [0, 0] state are the [0, 0;π, π] or the [0, 0; 0, 0] states, see Fig. 6.1. It
is worth noting that for both the Dirac spin liquid and the uniform RVB spin liquid, the
two possible extended states with different γ and δ fluxes are related by a change of sign in
χn.n.n.. Which of the two extended states is energetically lower and is stabilized will depend
on the actual value of the ratio J2/J1, at which the “free” variational parameter χn.n.n. is
optimized. We purposely restrict our calculations to small enough J2/J1, since for larger
2nd nearest neighbor couplings (of both antiferromagnetic and ferromagnetic type), it is
probable that Néel states are energetically favorable, and consequently our treatment using
Schwinger fermions becomes insufficient.

The variation of optimized χn.n.n. with J2 is shown in Fig. 6.2(a). Point D in Figs. 6.2(b)
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and 6.3 marks a transition between the [0, 0; 0, 0] and [0, 0;π, π] states, and point E, the
transition between [0, π; 0, π] and [0, π; π, 0] states, both occurring at J2 6= 0. Therefore,
we find a finite χn.n.n. even for the nearest neighbor Heisenberg model (see points F and G
in Fig. 6.2(b)). Due to negative next nearest neighbor spin-spin correlations of the [0, π]
state and positive correlations for the [0, 0] state, a level crossing occurs at J2/J1 ≈ −0.16
(see point B in Fig. 6.3) [131]. However, the addition of the next nearest neighbor hopping
shifts the level crossing between the two spin liquids, the [0, 0; 0, 0] and [0, π; 0, π] states to
J2/J1 ≈ −0.335 (see point A in Fig. 6.3).
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Figure 6.1: (a) The U(1) Dirac spin liquid Ansatz, solid (dashed) bonds denote positive
(negative) hoppings. The unit cell is doubled to accommodate the π-flux. The [0, 0] spin
liquid Ansatz has all bonds with positive hoppings, and requires only a 3 site cell to be
constructed. Cases with next nearest neighbor hoppings are also reported; the only possible
non-chiral, space group symmetric states built upon the [0, π] state are the [0, π; π, 0] (b) or
the [0, π; 0, π] (d) spin liquids and those built upon the [0, 0] state are the [0, 0;π, π] (c) or
the [0, 0; 0, 0] (e) spin liquids. The sign convention is the same as in (a).
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Figure 6.2: (a) Optimized χn.n.n./χn.n. versus J2 for the extended [0, π] and [0, 0] states of
Fig. 6.1. A zoom around J2 = 0 is shown in (b).
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Figure 6.4: A hierarchical flowchart sorting out the myriad of different 6-, 12- and 36-
site unit cell VBCs in order of increasing (from top to bottom) number of broken point
group (PG) symmetry elements. The square boxes contain the VBC names followed by
their respective symmetry point group. The ‘parent’ (maximally symmetric) VBCs are
marked in red and those which have been found as competing ground states in studies using
quantum dimer models are marked in pink [143–145]. The corresponding VBC patterns
and their discussion is given in the text and attached papers (at the end of the chapter).
As much as possible, we use labeling for the VBCs which is similar to that used in [145].

6.2 Symmetry classification and enumeration of VBCs
The valence bond crystal states on the kagomé lattice break its elementary (3-site) unit
cell translation symmetry with different unit cell sizes which describe their modulation. In
previous studies [126, 130, 134, 140, 141, 143–146, 174], using different methods, valence
bond crystals with 6-, 12-, 18- and 36-site unit cells were identified as possible ground states
of the spin-1/2 quantum Heisenberg antiferromagnet. In this work, we will restrict our
analysis to valence bond crystals with 6-, 12- and 36-site unit cells. For each unit cell size
with a given center of symmetry, we enumerate valence bond crystals starting from the
maximally symmetric (C6v) ‘parent’ valence bond crystal and systematically break point
group symmetry elements, right down to the valence bond crystal with no symmetry at all.
This results in an enumeration of 19 valence bond crystals in total, 9 valence bond crystals
each for the 12 and 36 site unit cells and 1 valence bond crystal for the 6 site unit cell (see
Fig. 6.4). Only 6 out of the 19 valence bond crystals have been studied previously. In this
chapter, we will study the possibility of any of these valence bond crystals to occur as the
ground state.
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6.3 The “hot” VBC competitors
A generalized quantum dimer model study [145] found a 6 site unit cell columnar-VBC, a 12
site unit cell VBC, the so called VBC3 state and a 36 site unit cell VBC called HVBC0, to
be competing ground states (marked in pink in Fig. 6.4). Also, the DMRG study in Ref. [20]
concluded that the 12 site diamond-VBC state is close by in a generalized parameter space.
Their symmetry patterns, restricted to nearest neighbor amplitudes are given below and
the patterns of rest of the VBCs are given in the papers attached.

(a) DVBC (b) VBC3

(c) CVBC

Figure 6.5: Competing VBCs: the center of symmetry is marked ‘C’ (the center of the
shaded hexagon), around which bonds connected by the given point group symmetry op-
erations are marked with the same color and style of the line. We will henceforth refer to
these bonds as being in the same class. (a) The diamond-VBC has two perpendicular axes
of reflection symmetry, thus giving rise to C2v symmetry, with 7 classes of bonds. (b) The
VBC3 has only π rotation symmetry, thus its symmetry group is C2. It has 12 classes of
bonds. (c) The columnar-VBC has no point group symmetries at all, hence all its 12 bonds
are different. Its symmetry point group is thus, the identity E.
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Figure 6.6: The center of symmetry is marked ‘C’ (the center of the shaded hexagon).
The perfect hexagons, marked at their centers by ‘P’ form a honeycomb lattice at the
center of which lie the shaded hexagons. (a) The hexagonal-VBC has the maximal point
group symmetry, C6v, hence it acts as a ‘parent’ VBC. Its bonds breakup into 7 distinct
classes. (b) The hexagonal-VBC0, in contrast to the HVBC, lacks reflection symmetries
about crystallographic axes, thus its symmetry group is reduced to C6. It has 12 classes of
bonds.

6.4 General remarks on the VBC classification
It is worth mentioning that this VBC classification (for a given unit cell) is based on very
general considerations of symmetry only and hence is not dependent on the formalism in
which one studies these phases. In principle, it is possible to translate its construction from
one language (e.g. QDM) to another (e.g. Schwinger fermions or bosons) for a VBC with
a given symmetry, as has been done for the above given VBCs. Moreover, within a given
framework there can be different ways of constructing wave functions for a given VBC,
consistent with its symmetry group. Firstly, one can add amplitudes beyond NN, consistent
with the VBC symmetry group. Since we will study these phases within a slave particle
approach, one can construct at the naive level simple mean-field wave functions or go much
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beyond mean-field and include the effects of full projection. At a next level, it is possible
to improve the wave function by applying the Hamiltonian operator on it a given number
of times and considering an optimized linear superposition of these wave functions with the
original projected wave function. It is also worth noting that this hierarchical sorting of
VBCs in each fixed symmetry sector also greatly eases the numerical search for a possible
VBC stabilization as the ground state of the spin-1/2 QHAF.

6.5 Numerical results
We studied the relative energetics of the parent spin liquid and all VBC phases for the
spin-1/2 Heisenberg antiferromagnet using Gutzwiller projected fermionic wave functions
with variational quantum Monte Carlo technique. Our variational calculations are done
on clusters with 432 (i.e. 3 × 12 × 12) or 576 (i.e. 36 × 4 × 4) sites and mixed periodic-
antiperiodic boundary conditions which ensures non-degenerate mean-field wave functions
at half filling. The large size of the cluster ensures that the spatial modulations induced
in the observables by breaking of rotational symmetry (due to mixed boundary conditions)
remain smaller than the uncertainty in the Monte Carlo simulations.

The energy of the nearest neighbor U(1) Dirac spin liquid for the spin-1/2 Heisenberg
antiferromagnet, on a 432-site cluster is, energy per site E/J1 = −0.42863(2) and that of
the nearest neighbor uniform RVB spin liquid is slightly higher at, energy per site E/J1 =
−0.41216(1) [12]. For the 576-site cluster these values are E/J1 = −0.42866(1) for the
U(1) Dirac spin liquid and E/J1 = −0.41197(1) for the uniform RVB spin liquid [19]. The
energies of the extended U(1) Dirac and the uniform RVB spin liquid are only slightly lower
for the spin-1/2 Heisenberg antiferromagnet, but are considerably lower for the J1−J2 spin-
1/2 Heisenberg model, for both antiferromagnetic and ferromagnetic 2nd nearest neighbor
exchange couplings.

6.5.1 Results on the stability of gapless spin liquids towards VBC
perturbations

We carried out an extensive numerical study of the local and global stability of the nearest
neighbor U(1) Dirac and uniform RVB spin liquid towards dimerizing into all 6-, 12- and
36-site unit cell VBCs. Our main focus was on the “hot” competitors, that is, the DVBC
(Fig. 6.5a), VBC3 (Fig. 6.5b), CVBC (Fig. 6.5c) and HVBC0 (Fig. 6.6b) states. We perform
our analysis by first fixing a background flux corresponding to the spin liquid whose stability
we wish to study. Then, we introduce an amplitude modulation of χij consistent with the
point group symmetries of the VBC, i.e. bonds belonging to the same class (color/line
marking in Figs. 6.5 and 6.6) have the same amplitude (χλ), which is set to different values
for different classes. Starting from an arbitrary unbiased point ({χλ}) in the variational
space we perform an optimization of the wave function to obtain the lowest energy state [16,
17].

The case of the U(1) Dirac spin liquid

For the spin-1/2 Heisenberg antiferromagnet, the variation of parameters and energy in
the Monte Carlo optimization for the four competing VBCs (regarded as a dimerization of
the U(1) Dirac spin liquid) mentioned above is given in figure 6.7. As one can clearly see,
the energy converges neatly to the reference value of the nearest neighbor U(1) Dirac spin
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Figure 6.7: A typical variational Monte Carlo optimization run for the DVBC (a), VBC3

(b), CVBC (c) and HVBC0 (d) wave functions, for the S = 1/2 Heisenberg antiferromagnet.
The variational parameters χλ and energy (insets) are shown as a function of Monte Carlo
iterations. The nearest neighbor U(1) Dirac spin liquid corresponds to |χλ| = 1. On starting
from different sets of initialized parameter values we return back (within error bars) to the
U(1) spin liquid. The optimized parameter values are obtained by averaging over a much
larger number of converged Monte Carlo iterations than shown above.

liquid, and all the parameters converge to χλ = 1 (within error bars) after averaging over a
sufficient number of converged Monte Carlo steps, thus the translation symmetry associated
with the spin liquid state is restored. In fact, we carried out these calculations for all 6-, 12-
and 36-site VBCs and found that in each case the U(1) Dirac spin liquid is stable towards
opening a gap and destabilizing into any of these VBCs1. This remarkable stability (for
all VBCs) is also preserved upon addition of a 2nd nearest neighbor (J2) super-exchange
coupling in the Hamiltonian of both antiferromagnetic and ferromagnetic type. We verified
these results by doing many optimization runs starting from different initial values of the
parameters in the respective variational spaces. Thus, we can safely conclude that the U(1)
Dirac spin liquid has the lowest variational energy among all proposed competing VBC
states, at least within the Schwinger fermion representation of the spin model for J2 greater
than a certain critical value J2,c, which is given and discussed in the ensuing text.

1The SVBC and HVBC states were already ruled out as potential instabilities in earlier studies [12, 19,
131].
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Figure 6.8: Energy versus J2 for spin liquids of Fig. 6.1 and the HVBC0 state (Fig. 6.6b).
The HVBC0 state becomes the lowest in energy for J2 / −0.045. Error bars are smaller
than the symbol sizes.

The case of the uniform RVB spin liquid

We now shift our focus to the uniform RVB spin liquid and address the question of its
stability. For the spin-1/2 Heisenberg antiferromagnet, including the case in which we have
2nd nearest neighbor exchange couplings (antiferromagnetic and ferromagnetic), we find
that all 6 and 12 site unit cell VBCs have a higher energy compared to the uniform RVB
spin liquid. However, interestingly enough, for the spin-1/2 Heisenberg antiferromagnet,
the nearest neighbor uniform RVB spin liquid opens up a gap and destabilizes into a 36
site unit cell VBC, namely the HVBC0 state (see Fig. 6.6b). The gain in energy due
to dimerization becomes more pronounced on addition of 2nd nearest neighbor hopping
amplitudes to the wave function which are consistent with C6 symmetry. On adding a
2nd nearest neighbor exchange coupling of the ferromagnetic type to the Hamiltonian and
following this 2nd nearest neighbor HVBC0 state (now, a dimerization of the extended
uniform RVB spin liquid), one finds that it becomes the lowest in energy for J2 / −0.045
(see point A in Fig. 6.8), consistent with the findings in Ref. [19, 175]. It is worth noting
that the symmetry of this VBC is precisely that of the VBC identified in the quantum dimer
model study [143–145] and has a lower symmetry compared to the HVBC state that was
previously studied by us with similar qualitative conclusions[19]2. The flux pattern of this

2The HVBC state has a higher symmetry (C6v) and consequently lesser number of variational parameters
compared to the HVBC0 state (C6) and hence the level crossing (point A in Fig. 6.8) marking the onset of
VBC order was estimated to be higher at J2,c ≈ −0.09 in our earlier work (see Fig. 3 of [19]).
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VBC consists of 0 flux through all elementary triangles and hexagons, and a π-flux through
the abc plaquettes (see Fig. 6.1) inside the perfect hexagons only. Thus, our results still
point to a gapless ground state for J2 ' −0.045, which is along the lines of our previous
work [19, 22].

6.6 Conclusions and discussions
We enumerated all 6-, 12- and 36-site unit cell VBCs based on symmetry considerations
alone and subsequently investigated the possibility of stabilizing any of these VBCs in the
spin-1/2 quantum Heisenberg antiferromagnet in the presence of 2nd nearest neighbor ex-
change couplings of both ferromagnetic and antiferromagnetic type. We found that the
U(1) Dirac spin liquid is remarkably robust towards dimerizing into any of these VBCs,
for the Heisenberg model, even in the presence of 2nd nearest neighbor ferromagnetic and
antiferromagnet exchange couplings. However, the uniform RVB spin liquid dimerized into
a 36 site unit cell VBC, which becomes the lowest in energy on addition of a very weak
2nd nearest neighbor ferromagnetic coupling, J2,c ≈ −0.045. Our systematic and thor-
ough numerical investigation brings us to the conclusion that, at least within the Schwinger
fermion approach to the spin model, the U(1) Dirac SL has the best variational energy for
J2 ' −0.045. The conflict of our results, which point towards a gapless ground state in
this region and the ones by exact diagonalizations and DMRG calculations, which instead
suggested the presence of a fully gapped spectrum remain open and deserve further inves-
tigation. One possible direction would be to include vison dynamics in the projected wave
functions [176], which may be necessary to capture topological order faithfully. Another
step would be to improve our variational wave functions based upon the application of a
few Lanczos steps [18] and then perform an approximate fixed-node projection technique.
The possibility that an unconventional VBC breaking time-reversal symmetry is stabilized
as the ground state cannot be ruled out [145]. Finally we mention that VBC order might
also set in via confinement transitions of the Z2 SLs [177], this remains to be investigated
numerically.
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The highly frustrated spin- 1
2 quantum Heisenberg model with both nearest (J1) and next-nearest (J2) neighbor

exchange interactions is revisited by using an extended variational space of projected wave functions that are
optimized with state-of-the-art methods. Competition between modulated valence-bond crystals (VBCs) proposed
in the literature and the Dirac spin liquid (DSL) is investigated. We find that the addition of a small ferromagnetic
next-nearest-neighbor exchange coupling |J2| > 0.09J1 leads to stabilization of a 36-site unit cell VBC, although
the DSL remains a local minimum of the variational parameter landscape. This implies that the VBC is not
trivially connected to the DSL; instead it possesses a nontrivial flux pattern and large dimerization.

DOI: 10.1103/PhysRevB.83.100404 PACS number(s): 75.10.Kt, 75.10.Jm, 75.40.Mg

Introduction. It is well known that, on the nonbipartite two-
dimensional Kagomé lattice, the combination of low spin (S =
1/2), low coordination number (z = 4), and frustrating anti-
ferromagnetic (AF) exchange interactions lead to extremely
strong quantum fluctuations. It is, however, a widely debated
and long-standing theoretical issue whether the ground state
of the nearest-neighbor (n.n.) spin-1/2 quantum Heisenberg
antiferromagnet (QHAF) on the Kagomé lattice is a spin
disordered state (quantum spin liquid),1,2 which preserves spin
rotation and lattice space group symmetry, or instead a valence
bond crystal (VBC),3–7 which breaks lattice symmetries.
On the experimental side, studies on a nearly perfect spin-
1/2 Kagomé compound, Herbertsmithite ZnCu3(OH)6Cl2,8–15

reveal the absence of any spin ordering down to 50 mK despite
a sizable n.n. AF exchange coupling (J ≈ 180 K) between
spin-1/2 moments of Cu2+. In particular, Raman spectroscopic
data on Herbertsmithite points towards a gapless, algebraic
spin liquid state.16 This lends support to the view that the
ground state of the n.n. spin-1/2 QHAF model on the Kagomé
lattice is a long-range resonating-valence bond state. Within
a class of variational projected wave functions, a particular
gapless spin liquid belonging to the class of algebraic spin
liquids, the U(1) Dirac state, has been claimed to possess
the lowest energy.17,18 In such a state, the (mean-field) Fermi
surface collapses to two points, where the spectrum becomes
relativistic with Dirac conical excitations. On the contrary,
a recent study of the n.n. spin-1/2 QHAF model using
density-matrix renormalization group (DMRG),19 establishes
the ground state to be a singlet-gapped spin liquid, supposedly
with a Z2 low-energy gauge structure.

From the experimental point of view, the weak ferromag-
netism observed in Herbertsmithite has been attributed to
the ferromagnetic (FM) nature of the next-nearest-neighbor
(n.n.n.) coupling between Cu2+ ions in the Kagomé layers.
This model was investigated in Ref. 20 by using projected wave
functions and it has been found that, above a certain critical
n.n.n. FM coupling, a gapless spin liquid with a large circular
spinon Fermi surface, named here as uniform projected Fermi
sea (PFS), is stabilized as opposed to the U (1) Dirac state.
Furthermore, this state undergoes a small dimerization, which

lowers slightly its energy. The same n.n.n. FM model was also
recently investigated using a quantum dimer model approach
in Ref. 21, showing consistently that a 36-site cell VBC order
is favored.

In this Rapid Communication, we revisit the spin-1/2
QHAF with the inclusion of n.n.n. exchange interactions using
a more extended variational space of projected wave functions
that may be optimized by using the technique of Ref. 22.
In the following, we will limit to nonmagnetic variational
states and, therefore, we will not consider possible instabilities
toward magnetically ordered states.23 Our main result is
that the addition of ferromagnetic n.n.n. exchange coupling
leads to the stabilization of a 36-site unit cell VBC (in
agreement with the results of Ref. 21) over an extended
ferromagnetic region which starts from a very weak coupling.
Although being a dimerization of the uniform PFS, our VBC
does not arise from a local instability of the latter. In other
words, it is not trivially connected to it in the variational
parameter landscape; instead it possesses a nontrivial flux
pattern and dimerization. Moreover, we find that the level
crossing between the PFS and the U (1) Dirac state (once suit-
ably extended with n.n.n. hopping) occurs at nearly twice the
value previously reported.20 For AF n.n.n. exchange coupling,
the inclusion of n.n.n. hoppings in the U (1) Dirac state leads
to a considerable lowering in energy, which becomes more
pronounced with increasing the AF coupling. Moreover, no
VBC order is found in the AF n.n.n. coupling region.

Model and wave function. The Hamiltonian for spin-1/2
quantum Heisenberg J1−J2 model is

Ĥ = J1

∑

〈ij〉
Ŝi · Ŝj + J2

∑

〈〈ij〉〉
Ŝi · Ŝj , (1)

where 〈ij 〉 and 〈〈ij 〉〉 denote sums over n.n. and n.n.n. neighbor
sites, respectively. In the following, we will consider J1 > 0
and both FM and AF superexchange J2; all energies will be
given in units of J1.

The variational wave functions are defined by projecting
noncorrelated fermionic states:

|�VMC(χij ,�ij ,μ)〉 = PG|�MF(χij ,�ij ,μ)〉, (2)

100404-11098-0121/2011/83(10)/100404(4) ©2011 American Physical Society
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where PG = ∏
i(1 − ni,↑ni,↓) is the full Gutzwiller projec-

tor enforcing the one fermion per site constraint. Here,
|�MF(χij ,�ij ,μ)〉 is the ground state of mean-field Hamil-
tonian containing chemical potential, hopping, and pairing
terms:

HMF =
∑

i,j,α

(−χij + μδij ) c
†
i,αcj,α + �ijc

†
i,αc

†
j,−α + h.c. (3)

In this work, all states that we consider include hopping terms
only (i.e., χij up to second neighbors). The effect of including
BCS pairing terms is discussed at the end of this Rapid
Communication. Cases in which the translational symmetry
is explicitly broken will also be considered, so as to include
VBC states.

Different spin liquid and VBC phases correspond to
different patterns of distribution of χij and �ij on the lattice
bonds; they are the ansatz of a given state and serve as the
variational parameters that are optimized within the variational
Monte Carlo scheme to find the energetically best state.22 It
is worth mentioning that this method allows us to obtain an
extremely accurate determination of variational parameters.
All parameters belonging to one class (i.e., with the same
magnitude) are generically labeled as χλ.

Results. We have performed our variational calcula-
tions on a 576-site (i.e., 36 × 4 × 4) cluster with mixed
periodic-antiperiodic boundary conditions. Such a cluster
accommodates all possible VBC supercells proposed in the
literature. In addition, it ensures nondegenerate wave functions
at half-filling.

For n.n. spin-1/2 QHAF, among the class of n.n. transla-
tionally symmetric, nonchiral, gapless spin liquids, the U (1)
Dirac state is given by the ansatz in Fig. 1(a). Due to flux ϕ

being 0 and π [exp(iϕ) = ∏
plaquette χλ] through the triangles

and hexagons, respectively, it is denoted as [0,π ]. Its energy
per site is E/J1 = −0.42866(1). The n.n. uniform PFS state
has no flux through any plaquette and is therefore denoted as
[0,0]; its energy per site is E/J1 = −0.41197(1).17,18 In this
work we study only gapless states in particular those with a
U (1) low energy gauge structure. However, we believe that by
performing a case by case projected wave function study of
all possible (a few hundred) Z2 spin liquids on the Kagomé
lattice, one can identify variationally the state found in Ref. 19
using DMRG.

With the aim of investigating the effect of an additional
n.n.n. exchange coupling (of both AF and FM type), we first
extend the [0,π ] and [0,0] states. While previous studies,20

considered wave functions with n.n. couplings only, here
we include in addition n.n.n. couplings in the mean-field
Hamiltonian (3), which also leads to space group symmetric,
nonchiral, gapless spin liquids (see Fig. 1). Two new plaquettes
(triangles abc and acd in Fig. 1) appear upon the inclusion
of n.n.n. couplings. Space group symmetric, nonchiral spin
liquids may now be labeled by four fluxes (but only three are
independent) (i.e., by [α,β; γ,δ], α and β are fluxes through
original triangles and hexagons, respectively; γ and δ instead
are fluxes through triangles abc and acd, respectively). The
only possible states built upon the [0,π ] state are [0,π ; π,0]
or [0,π ; 0,π ] and those upon the [0,0] state are [0,0; π,π ]
or [0,0; 0,0] (see Fig. 1). Notice that for both DSL and PFS,
the two states with different γ and δ fluxes are related by

FIG. 1. (Color online) The U (1) DSL ansatz, solid (dashed)
bonds denote positive (negative) hoppings (a). The unit cell is
doubled to accommodate [0,π ] flux. Cases with n.n.n. hopping are
also reported; the only possible (nonchiral) space group symmetric
states built upon [0,π ] state are [0,π ; π,0] (b) or [0,π ; 0,π ] (d) and
those upon the uniform [0,0] state (i.e., PFS) are [0,0; π,π ] (c) or
[0,0; 0,0] (e).

a change of sign in χn.n.n.. The energetically lower states will
depend upon the actual value of the ratio J2/J1. This extension
does not modify the topological properties associated with
the wave functions, such as the Dirac spectrum and the
large spinon Fermi surface. Most importantly, the inclusion of
n.n.n. hopping parameters leads to lowering of the variational
energies, via an optimal tuning of χn.n.n. as a function of
J2 [see Fig. 2(a)]. It is important to note that we purposely
restrict our calculations to small enough J2/J1, since for larger
n.n.n. couplings (of both AF and FM type), it is probable that
Néel states are energetically favored, and consequently our
treatment becomes insufficient.

Point D in Figs. 2(b) and 3 marks a transition between
the [0,0; 0,0] and [0,0; π,π ] states, and point E the transition
between [0,π ; 0,π ] and [0,π ; π,0] states, both occurring at
J2 �= 0. Therefore, we find a finite χn.n.n. even for the n.n.
spin-1/2 QHAF [see points F and G in Fig. 2(b)]. We mention
that these extended wave functions with n.n.n. hoppings
lead to slightly lower energies, namely E/J1 = −0.42872(1)
for the [0,π ; 0,π ] state and E/J1 = −0.41209(1) for the
[0,0; π,π ] state.

Due to negative n.n.n. spin-spin correlations of [0,π ] state
and positive for the [0,0] state, a level crossing occurs at
J2/J1 ≈ −0.1620 (see point B in Fig. 3). However, the addition
of the n.n.n. hopping shifts the level crossing between the
reference spin liquids, the [0,0; 0,0] and [0,π ; 0,π ] states to
J2/J1 ≈ −0.335 (see point A in Fig. 3).
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FIG. 2. (Color online) (a) Optimized χn.n.n./χn.n. versus J2 for
the extended PFS and DSL states of Fig. 1. A zoom around J2 = 0 is
shown in (b). The optimized n.n. (c) and n.n.n. (d) hopping parameters
versus J2 for the 36-site supercell VBC are also reported. χ1 = 1 is
the reference bond. Only χ11 < 0, which implies [0,0; π,π ] flux in
the P hexagons of Fig. 4.

The question of global and local instability of these
spin-liquid states toward a VBC ordering is now thoroughly
addressed. In contrast to previous studies,17,20 which aimed
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FIG. 3. (Color online) Energy versus J2 for spin liquid (see
Fig. 1) and VBC states [see Figs. 4(c) and 4(d)].

at checking only the local instabilities of spin liquids toward
various dimerization patterns via the imposition of a small
bond amplitude modulation (5%–10%) of χλ, we make a
complete optimization of the parameters to detect a possible
stabilization of VBC states.

In the 12-site supercell, all bonds connected by D6

operations have the same magnitude [see Fig. 4(a)], leading
to three classes of different bonds. In the 18-site supercell
[see Fig. 4(b)], there are only two classes of bonds. In the
36-site supercell with n.n. couplings [see Fig. 4(c)], there are
six classes, given the D6 symmetry about the hexagon C. By
adding n.n.n. bonds and preserving this symmetry, we obtain
six more independent bonds [see Fig. 4(d)].

In our analysis, we start from a large number of arbitrary
different points (amplitude modulation of χλ) in the variational
space and thoroughly scan the landscape. As a consequence
we find that for the n.n. spin-1/2 QHAF, the [0,π ] and [0,0]
states are locally and globally stable with respect to 12-site,4

18-site,3,20 and 36-site3,5–7 supercell dimerizations. Indeed,
the optimization procedure always gives back the uniform
|χλ| = 1 state. We bring attention to the fact that the 36-site
supercell considered by us has a much larger variational space

FIG. 4. (Color online) Twelve-site supercell (a) with three differ-
ent parameters for the hopping; 18-site supercell with two different
parameters; 36-site supercell with six n.n. parameters (c), and with
six n.n.n. parameters (d).
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(six different hoppings) as compared to the ones studied in
literature, which considered a dimerization only along the
hexagon P in Fig. 4(c).

Upon the inclusion of a finite FM J2, we detect
the appearance of another competing state with broken
symmetries which is stabilized and is the lowest in energy
for J2 < −0.09 (see point C in Fig. 3). This state is found
to be a 36-site supercell VBC, shown in Figs. 4(c) and 4(d).
It breaks translational symmetry in the magnitude of the n.n.
and n.n.n. order parameters and the [γ,δ] fluxes but preserves
the rotation and reflection symmetry in both magnitude of χλ

and [α,β; γ,δ] fluxes. The corresponding state has 12 different
hopping parameters. Although we obtain this VBC as a
dimerization of the [0,0; 0,0] state, it is not a local instability
of it. Instead, it possesses a large bond amplitude modulation
in the extended variational space of n.n. and n.n.n. order
parameters and selects a flux pattern with [γ,δ] fluxes being
[π,π ] in the P hexagons which form a honeycomb lattice
[see Fig. 4(d)]. On the contrary, all other hexagons have [0,0]
fluxes. The optimized χλ as a function of J2 are shown in
Figs. 2(c) and 2(d). In a previous work, which investigated
the effect of a J2 FM exchange coupling using projected
variational wave functions,20 it was found that a dimer
modulation leads to an energy minimum at J2/J1 ≈ −0.16, for
approximately 4% bond amplitude modulation. In contrast, we

find a different VBC wave function, which is stabilized
starting from a very weak FM n.n.n. coupling. As mentioned
above, this state possesses a very large 36-site modulation,
leading to a significant large gain in energy.

We finish by considering the case of an AF J2 coupling. Our
study reveals the absence of symmetry breaking; instead we
find a gapless state with Dirac fermions, the [0,π ; π,0] state.
Upon optimizing χn.n.n./χn.n., this state gets a significantly
lower energy than the n.n. [0,π ] state, this gain becoming more
pronounced for larger J2 (see Fig. 3). Finally, the addition of
a BCS pairing term of the s-wave type in the [0,π ; π,0] wave
function for J2 AF is also studied, and our calculations show
that such an inclusion always increases the energy. However,
the effect of including other forms of pairing terms which
might stabilize a gapped spin liquid or a VBC in the J2 AF
model is left as a direction of future research. This might
provide a reconciliation with the exact diagonalization results
of Ref. 24, which point toward an opening of a gap upon
addition of a small AF J2 coupling.

In summary, we investigated the spin−1/2 QHAF on
the Kagomé lattice by using improved variational wave
functions. We found that a VBC is stabilized when an n.n.n.
ferromagnetic superexchange coupling is considered. This
state possesses a nontrivial distribution of hopping parameters
and flux pattern.
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1 Laboratoire de Physique Théorique UMR-5152, CNRS and Université de
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Abstract. In this paper, we do a complete classification of valence-bond
crystals (VBCs) on the kagomé lattice based on general arguments of symmetry
only and thus identify many new VBCs for different unit cell sizes. For the spin-
1/2 Heisenberg antiferromagnet, we study the relative energetics of competing
gapless spin liquids (SLs) and VBC phases within the class of Gutzwiller-
projected fermionic wave functions using variational Monte Carlo techniques,
hence implementing exactly the constraint of one fermion per site. By using a
state-of-the-art optimization method, we conclusively show that the U(1) Dirac
SL is remarkably stable towards dimerizing into all 6-, 12- and 36-site unit cell
VBCs. This stability is also preserved on addition of a next-nearest-neighbor
super-exchange coupling of both antiferromagnetic and ferromagnetic (FM)
type. However, we find that a 36-site unit cell VBC is stabilized on addition of a
very small next-nearest-neighbor FM super-exchange coupling, i.e. |J2| ≈ 0.045,
and this VBC is the same in terms of space-group symmetry as that obtained in
an effective quantum dimer model study. It breaks reflection symmetry, has a
nontrivial flux pattern and is a strong dimerization of the uniform RVB SL.
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1. Introduction

For many decades, physicists have been actively searching for playgrounds that are ‘hot’ enough
to melt magnetic freezing at temperatures well below the characteristic interaction energy scales
in the system. This melting being fueled by quantum fluctuations leads to stabilization of
exotic quantum paramagnetic phases of matter [1]. Representatives of such phases are spin
liquids (SLs) and valence-bond crystals (VBCs); the former preserve lattice symmetries and the
latter break them, according to a generally accepted definition. Long before any experimental
hints, theoreticians such as Pomeranchuk already conjectured the existence of SLs [2], which
were later advocated by Anderson to be possible appropriate ground states for the spin-1/2
Heisenberg antiferromagnet [3, 4]. On the experimental side, the drought in the search for
SLs ended with the discovery of Herbertsmithite (ZnCu3(OH)6Cl2), a compound with perfect
kagomé lattice geometry, belonging to the paratacamite family [5–13]. In it, the combination
of low spin value (S = 1/2), low dimensionality (d = 2) and coordination number (z = 4) and
frustrating nearest-neighbor (NN) antiferromagnetic (AF) super-exchange interactions on a non-
bipartite lattice leads to the amplification of quantum fluctuations that stabilize a quantum
paramagnet. Indeed, all experimental probes on Herbertsmithite point to a SL behavior down
to 20 mK (∼ J/104), which was established on the magnesium version of Herbertsmithite (i.e.
MgCu3(OH)6Cl2) [14–16]. Furthermore, Raman spectroscopic studies on Herbertsmithite hint
at a gapless (algebraic) SL [17].

On the theoretical side however, the nature of the ground state of the NN spin-1/2 quantum
Heisenberg antiferromagnet (QHAF) on the kagomé lattice is still elusive and intensively
debated. Exact diagonalization studies have revealed a magnetically disordered ground state
and a huge number of singlet excitations below the triplet gap [18–31]. Using approximate
numerical techniques various claims as to the nature of the ground state have been made.
These have included, among SL phases, a gapless (algebraic) U(1) Dirac SL using projected
fermionic variational Monte Carlo [32–36], a gapped Z2 SL [37–39] using density matrix
renormalization group (DMRG) [40, 41] and a chiral topological SL using Schwinger boson
mean field theory [42]. Among the VBC phases, the proposals have included a 36-site unit cell
VBC [43, 44] numerically studied using series expansion [45, 46], multi-scale entanglement
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renormalization ansatz (MERA) [47] and also using quantum dimer models (QDM) [48–50].
Furthermore, VBCs with smaller unit cells of 6 sites [51], 12 sites [52–54] and 18 sites [43]
were also argued to be viable ground states of the spin-1/2 QHAF. A more recent generalized
QDM study found a new (possibly chiral) VBC of a 12-site unit cell to be competing with
the 36-site unit cell VBC. It also established an extensive quasi-degeneracy of the ground state
manifold of the kagomé S = 1/2 QHAF with a stiff competition between several phases [55].

In this work, we will study these non-magnetic phases within a Schwinger fermion
formulation of the spin model. Within this approach, the projected gapless (algebraic) U(1)
Dirac SL has the best variational energy [32]; despite being a marginally stable phase, it
was argued in [33] to be stable against a certain class of perturbations. Explicit numerical
calculations using projected wave functions have in fact shown it to be stable (locally and
globally) w.r.t. dimerizing into all known VBC perturbations [32, 34, 35]. Furthermore, it was
shown that within this class of Gutzwiller projected wave functions, all the fully symmetric
gapped Z2 SLs have a higher energy compared to the U(1) Dirac SL [36]. Similar conclusions
were also reached within the Schwinger boson approach to the spin model [56, 57]. Note that
a simple tensor network (PEPS) representation of such a projected bosonic RVB ansatz can be
constructed and has been studied in [58].

In this paper, in section 2 we first perform a systematic symmetry classification of VBC
patterns on the kagomé lattice and thus identify and enumerate many new VBCs, independent
of the formalism used to study them. In section 3, we address the question of relative energetics
of SL and VBC phases. In particular, in section 3.1.1 we show that the U(1) Dirac SL is
remarkably stable w.r.t. dimerizing into any of these new VBCs. This stability is also preserved
upon addition of a finite next-nearest-neighbor (NNN) super-exchange coupling of both AF
and ferromagnetic (FM) type. Such an NNN coupling might be a possible perturbation in
Herbertsmithite. In section 3.1.2, we show that a broken symmetry phase is stabilized on
addition of a small NNN FM coupling, which is consistent with the findings in [59]. This VBC
has a 36-site unit cell with a non-trivial flux pattern threading its plaquettes and it is found to be a
strong dimerization of another competing U(1) gapless SL, the so-called uniform RVB SL [32].
This 36-site unit cell VBC has a lower symmetry as compared to that studied in our previous
work [35] and has precisely the same symmetry as that identified in QDM studies [49, 50, 55].
Thus, here we mainly establish the stability of the U(1) Dirac SL w.r.t. an extremely large class
of potential VBC instabilities and detect a non-trivial 36-site unit cell VBC instability of the
uniform RVB SL which is stabilized on addition of a very weak NNN FM super-exchange
coupling to the Hamiltonian.

1.1. The model, wave functions and the numerical technique

The Hamiltonian for the spin-1/2 quantum Heisenberg J1 − J2 model is

Ĥ= J1

∑
〈i j〉

Ŝi · Ŝ j + J2

∑
〈〈i j〉〉

Ŝi · Ŝ j , (1)

where 〈i j〉 and 〈〈i j〉〉 denote sums over NN and NNN pairs of sites, respectively. The Ŝi are
spin-1/2 operators at each site i . In the following, we will consider J1 > 0 (AF) and both FM
and AF super-exchange J2; all energies will be given in units of J1.
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4

The physical variational wave functions are defined by projecting noncorrelated fermionic
states:

|9VMC(χi j , 1i j , µ, ζ )〉 = PG|9MF(χi j , 1i j , µ, ζ )〉, (2)

where PG =
∏

i(1 − ni,↑ni,↓) is the full Gutzwiller projector enforcing the one fermion per
site constraint. Here, |9MF(χi j , 1i j , µ, ζ )〉 is the ground state of a mean-field Hamiltonian
constructed out of Schwinger fermions and containing hopping, chemical potential and singlet
pairing terms:

HMF =

∑
i, j,α

(χi j + µδi j)c
†
i,αc j,α +

∑
i, j

{(1i j + ζ δi j)c
†
i,↑c†

j,↓ + h.c.} , (3)

where χi j = χ∗

j i and 1i j = 1 j i . Besides the chemical potential µ, we will also consider real and
imaginary components of on-site pairing, which are absorbed in ζ .

The SL phases are characterized by different patterns of distribution of underlying SU(2)
gauge fluxes through the plaquettes which are implemented by a certain distribution of the
phases of χi j and 1i j on the lattice links. Since in a SL state |χi j |

2 + |1i j |
2 is constant for each

geometrical distance, a complete specification of a SL state up to nth NN amounts to specifying,
in addition to the SU(2) fluxes, the optimized magnitude of hopping and pairing parameters at
each geometrical distance and the specification of the on-site terms µ and ζ [60, 61]. On the
other hand, in a VBC state |χi j |

2 + |1i j |
2 may be different from bond to bond and, therefore,

the specification of VBCs amounts to giving the pattern of amplitudes of χi j and 1i j at each
geometrical distance, in addition to specifying the SU(2) fluxes through the plaquettes. These
parameters are the ansätze of a given state and serve as the variational parameters in the
physical wave function that are optimized within the variational Monte Carlo scheme to find the
energetically best state. It is worth mentioning that we use a sophisticated implementation of
the stochastic reconfiguration (SR) optimization method which allows us to obtain an extremely
accurate determination of variational parameters [62, 63]. Indeed, small energy differences are
effectively computed by using a correlated sampling, which makes it possible to strongly reduce
statistical fluctuations. This feature is especially important for the spin-1/2 QHAF since the
energies of all the competing phases are rather close.

1.2. Parent spin liquid (SL) states

The ansatz for the energetically best variational state, the U(1) Dirac SL, is given in
figure 1(a). Due to the U(1) flux ϕ being 0 and π [exp (iϕ) =

∏
plaquette χi j ] through triangles

and hexagons, respectively, it is denoted as [0, π] SL. In its mean-field band structure the
Fermi surface collapses to two points at which the spectrum becomes relativistic with Dirac
conical excitations [32]. Another energetically competing state, the uniform RVB SL, has zero
flux through all plaquettes and is therefore denoted as [0, 0] SL. Its mean-field band structure
consists of large circular spinon Fermi surfaces [34]. Both these states are fully symmetric, U(1)
gapless SLs and can be extended to include second NN hoppings, leading to a gain in energy
without changing their nature [35]. It is worth noting that the effect of projection on these mean-
field states can be drastic.
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(a) (b)

Figure 1. (a) The U(1) Dirac SL ansatz given up to second NN bonds. The unit
cell has to be doubled to accommodate the π -flux. The black (gray) bonds denote
first NN real hopping (second NN real hopping) terms. The solid (dashed) bonds
denote positive (negative) hoppings. (b) The columnar VBC has no (point group)
symmetries at all; hence all its 12 bonds are different, which are thus marked with
different colors and line styles. Consequently, its symmetry (point) group is the
identity E .

2. Symmetry classification and enumeration of valence-bond crystals (VBCs)

The VBC states on the kagomé lattice break its elementary (three-site) unit cell translation
symmetry with different unit cell sizes, which describe their modulation. In previous
studies [43–45, 47, 49–55], using different methods, VBCs with 6-, 12-, 18- and 36-site unit
cells were identified as possible ground states of the spin-1/2 QHAF. In this work, we will
restrict our analysis to VBCs with 6-, 12- and 36-site unit cells. For each unit cell size with a
given center of symmetry, we enumerate VBCs starting from the maximally symmetric (C6v)
‘parent’ VBC and systematically break point group symmetry elements, right down to the VBC
with no symmetry at all. This results in an enumeration of 19 VBCs in total, 9 VBCs each for
12- and 36-site unit cells and 1 VBC for the 6-site unit cell (see figure 2). Only 6 out of the
19 VBCs have been studied previously. In this paper, we will study the possibility of any of
these VBCs to occur as the ground state.

2.1. The 12-site unit cell VBCs

The kagomé lattice can be viewed as a triangular lattice of 12-site blocks shaped in the form
of ‘stars’. Within this picture, it was argued in [53, 54] that the ground state of the spin-1/2
QHAF has possible long-range singlet order that settles in this triangular star arrangement. This
lends support to the picture that the ground state can be a VBC with a 12-site unit cell capturing
some modulation. In total, nine symmetry distinct VBCs with a 12-site unit cell can occur; see
figures 3 and 4 for their NN patterns. In particular, the SVBC state (figure 3(a)) was argued
in [52] to occur as an instability of the U(1) Dirac SL and to be consequently stabilized as the
ground state of the NN spin-1/2 QHAF. Numerical studies using projected wave functions have
shown this proposal to be incorrect and have also established the stability of the uniform RVB
SL w.r.t. dimerizing into the SVBC state [32, 34, 35]. Furthermore, a recent QDM study [55]
found the VBC3 state (figure 4(c)) to be a competing ground state and a DMRG study [41]
concluded that the DVBC state (figure 4(b)) is closeby in a generalized parameter space. In

New Journal of Physics 14 (2012) 000000 (http://www.njp.org/)
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6-site unit cell
VBC

SVBC (Parent state) : C6v

VBC0 : C6 SVBCα : C3v

VBCα0 : C3

DVBC : C2v

VBC1 : C1v VBC1 : C1v VBC3 : C2

HVBC (Parent state) : C6v

HVBC0 : C6 HVBCα : C3v

HVBCα0 : C3

VBC2 : ECVBC : E

36-DVBC : C2v

36-VBC1 : C1v 36-VBC1 : C1v 36-VBC3 : C2

36-VBC2 : E

Figure 2. A hierarchical flowchart sorting out the myriad of different 6-, 12-
and 36-site unit cell VBCs in order of increasing (from top to bottom) number
of broken point group (PG) symmetry elements. The square boxes contain the
VBC names followed by their respective symmetry PG. The ‘parent’ (maximally
symmetric) VBCs are marked in red and those which have been found as
competing ground states in studies using quantum dimer models are marked in
pink [49, 50, 55]. The corresponding VBC patterns, and their discussion, are
given in the text. As much as possible, we use labeling for the VBCs which is
similar to that used in [55].

section 3, we study the possibility of a ground state realization of VBC3 and DVBC states
numerically, within the framework of projected wave functions. In fact, we perform this study
for all 12-site unit cell VBCs.

2.2. The 36-site unit cell VBCs

The building blocks of the kagomé lattice can take nontrivial forms such as a 2
√

3 × 2
√

3
expansion of the elementary 3-site unit cell, thus giving rise to a tilted 36-site unit cell. It
was shown in [43, 44] that such a construction maximizes the density of hexagons on which
dimer resonances occur, thereby lowering the energy. This 36-site unit cell VBC was studied
numerically using series expansion [45, 46] and MERA [47], which found it to be a good
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(a) (b) (c)

Figure 3. The most symmetric 12-site unit cell VBCs: the center of symmetry is
marked ‘C’ (the center of the shaded hexagon), around which bonds connected
by the given PG symmetry operations are marked with the same color and
style of the line. We will henceforth refer to these bonds as being in the same
class. (a) The Star-VBC has the maximal PG symmetry, C6v; hence it acts as
a ‘parent’ VBC. Its bonds break up into three distinct classes. (b) The VBC0

lacks crystallographic axes reflection symmetries in contrast to the SVBC; thus
its symmetry group is reduced to C6. It has four classes of bonds. (c) The Star-
VBCα has reduced (2π/3) rotation symmetry but preserves reflection symmetry;
thus its symmetry group is C3v. It has six classes of bonds.

approximation to the ground state of the NN spin-1/2 QHAF. Similar conclusions were also
obtained from a QDM study [49, 50, 55]. Motivated by these findings we classify all 36-site
unit cell VBC patterns on the kagomé lattice, which leads to the identification of nine symmetry
distinct VBCs; see figures 5–7 for their NN patterns.

In our previous work [35] we studied the HVBC state (see figure 5(a)) by using projected
wave functions and found it to be higher in energy compared to the gapless SLs. However, the
symmetry of the VBC identified in QDM studies [49, 50, 55] is that of the HVBC0 state (see
figure 5(b)), which has a lower symmetry compared to the HVBC state. In section 3, we study
the possibility of a ground state realization of the HVBC0 state for the NN and NNN spin-1/2
QHAF.

2.3. General remarks on the VBC classification

It is worth mentioning that this VBC classification (for a given unit cell) is based on very general
considerations of symmetry only and hence is not dependent on the formalism in which one
studies these phases. In principle, it is possible to translate its construction from one language
(e.g. QDM) into another (e.g. Schwinger fermions or bosons) for a VBC with a given symmetry.
Moreover, within a given framework there can be different ways of constructing wave functions
for a given VBC, consistent with its symmetry group. Firstly, one can add amplitudes beyond
NN, consistent with the VBC symmetry group. Since we will study these phases within a slave
particle approach, one can construct at the naive level simple mean-field wave functions or
go much beyond mean-field and include the effects of full projection. At a next level, it is
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(a) (b) (c)

(d) (e) (f)

Figure 4. Other 12-site unit cell VBCs: (a) the VBCα
0 has only reduced rotation

symmetry (2π/3); thus in contrast to SVBCα its symmetry group is reduced to
C3. It has eight classes of bonds. (b) The diamond-VBC has two perpendicular
axes of reflection symmetry, thus giving rise to C2v symmetry, with seven classes
of bonds. (c) The VBC3 has only π -rotation symmetry; thus its symmetry
group is C2. It has 12 classes of bonds. (d) The VBC1 possesses only a single
axis of reflection symmetry which bisects the sides of the shaded hexagon;
consequently, its symmetry group is C1v. It has 14 classes of bonds. (e) The VBC′

1
has the same symmetry as VBC1, but its reflection symmetry axis passes through
a vertex of the shaded hexagon; we shall denote the symmetry group as C′

1v to
distinguish it from that of VBC1. It has 12 classes of bonds. (f) The VBC2 has
no symmetry whatsoever; hence its symmetry group is just the identity, denoted
here as E . Consequently, it has 24 distinct classes of bonds.

possible to improve the wave function by applying the Hamiltonian operator on it a given
number of times and considering an optimized linear superposition of these wave functions
with the original projected wave function. It is also worth noting that this hierarchical sorting
of VBCs in each fixed symmetry sector also greatly eases the numerical search for a possible
VBC stabilization as the ground state of the spin-1/2 QHAF.

New Journal of Physics 14 (2012) 000000 (http://www.njp.org/)
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(a) (b) (c)

Figure 5. The 36-site unit cell VBCs: the center of symmetry is marked ‘C’
(the center of the shaded hexagon). The perfect hexagons, marked at their
centers by ‘P’, form a honeycomb lattice at the center of which lie the shaded
hexagons3. (a) The hexagonal-VBC has the maximal PG symmetry, C6v; hence
it acts as a ‘parent’ VBC. Its bonds break up into seven distinct classes. (b) The
hexagonal-VBC0, in contrast to the HVBC, lacks reflection symmetries about
crystallographic axes; thus its symmetry group is reduced to C6. It has 12 classes
of bonds. (c) The HVBCα has reduced (2π/3) rotation symmetry but preserves
reflection symmetry; thus its symmetry group is C3v. It has 14 classes of bonds.

3. Numerical results

We study the energetics of SL and VBC phases for the spin-1/2 QHAF using Gutzwiller
projected fermionic wave functions with the variational quantum Monte Carlo technique. Our
variational calculations are performed on clusters with 432 (i.e. 3 × 12 × 12) or 576 (i.e.
36 × 4 × 4) sites and mixed periodic–antiperiodic boundary conditions which ensure non-
degenerate mean-field wave functions at half filling. The large size of the cluster ensures
that the spatial modulations induced in the observables by breaking of rotational symmetry
(due to mixed boundary conditions) remain smaller than the uncertainty in the Monte Carlo
simulations.

Among the class of NN fully symmetric and gapless SLs, the U(1) Dirac SL ([0, π] SL)
has the lowest energy for the NN spin-1/2 QHAF. On a 432-site cluster its energy per site is
E/J1 = −0.428 63(2) and the uniform RVB SL ([0, 0] SL) has a slightly higher energy per site,
E/J1 = −0.412 16(1) [32]. For the 576-site cluster these values are E/J1 = −0.428 66(1) for
the U(1) Dirac SL and E/J1 = −0.411 97(1) for the uniform RVB SL [35]. Upon inclusion of
NNN hopping amplitudes, one gets the extended U(1) Dirac SL or the extended uniform RVB
SL, which are labeled by one additional flux through a plaquette of the type ‘234’ in figure 1(a);

3 The points P are not centers of inversion (π-rotation) symmetry, as has been mismarked in figure 1(a) of [55],
which corresponds to the HVBC0 state in this work.
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(a) (b) (c)

Figure 6. (a) The HVBCα
0 has only a reduced rotation symmetry (2π/3); thus

in contrast to HVBCα its symmetry group is reduced to C3. It has 24 classes
of bonds. (b) The 36-diamond-VBC has two perpendicular axes of reflection
symmetry, thus giving rise to C2v symmetry, with 19 classes of bonds. (c) The
36-VBC3 has only π rotation symmetry; thus its symmetry group is C2. It has 36
classes of bonds.

the flux through the other triangular plaquette formed by NNN bonds only is then fixed. Hence,
the extended Dirac SL can be either the [0, π; π, 0] or the [0, π; 0, π] SL and analogously the
extended uniform RVB SL can be either the [0, 0; π, π] or the [0, 0; 0, 0] SL [35]. For the NN
spin-1/2 QHAF these extended SLs have a slightly lower energy, but they perform much better
for the J1 − J2 spin-1/2 QHAF, see figure 9.

3.1. Results on the stability of gapless SLs toward VBC perturbations

We carried out an extensive numerical study of the local and global stability of the NN U(1)
Dirac and uniform RVB SL toward dimerizing into all 6-, 12- and 36-site unit cell VBCs. In
cases where we did find dimerization with NN bond amplitudes, we added second NN bond
amplitudes to the SL and VBC ansatz (consistent with symmetries), since this led to a significant
gain in energy. Our main focus was on the CVBC (figure 1(b)), DVBC (figure 4(b)), VBC3

(figure 4(c)) and HVBC0 (figure 5(b)) states, since these have been identified as ground states
of the spin-1/2 QHAF in other studies. We perform our analysis by first fixing a background
flux corresponding to the SL liquid whose stability we wish to study. Then, we introduce an
amplitude modulation of χi j consistent with the symmetries of the VBC, i.e. bonds belonging
to the same class (color/line marking in figures 1(b) and 3–7) have the same amplitude (χλ),
which is set to different values for different classes. Starting from an arbitrary unbiased point
(χλ’s) in the variational space we perform an optimization of the wave function to obtain the
lowest energy state [62, 63].
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(a) (b)

Figure 7. (a) The 36-VBC1 possesses only a single axis of reflection symmetry,
which bisects the sides of the shaded hexagon; consequently, its symmetry group
is C1v. It has 38 classes of bonds. (b) The 36-VBC′

1 has the same symmetry as
36-VBC1, but its reflection symmetry axis passes through a vertex of the shaded
hexagon; we shall denote its symmetry group as C′

1v to distinguish it from that
of 36-VBC1. It has 36 classes of bonds. Note that the 36-VBC2 (which has no
symmetry at all) has not been drawn. Its symmetry group is just the identity E .
Consequently, it has 72 distinct classes of bonds.

3.1.1. The case of the U(1) Dirac SL. For the NN spin-1/2 QHAF, the variation of parameters
and energy in the Monte Carlo optimization for the four competing VBCs (regarded as a
dimerization of the U(1) Dirac SL) mentioned above is given in figure 8. As can be clearly
seen, the energy converges neatly to the reference value of the U(1) Dirac SL, and all the
parameters converge to χλ = 1 (within error bars) after averaging over a sufficient number of
converged Monte Carlo steps; thus the translation symmetry associated with the SL is restored.
In fact, we performed these calculations for all 6-, 12- and 36-site VBCs and found that in
each case the U(1) Dirac SL is stable towards opening a gap and destabilizing into any of these
VBCs. This remarkable stability (for all VBCs) is also preserved upon addition of an NNN
(J2) super-exchange coupling in the Hamiltonian of both AF and FM type. We verified these
results by doing many optimization runs starting from different initial values of the parameters
in the respective variational spaces. Thus, we can safely conclude that the U(1) Dirac SL has
the lowest variational energy among all proposed competing VBC states, at least within the
Schwinger fermion representation of the spin model for J2 greater than a certain critical value
J2,c, which is given and discussed in the ensuing text.

3.1.2. The case of the uniform RVB SL. We now shift our focus to the uniform RVB SL and
address the question of its stability. For the NN and NNN (AF and FM) spin-1/2 QHAF, we find
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Figure 8. A typical variational Monte Carlo optimization run for the CVBC
(a), DVBC (b), VBC3 (c) and HVBC0 (d) wave functions, for the NN S = 1/2
QHAF. The variational parameters χλ and energy (insets) are shown as a function
of Monte Carlo iterations. The NN U(1) Dirac SL corresponds to |χλ| = 1. On
starting from different sets of initialized parameter values, we return (within error
bars) to the U(1) SL. The optimized parameter values are obtained by averaging
over a much larger number of converged Monte Carlo iterations than that shown
above.

that all 6- and 12-site unit cell VBCs have a higher energy compared to the uniform RVB SL.
However, interestingly enough, for the NN spin-1/2 QHAF, this NN uniform RVB SL opens up
a gap and destabilizes into a 36-site unit cell VBC, namely the HVBC0 state (see figure 5(b)).
The gain in energy due to dimerization becomes more pronounced on addition of second NN
hopping amplitudes to the wave function which are consistent with C6 symmetry. On adding an
NNN super-exchange coupling of FM type to the Hamiltonian and following this second NN
HVBC0 state (now, a dimerization of the extended uniform RVB SL), one finds that it becomes
the lowest in energy for J2 /−0.045 (see point A in figure 9), consistent with the findings
in [59]. It is worth noting that the symmetry of this VBC is precisely that of the VBC identified
in the QDM study [49, 50, 55] and has a lower symmetry compared to the HVBC state that was
previously studied by us with similar conclusions [35]. The flux pattern of this VBC consists of
0 flux through all elementary triangles, hexagons and a π flux through the ‘234’ plaquettes (see
figure 1(a)) inside the perfect hexagons only. The lower symmetry of the HVBC0 compared to
the HVBC implies a larger variational space of hopping amplitudes and consequently a lower

New Journal of Physics 14 (2012) 000000 (http://www.njp.org/)



13

-0.3 -0.2 -0.1 0 0.1

-0.44

-0.43

-0.42

-0.41

-0.4

E
ne

rg
y 

(p
er

 s
ite

) 

[0,π;π,0]
[0,π;0,π]
[0,0;π,π]
[0,0;0,0]
HVBC

0
[0,π]
[0,0]

A

J
2,c

= -0.045

J
2
 (FM) J

2
 (AF)

Figure 9. Energy versus J2 for SLs and the HVBC0 state (see figure 5(b)). The
HVBC0 state becomes the lowest in energy for J2 /−0.045. Error bars are
smaller than the symbol sizes.

energy that is seen from the fact that the level crossing or the onset of VBC order is shifted from
J2 ≈ −0.09 [35] for HVBC to J2,c ≈ −0.045 for HVBC0 state. Thus our results still point to a
gapless ground state for J2 '−0.045, which is along the lines of our previous work [35, 36].

4. Conclusions and discussions

In this paper, we enumerated all 6-, 12- and 36-site unit cell VBCs based on symmetry
considerations alone and subsequently investigated the possibility of stabilizing any of these
VBCs in the NN and NNN spin-1/2 QHAF on a kagomé lattice. We found that the U(1) Dirac
SL is remarkably robust toward dimerizing into any of these VBCs, for both the NN and NNN
spin-1/2 QHAF. However, the uniform RVB SL dimerizes into a 36-site unit cell VBC, which
becomes the lowest in energy on addition of a very weak FM coupling, J2,c ≈ −0.045. Our
systematic and thorough numerical investigation brings us to the conclusion that, at least within
the Schwinger fermion approach to the spin model, the U(1) Dirac SL has the best variational
energy for J2 '−0.045. The conflict between our results, which point to a gapless ground state
in this region, and those obtained by exact diagonalizations and DMRG calculations, which
instead suggested the presence of a fully gapped spectrum, remains open and deserves further
investigation. One possible direction would be to include vision dynamics in the projected wave
functions [64], which may be necessary to capture topological order faithfully. Another step
would be to improve our variational wave functions based on the application of a few Lanczos
steps [65] and then perform an approximate fixed-node projection technique. The possibility
that an unconventional VBC breaking time-reversal symmetry is stabilized as the ground state
cannot be ruled out [55]. Finally, we mention that VBC order might also set in via confinement
transitions of the Z2 SLs [66]; this remains to be investigated numerically.
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[26] Waldtmann Ch, Kreutzmann H, Schollwöck U, Maisinger K and Everts H U 2000 Phys. Rev. B 62 9472
[27] Richter J, Schulenburg J and Honecker A 2004 Quantum Magnetism (Lecture Notes in Physics vol 645)

(Berlin: Springer) p 85
[28] Sørensen E S, Lawler M J and Kim Y B 2009 Phys. Rev. B 79 174403
[29] Sindzingre P and Lhuillier C 2009 Europhys. Lett. 88 27009
[30] Nakano H and Sakai T 2011 J. Phys. Soc. Japan 80 053704
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Chapter 7

On the potential instabilities of critical
spin liquids towards Z2 spin liquids on
the kagomé lattice for the spin-1/2
Heisenberg antiferromagnet

The large scale DMRG studies in Refs. [20, 21] have claimed the ground state to be a
fully gapped, fully symmetric, topological spin liquid with a Z2 low energy gauge structure.
The energies obtained in these studies are some of the closest to exact diagonalization,
thereby giving strong support to the nature of the ground state claimed in these works.
Within the SU(2) slave boson (Schwinger fermion) formalism, a complete classification of
fully symmetric Z2 spin liquids on the kagomé lattice results in an enumeration of a total of
20 Z2 spin liquids, and no more [91]. Out of these 20, only 5 Z2 spin liquids are fully gapped
and hence contain topological orders [8], thereby these 5 states possess all the features of
the spin liquid discovered in the DMRG studies. Another common feature of all these 5 Z2

spin liquids is that they are in the neighborhood of either the U(1) Dirac or the uniform
RVB spin liquid1. Whence, their Ansätze can be obtained from the U(1) Dirac or uniform
RVB spin liquid Ansatz by continuously tuning a variational parameter which breaks the
U(1) gauge structure to Z2 and also opens up a gap via the Higgs mechanism.

7.1 The Z2[0, π]β spin liquid: the most promising ground
state candidate

Out of these 5 fully gapped, fully symmetric, topological Z2 spin liquids, only 1 of them
is continuously connected to the U(1) Dirac spin liquid. Since, the U(1) Dirac spin liquid
has the lowest variational energy among the class of U(1) gapless spin liquids, it has been
conjectured in [91] that this spin liquid, the Z2[0, π]β state may describe the ground state
that has been numerically observed in the DMRG studies [20, 21].

The Ansatz of the Z2[0, π]β spin liquid is given in Fig. 7.1. In a suitable gauge, its
mean-field Ansatz is specified by five real parameters. These parameters are the 1st nearest
neighbor real hopping (χ1), 2nd nearest neighbor real hopping (χ2), 2nd nearest neighbor
real spinon pairing (∆2), and two onsite terms, one for the chemical potential µ and the

1Mathematically speaking, “neighborhood” means that the PSGs of these 5 Z2 spin liquids are subgroups
of either the U(1) Dirac spin liquid PSG or the uniform RVB spin liquid PSG.
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Figure 7.1: The Z2[0, π]β spin liquid Ansatz; black (grey) bonds denote 1st nearest neigh-
bor real hopping (2nd nearest neighbor real hopping and real spinon pairing) terms; solid
(dashed) black bonds have sij = 1 (−1), solid (dashed) grey bonds have νij = 1 (−1), see
Eq. (7.1). The 1st nearest neighbor (2nd nearest neighbor) mean field Ansatz is written as
U〈ij〉 = ±σ3 (U〈〈ij〉〉 = ±(χ2σ3 + ∆2σ1)). The SU(2) flux (P ), through elementary triangles
(e.g., 123) is P123 = σ3, and that through triangles formed by two 1st nearest neighbor and
one 2nd nearest neighbor bonds (e.g., 234) is P234 = −(χ2σ3 + ∆2σ1). Their commutator
is non-zero, [P123, P234] = (−2iσ2)∆2. Hence, a finite ∆2 breaks the U(1) gauge structure
down to Z2, and opens up an energy gap via the Anderson-Higgs mechanism [6, 7].

other for the real on-site pairing ζR. The mean field Hamiltonian can be then conveniently
cast in the following form:

HMF{Z2[0, π]β} = χ1

∑
〈ij〉,α

sijc
†
i,αcj,α

+
∑
〈〈ij〉〉

νij{χ2

∑
α

c†i,αcj,α + ∆2(c†i,↑c
†
j,↓ + h.c.)}

+
∑
i

{µ
∑
α

c†i,αci,α + ζR(c†i,↑c
†
i,↓ + h.c.)}, (7.1)

where 〈ij〉 and 〈〈ij〉〉 denote sums over 1st and 2nd nearest neighbor sites, respectively.
sij and νij encode the sign structure of the 1st and 2nd nearest neighbor bonds, respec-
tively, as shown in Fig. 7.1. The 1st nearest neighbor real hopping (χ1) will be taken as
a reference, and hence set to unity hereafter. The physical variational wave function of
this spin liquid state then depends on four variational parameters, |ΨVMC(χ2,∆2, µ, ζR)〉 =
PG|ΨMF(χ2,∆2, µ, ζR)〉.

7.1.1 Numerical results for the Z2[0, π]β spin liquid

We performed our variational calculations on a 432-site cluster with mixed periodic-antiperiodic
boundary conditions which ensures non-degenerate mean-field wave functions at half filling.
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Figure 7.2: A typical variational Monte Carlo optimization run for the Z2[0, π]β wave
function: (a) variational parameters ∆2, χ2, µ, and ζR and (b) energy, as a function of
stochastic reconfiguration (SR) iterations. In (a), the initialized parameter values are: ∆2 =
χ2 = 1, µ = −0.8, and ζR = 0.3. The U(1) 2nd nearest neighbor [0, π; 0, π] Dirac spin liquid
corresponds to ∆2 = 0, χ2 = −0.0186(2), ζR = 0, as found in Ref. [19]. The optimized
parameter values are obtained by averaging over a much larger number of converged SR
iterations than shown above.

The large size of the cluster ensures that the spatial modulations induced in the observables
by breaking of rotational symmetry (due to mixed boundary conditions) remain smaller
than the uncertainty in the Monte Carlo simulations. On this cluster the energy per site of
the U(1) Dirac spin liquid is E/J = −0.42863(2) [12, 19].

For a generic unbiased starting point in the four-dimensional variational space, the vari-
ation of parameters and energy in the SR optimization is shown in Fig. 7.2. As one can
clearly see, the energy converges neatly [see point B in Fig. 7.2(b)] to the reference value
of the suitably extended 2nd nearest neighbor U(1) Dirac spin liquid, the [0, π; 0, π] state
[see point A in Fig. 7.2(b)], with small but finite χ2 [see Fig. 7.2(a)] previously computed
by us [19]. For the present cluster, these values are E/J = −0.42872(1) per site, and
χ2 = −0.0186(2), µ = −0.5124(5). Also, it is manifest that (∆2, ζR)→ 0, becoming exactly
zero (within the error bars) after averaging over a sufficient number of converged Monte
Carlo steps. Here, we bring attention to the important fact that, despite the energy having
converged after ≈ 400 iterations, the parameters did not converge and were still varying,
converging to their final values much later than the energy (see Fig. 7.2). This fact is
possible because, in the energy minimization, forces are calculated through the correlated
sampling and not by energy differences [16]. Our result shows that the energy landscape

96



-0.08 -0.04 0 0.04 0.08
∆2

-0.4286

-0.4284

-0.4282

-0.428

En
er

gy
 (p

er
 si

te
)

ζR{∆2}
ζR=0

-0.42872

Figure 7.3: The variation in energy on addition of a small ∆2 (both for ζR = 0, and
optimized ζR for each value of ∆2) upon the [0, π; 0, π] Dirac spin liquid is shown, the
increase in energy is apparent. The gapless point, ∆2 = 0 is the energy minima.

along the manifold connecting the U(1) Dirac spin liquid to the Z2[0, π]β spin liquid is very
flat close to the U(1) Dirac spin liquid [see Fig. 7.3 for the case ζR{∆2}]. Consequently,
a small perturbation around the U(1) Dirac spin liquid, e.g., by setting ∆2 = 0.05 along
with the corresponding optimized value of ζR = 0.1780(2) will not lead to any detectable
change in energy. Hence, one cannot unambiguously conclude anything about the stability
of the U(1) Dirac spin liquid by solely computing the energy of the perturbed wave function
with fixed parameters, point by point locally. Only by performing an accurate SR optimiza-
tion method [16] can one successfully optimize the parameters and transparently show that
∆2 = 0 corresponds to the actual minimum of the variational energy. This fact implies that
the U(1) gauge structure is kept intact and the Dirac spin liquid state is locally and globally
stable with respect to destabilizing into the Z2[0, π]β state. We verified this result by doing
many optimization runs starting from different random initial values of the parameters in
the four-dimensional variational space. Finally, we would like to mention that the Z2[0, π]β
spin liquid is not stabilized even in the presence of a 2nd nearest neighbor exchange coupling
term in the Hamiltonian, of both the ferromagnetic and antiferromagnetic type and we still
recover the gapless extended U(1) Dirac spin liquid ground state upon optimization.

7.2 Other promising ground state candidate Z2 spin liq-
uids

The other 4 fully gapped, fully symmetric, topological Z2 spin liquids are continuously
connected to the uniform RVB spin liquid via tuning of a gauge breaking (and gap opening)
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State Λonsite Un.n. U2ndn.n. U3rdn.n. Ũ3rdn.n.

Z2[0, π]β µ, ζR χR χR,∆R 0 0
Z2[0, 0]A µ, ζR χR χR,∆R 0 0
Z2[0, 0]B µ χR,∆I 0 0 0
Z2[0, 0]C µ χR χR χR,∆I χR

Z2[0, 0]D µ χR χR,∆I 0 0

Table 7.1: The mean field Ansatz of the five gapped Z2 spin liquids investigated by us, given
only up to the neighbor (geometrical distance) at which the gauge symmetry is broken, in a
form used by us in numerical simulations. The parameters highlighted in red are responsible
for opening a gap by breaking the U(1) gauge symmetry down to Z2. The U3rdn.n. denotes
bonds of length 2 connecting two sites and passing through a third site (such as the bond
1 → 4 in Fig. 7.1); instead, Ũ3rdn.n. denotes bonds of length 2 which do not pass through
any site.

variational parameter occurring at different geometrical distances for these four distinct spin
liquids, see Table 7.1. Although the uniform RVB spin liquid has a slightly higher energy
(compared to the U(1) Dirac spin liquid), there is nevertheless a chance that opening a
gap in one of these 4 spin liquids might lead to a large gain in energy so as to make
one of these states go lower than the U(1) Dirac spin liquid, near to the DMRG value of
E/J = −0.4386(5) [21].
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Figure 7.4: For the four gapped Z2 spin liquids in the neighborhood of the uniform RVB
spin liquid: the manner of variation of energy as the gauge breaking parameter (shown in
red in Table 7.1) is tuned on from zero to a small finite value, is shown. The parameters in
black in Table 7.1 are fixed to their optimized values, and correspond to a suitably extended
nth nearest neighbor gapless uniform RVB spin liquid. The increase in energy upon opening
a gap is apparent. For all four cases the minima of energy is situated at ∆n = 0.
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7.2.1 Numerical results for the other gapped Z2 spin liquids

The energy of the nearest neighbor uniform RVB spin liquid is E/J = −0.41216(1) on a 432
site cluster implemented with mixed periodic-antiperiodic boundary conditions. The results
of our simulations show that all four of these spin liquids return upon optimization to the
extended gapless uniform RVB spin liquid, with optimized hopping (χn) upto nth nearest
neighbor. The results showing how the energies of these extended gapless uniform RVB spin
liquids increase as the U(1)→ Z2 gauge breaking parameter is tuned on from zero to a small
finite value are shown in Fig. 7.4. The points B, A, C in Fig. 7.4 correspond to the energies
of the nearest neighbor, extended 2nd nearest neighbor and 3rd nearest neighbor uniform
RVB spin liquids, respectively. These fully gapped Z2 spin liquids are not stabilized even
in the presence of 2nd nearest neighbor exchange couplings in the Hamiltonian, of both the
ferromagnetic and antiferromagnetic type.

7.2.2 The Z2 gapless spin liquids

There are 7 other gapless Z2 spin liquids which can potentially occur as the ground state
of the nearest neighbor Heisenberg Hamiltonian, although a claim for such a ground state
has not been made from any other numerical study. We investigated the energetics for
three of these spin liquids which lie in the neighborhood of the U(1) Dirac spin liquid. In
all cases, we found negative results, namely that upon optimization the U(1) → Z2 gauge
breaking parameter goes to zero. The remaining four gapless spin liquids are continuously
connected to two types of U(1) gapless spin liquids, both of which suffer from a macroscopic
degeneracy at half-filling, which leads to an open shell, and hence we did not carry out an
investigation of the energetics of these four spin liquids. Please see the attached paper at
the end of this chapter, for more details.

7.3 Conclusions and discussions
We investigated the possibility of stabilizing gapped Z2 spin liquids in the nearest neighbor
and next-nearest-neighbor spin-1/2 Heisenberg antiferromagnet on the kagomé lattice. We
found that none of the five gapped, topological Z2 spin liquids [one connected to the U(1)
Dirac state and the other four connected to the uniform RVB state] can occur as ground
states. In particular, the most promising gapped spin liquid conjectured to describe the
ground state, the Z2[0, π]β state, is always higher in energy compared to the U(1) Dirac
spin liquid. Our systematic numerical results bring us to the conclusion that, at least
within the Schwinger fermion approach of the spin model, the U(1) Dirac spin liquid has
the best variational energy for the nearest neighbor and next nearest neighbor spin-1/2
Heisenberg antiferromagnet on the kagomé lattice. The conflict of our results, which point
towards a gapless ground state, and the ones by recent DMRG calculations [20, 21], which
instead suggested the presence of a fully gapped spectrum, remain open and deserves fur-
ther investigations. One possible direction would be to consider further improvements of our
variational wave functions, based upon the application of few Lanczos steps or an approx-
imated (fixed-node) projection technique. Another possible direction would be to explore
the energetics of gapped Z2 spin liquids which break some symmetries such as point group
and/or time-reversal. The possibility that the fully gapped spin liquid found by the DMRG
study possesses a different low energy gauge structure other than Z2 also remains open.
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Motivated by recent density-matrix renormalization group (DMRG) calculations [Yan, Huse, and White,
Science 332, 1173 (2011)], which claimed that the ground state of the nearest-neighbor spin-1/2 Heisenberg
antiferromagnet on the kagome lattice geometry is a fully gapped spin liquid with numerical signatures of Z2

gauge structure, and a further theoretical work [Lu, Ran, and Lee, Phys. Rev. B 83, 224413 (2011)], which gave a
classification of all Schwinger-fermion mean-field fully symmetric Z2 spin liquids on the kagome lattice, we have
thoroughly studied Gutzwiller-projected fermionic wave functions by using quantum variational Monte Carlo
techniques, hence implementing exactly the constraint of one fermion per site. In particular, we investigated the
energetics of all Z2 candidates (gapped and gapless) that lie in the neighborhood of the energetically competitive
U(1) gapless spin liquids. By using a state-of-the-art optimization method, we were able to conclusively show
that the U(1) Dirac state is remarkably stable with respect to all Z2 spin liquids in its neighborhood, and in
particular for opening a gap toward the so-called Z2[0,π ]β state, which was conjectured to describe the ground
state obtained by the DMRG method. Finally, we also considered the addition of a small second nearest-neighbor
exchange coupling of both antiferromagnetic and ferromagnetic type, and obtained similar results, namely, a
U(1) Dirac spin-liquid ground state.

DOI: 10.1103/PhysRevB.84.020407 PACS number(s): 75.10.Kt, 75.10.Jm, 75.40.Mg

Introduction. The nearest-neighbor (NN) spin-1/2 quantum
Heisenberg antiferromagnet (QHAF) on the kagome lattice
provides ideal conditions for the amplification of quantum
fluctuations and a consequent stabilization of an exotic
magnetically disordered ground state, which may be a valence-
bond crystal (VBC)1–5 or a spin liquid (SL) with fractionalized
excitations.6–8 Recent experiments have unanimously pointed
toward a SL behavior;9–16 in particular, Raman spectroscopic
data on a nearly perfect spin-1/2 kagome compound with
Heisenberg couplings (the so-called Herbertsmithite) sug-
gested a gapless (algebraic) SL.17 On the theoretical side,
the question is still wide open and intensely debated. On the
one hand, series expansion provided evidence that a VBC
with a 36-site unit cell has lower energy than other proposed
competing states.4 On the other hand, it was shown that within
the class of Gutzwiller-projected fermionic wave functions, a
particular algebraic SL, the so-called U(1) Dirac state, has a
competing energy.18 Its properties were studied in detail in
Ref. 19 and it was argued that it can be a stable SL state.
However, a recent DMRG study8 has challenged the above
results, and proposed that the ground state can be a fully gapped
Z2 SL with a substantially lower energy as compared to both
the above estimates.

TheZ2 SLs have the nice property that they are stable mean-
field states and can survive quantum fluctuations. Hence, they
are more likely to occur as real physical SLs, and one can safely
use the projective symmetry group classification of Z2 SLs
beyond mean-field level.20 This complete classification of fully
symmetric Z2 SLs on the kagome lattice was recently done in
Ref. 21 within the Schwinger-fermion mean-field theory, re-
sulting in an enumeration of a total of 20 Z2 mean-field states.
Their main result was the identification of a unique gapped
Z2 SL (called the Z2[0,π ]β state) in the neighborhood of the
U(1) Dirac state. Since the U(1) Dirac SL state has the best

variational energy among the class of U(1) gapless SLs, in
Ref. 21, it has been conjectured that the Z2[0,π ]β state may
describe the ground state that has been numerically observed
in the DMRG study.8

In this paper, we thoroughly investigate the possibility of
any of these Z2 SLs being stabilized as the ground state
of the NN spin-1/2 QHAF, with a particular emphasis on
the Z2[0,π ]β state. In practice, we compute the energy of
optimized variational wave functions that are constructed by
applying the Gutzwiller projector to different states obtained
from mean-field Hamiltonians of Schwinger fermions. In this
respect, by an exact treatment of the full projector that ensures
the one fermion per site constraint, we go much beyond
the simple mean-field approach of Ref. 21. We calculate the
energies of all Z2 SLs which can be realized up to 3rd NN in
mean-field Ansatz and have a nonvanishing 1st NN mean-field
bond. Only 12 of the 20 Z2 SLs satisfy these criteria, and all of
them are continuously connected to some U(1) gapless SL.21

Our main result is that, contrary to what has been proposed
in Ref. 21, the Z2[0,π ]β state has a higher energy than the
gapless U(1) Dirac SL, or in other words, the U(1) Dirac SL
is remarkably stable with respect to opening of a gap and
consequently destabilizing into the Z2[0,π ]β state. We also
find that all gapped Z2 SLs in the neighborhood of another
competing gapless state, the uniform resonating-valence bond
(RVB) state, have higher energies. Moreover, we find that all
Z2 SLs have higher energy than the gapless SL states in whose
neighborhoods they lie.

Model and wave function. The Hamiltonian for the NN
spin-1/2 Heisenberg model is

Ĥ = J
∑
〈ij〉

Ŝi · Ŝj , (1)

020407-11098-0121/2011/84(2)/020407(4) ©2011 American Physical Society
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where 〈ij 〉 denote sums over NN sites and Ŝi is the spin-1/2
operator at site i. All energies will be given in units of J .

The variational wave functions are defined by projecting
noncorrelated fermionic states:

|�VMC(χij ,�ij ,μ,ζ )〉 = PG|�MF(χij ,�ij ,μ,ζ )〉, (2)

where PG = ∏
i(1 − ni,↑ni,↓) is the full Gutzwiller projec-

tor enforcing the one fermion per site constraint. Here,
|�MF(χij ,�ij ,μ,ζ )〉 is the ground state of mean-field Hamil-
tonian containing chemical potential, hopping, and singlet
pairing terms:

HMF =
∑
i,j,α

(χij + μδij )c†i,αcj,α

+
∑
i,j

{(�ij + ζ δij )c†i,↑c
†
j,↓ + H.c.} , (3)

where χij = χ∗
ji and �ij = �ji . Besides the chemical poten-

tial μ, we will also consider real and imaginary components of
on-site pairing, which are absorbed in ζ . We briefly mention
that a somewhat similar approach, based upon a bosonic
representation of the spin operators (i.e., through Schwinger
bosons), has been also used recently.22 In the latter case,
however, the bosonic nature of quasiparticle operators implies
that one has to deal with permanents instead of determinants,
which makes the numerical calculations much heavier than in
our fermionic case.

Different SL phases correspond to different patterns of
distribution of χij and �ij on the lattice links, along with
the specification of the on-site terms μ and ζ . Then, a
complete specification of a SL state up to nth NN amounts to
specifying the SU(2) flux through closed loops along with the
optimized hopping and pairing parameters at each geometrical
distance.20,23 These parameters are the Ansätze of a given
state and serve as the variational parameters in the physical
wave function that are optimized within the variational Monte
Carlo scheme to find the energetically best state. It is worth
mentioning that we use a sophisticated implementation of
the stochastic reconfiguration (SR) optimization method,24,25

which allows us to obtain an extremely accurate determination
of variational parameters. Indeed, small energy differences are
effectively computed by using a correlated sampling, which
makes it possible to strongly reduce statistical fluctuations. The
current problem of the study of the instability of a U(1) Dirac
SL state toward the Z2[0,π ]β state will clearly demonstrate
the power of this method to capture the essential subtleties.

Results. We performed our variational calculations on a
432-site cluster with mixed periodic-antiperiodic boundary
conditions which ensures nondegenerate wave functions at
half-filling. The large size of the cluster ensures that the
spatial modulations induced in the observables by breaking
of rotational symmetry (due to mixed boundary conditions)
remain smaller than the uncertainty in the Monte Carlo
simulations.

Among the class of NN fully symmetric and gapless SLs,
the U(1) Dirac state has the lowest energy. Its energy per
site is E/J = −0.42863(2), and its Ansatz is given by the
sign convention for NN bonds in Fig. 1. Due to the U(1) flux
ϕ being 0 and π [exp (iϕ) = ∏

plaquette χij ] through triangles
and hexagons, respectively, it is denoted as [0,π ]. Another

FIG. 1. The Z2[0,π ]β SL Ansatz; black (grey) bonds denote 1st
NN real hopping (2nd NN real hopping and real spinon pairing) terms;
solid (dashed) black bonds have sij = 1 (−1), solid (dashed) grey
bonds have νij = 1 (−1), see Eq. (4). The 1st NN (2nd NN) mean-field
Ansatz is written as U〈ij 〉 = ±σ3 [U〈〈ij 〉〉 = ±(χ2σ3 + �2σ1)]. The
SU(2) flux P , through elementary triangles (e.g., 123) is P123 = σ3,
and that through triangles formed by two 1st NN and one 2nd NN
bonds (e.g., 234) is P234 = −(χ2σ3 + �2σ1). Their commutator is
nonzero, [P123,P234] = (−2iσ2)�2. Hence, a finite �2 breaks the
U(1) gauge structure down to Z2, and opens up an energy gap via the
Anderson-Higgs mechanism.20,23

competing state, the NN uniform RVB state has zero flux
through any plaquette and is therefore denoted as [0,0]; its
energy per site is E/J = −0.41216(1).18,19

The study in Ref. 21 identified four Z2 SLs in the
neighborhood of the [0,π ] state; only one of them, the
Z2[0,π ]β state, was found to be gapped (via the 2nd NN
spinon pairing term). Its Ansatz up to 2nd NN mean-field bond
is reproduced in Fig. 1.21 In a suitable gauge, its mean-field
Ansatz is specified by five real parameters. These parameters
are the 1st NN real hopping (χ1), 2nd NN real hopping
(χ2), 2nd NN real spinon pairing (�2), and two onsite terms,
one for the chemical potential μ and the other for the real
on-site pairing ζR. The mean-field Hamiltonian can be then
conveniently cast in the following form:

HMF{Z2[0,π ]β}=χ1

∑
〈ij〉,α

sij c
†
i,αcj,α+

∑
〈〈ij〉〉

νij

{
χ2

∑
α

c
†
i,αcj,α

+�2(c†i,↑c
†
j,↓+ H.c.)

}
+

∑
i

{
μ

∑
α

c
†
i,αci,α

+ ζR(c†i,↑c
†
i,↓ + H.c.)

}
, (4)

where 〈ij 〉 and 〈〈ij 〉〉 denote sums over 1st and 2nd NN sites,
respectively. sij and νij encode the sign structure of the 1st
and 2nd NN bonds, respectively, as shown in Fig. 1. The 1st
NN real hopping (χ1) will be taken as a reference, and hence
set to unity hereafter. The physical variational wave function
of this SL state then depends on four variational parameters,
|�VMC(χ2,�2,μ,ζR)〉 = PG|�MF(χ2,�2,μ,ζR)〉.

For a generic unbiased starting point in the four-
dimensional variational space, the variation of parameters and
energy in the SR optimization is shown in Fig. 2. As one
can clearly see, the energy converges neatly [see point B
in Fig. 2(b)] to the reference value of the suitably extended
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FIG. 2. (Color online) A typical variational
Monte Carlo optimization run for the Z2[0,π ]β
wave function: (a) variational parameters �2,
χ2, μ, and ζR and (b) energy, as a function of SR
iterations. In (a), the initialized parameter values
are �2 = χ2 = 1, μ = −0.8, and ζR = 0.3. The
U(1) 2nd NN [0,π ; 0,π ] Dirac SL corresponds
to �2 = 0, χ2 = −0.0186(2), ζR = 0, as found
in Ref. 26. The optimized parameter values
are obtained by averaging over a much larger
number of converged SR iterations than shown
above. In (c), the variation in energy upon
addition of a small �2 (both for ζR = 0, and
optimized ζR for each value of �2) upon the
[0,π ; 0,π ] Dirac SL is shown, the increase in
energy is apparent.

2nd NN U(1) Dirac SL, the [0,π ; 0,π ] state [see point A in
Fig. 2(b)], with small but finite χ2 [see Fig. 2(a)] previously
computed by us.26 For the present cluster, these values are
E/J = −0.42872(1) per site, and χ2 = −0.0186(2), μ =
−0.5124(5). Also, it is manifest that (�2, ζR) → 0, becoming
exactly zero (within the error bars) after averaging over a
sufficient number of converged Monte Carlo steps. Here, we
bring attention to the important fact that despite the energy
having converged after ≈400 iterations, the parameters did
not converge and were still varying, converging to their final
values much later than the energy (see Fig. 2). This fact
is possible because, in the energy minimization, forces are
calculated through the correlated sampling and not by energy
differences.24 Our result shows that the energy landscape along
the manifold connecting the U(1) Dirac SL to the Z2[0,π ]β
SL is very flat close to the U(1) Dirac SL [see Fig. 2(c) for
the case ζR{�2}]. Consequently, a small perturbation around
the U(1) Dirac SL, e.g., by setting �2 = 0.05 along with the
corresponding optimized value of ζR = 0.1780(2) will not
lead to any detectable change in energy. Hence, one cannot
unambiguously conclude anything about the stability of the
U(1) Dirac SL by solely computing the energy of the
perturbed wave function with fixed parameters, point by point
locally. Only by performing an accurate SR optimization
method24 can one successfully optimize the parameters and
transparently show that �2 = 0 corresponds to the actual
minimum of the variational energy. This fact implies that the
U(1) gauge structure is kept intact and the Dirac SL state
is locally and globally stable with respect to destabilizing
into the Z2[0,π ]β state. We verified this result by doing
many optimization runs starting from different random initial
values of the parameters in the four-dimensional variational
space.27

Regarding the remaining three gapless Z2 SLs in the
neighborhood of the U(1) Dirac SL, namely, the Z2[0,π ]α,
Z2[0,π ]γ , and Z2[0,π ]δ states of Ref. 21, our study reveals
the same result as for the Z2[0,π ]β state. That is, all three of
these SLs return back exactly to the gapless U(1) Dirac SL
state, with the value of the parameter responsible for breaking
the U(1) gauge structure down to Z2 exactly vanishing upon
optimization. Thus, we can convincingly conclude that the Z2

neighborhood of the U(1) Dirac state does not contain the
presumed fully gapped Z2 SL found by the DMRG study.

This conclusion forces us to shift our focus to the Z2

neighborhood of another fully symmetric (and energetically
competing) gapless SL, called the uniform RVB or the
[0,0] SL. Despite having a slightly higher energy, it has the
promising feature that all four Z2 SLs in its neighborhood are
gapped, thereby opening up the possibility, albeit a slim one,
that opening a gap might lead to a large gain in energy so as
to make one of these four states go lower than the U(1) Dirac
SL, near to the DMRG value of E/J = −0.4379(3) per site.
These gapped SLs are referred to in Ref. 21 as the Z2[0,0]A,
Z2[0,0]B, Z2[0,0]C and Z2[0,0]D states; for their Ansätze,
see Table I in Ref. 21 and also the supplementary material.
Our simulations show that all four of these SLs return upon
optimization to the gapless uniform RVB SL, with optimized
χn. In particular, case by case we see that for the Z2[0,0]A
SL, the 2nd NN spinon pairing term goes to zero along with
the on-site pairing term, thus returning back to the 2nd NN
uniform RVB SL, the [0,0; π,π ] state given by optimized
χ2 = −0.032(1);26 for theZ2[0,0]B SL, the NN spinon pairing
term goes to zero upon optimization, thus giving back the NN
uniform RVB SL; the Z2[0,0]C SL upon optimizing flows to
the 3rd NN uniform RVB SL with optimized χ2 and χ ′

3s, with
the spinon pairing term at 3rd NN becoming zero; and finally,
the Z2[0,0]D SL flows back to the 2nd NN uniform RVB
SL. The results showing how the energies of these extended
gapless uniform RVB SLs increase as the U(1) → Z2 gauge
breaking parameter is tuned on from zero to a small finite value
are reported in the supplementary material (see Ref. 28).

For reasons of completeness, we mention that there are
two more gapless U(1) SLs in whose neighborhoods the
remaining four Z2 SLs (all gapless) lie.21 However, these
U(1) SLs suffer from a macroscopic degeneracy at half-
filling which leads to an open shell. This degeneracy being
macroscopic cannot be removed by using any of the four
real boundary condition possibilities. Hence, their energy can
only be computed approximately in the limit by inserting an
additional θ flux through the triangle motifs and consequently
removing π − 2θ through hexagon motifs, and then taking
the limit θ → 0. The energy of the SL-[π,π ] computed in
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this way is E/J 
 −0.38372(1) per site, which is much
higher than those of other gapless U(1) states. Hence, we
did not carry out an analysis of Z2 SLs in these two
neighborhoods.

Finally, we also investigated the possibility of stabi-
lization of the Z2[0,π ]β state upon addition of a small
2nd NN exchange coupling (J ′) of both antiferromagnetic
and ferromagnetic type in the NN spin-1/2 QHAF. In
both cases, on optimization we found that (�2, ζR) → 0,
becoming exactly zero (within error bars) after averaging
over a sufficient number of converged Monte Carlo itera-
tions. Thus, we recover the suitably extended, gapless 2nd
NN U(1) Dirac SL. In particular, for J ′/J = 0.10, this
is the [0,π ; π,0] state with optimized χ2 = 0.0924(2), and
E/J = −0.43200(2) per site; for J ′/J = −0.10, this is
the [0,π ; 0,π ] state with optimized χ2 = −0.1066(2), and
E/J = −0.42898(2).26

In summary, we investigated the possibility of stabilizing
gapped Z2 SLs in the NN and next-nearest-neighbor (NNN)
spin-1/2 QHAF on a kagome lattice. We found that none of the
five gapped Z2 SLs [one connected to the U(1) Dirac state and
the other four connected to the uniform RVB state] can occur

as ground states. In particular, the most promising gapped
SL conjectured to describe the ground state, the Z2[0,π ]β
state, is always higher in energy than the U(1) Dirac SL. Our
systematic numerical results bring us to the conclusion that, at
least within the Schwinger fermion approach of the spin model,
the U(1) Dirac SL has the best variational energy for the NN
and NNN spin-1/2 QHAF on kagome lattice. The conflict of
our results, which point toward a gapless ground state, and the
ones by recent DMRG calculations, which instead suggested
the presence of a fully gapped spectrum, remains open and
deserves further investigations. One possible direction would
be to consider further improvements of our variational wave
functions, based upon the application of few Lanczos steps
or an approximated (fixed-node) projection technique, which,
e.g., gives an energy of E/J = −0.431453(2) per site for
the NN U(1) Dirac SL, and E/J = −0.431443(2) for the
NNN [0,π ; 0,π ] state. Another possible direction would be
to explore the energetics of gapped Z2 SLs which break
some symmetries such as time-reversal. The possibility that
the fully gapped SL found by the DMRG study possesses a
different low energy gauge structure other thanZ2 also remains
open.
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Chapter 8

Finite size extrapolation of the kagomé
spin-1/2 Heisenberg antiferromagnet
using combined Lanczos and variational
schemes

The method of application of a few Lanczos steps on a reasonably good starting trial wave
function combined with variance extrapolation forms an extremely powerful method to
extract the ground state energy and other observables on finite clusters. The power of
the method lies in its ability to essentially reproduce the exact ground state values (if the
symmetry sector of the trial state and exact state are the same) on clusters which are large
enough to be currently inaccessible by exact diagonalization. After having obtained these
ground state values, e.g. of energy on various cluster sizes, one can perform a finite size
extrapolation to obtain the corresponding values in the thermodynamic limit.

8.1 Ground state energy on different cluster sizes
To obtain the ground state energy of the spin-1/2 Heisenberg antiferromagnet on the 48-site
cluster, the smallest we considered, we took three very different starting variational wave
functions, namely, (i) the U(1) Dirac spin liquid, in whose band structure the Fermi surface
consists of two points where the spectrum becomes linear with Dirac conical excitations.
The structure of the projected wave function is given in Fig. 8.1, as one can see about 10% of
the configurations (|x〉) have zero weight (〈x|Ψ〉) on a 48 site cluster. (ii) The uniform RVB
spin liquid, which also has a U(1) low energy gauge structure and a band structure consisting
of large circular spinon Fermi surfaces. The structure of the projected wave function is given
in Fig. 8.1, from which we see that about 35% of the configurations have zero weight on
a 48 site cluster. (iii) The Z2[0, π]β spin liquid, which is fully gapped in contrast to the
previous two states and the corresponding projected wave function has negligible zero-weight
configurations, about 0.001% on a 48 site cluster. 1 We performed two Lanczos steps on top
of these wave functions and computed their energy at every Lanczos step using variational
Monte Carlo and Green function Monte Carlo techniques, subsequently we performed a
zero-variance extrapolation within both these techniques to extract the ground state energy

1The 48-site cluster is the smallest one on which one can construct a fully symmetric Gutzwiller projected
wave function for the U(1) Dirac and Z2[0, π]β spin liquids, using real boundary conditions, see [13].
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Figure 8.1: The histogram plot showing the structure of the three wave functions studied.
The % of zero weight configurations (i.e. those |x〉 for which 〈x|Ψ〉 = 0) for each of the
wave functions are given, these are not visited by the random walk in our implementation
of the Monte Carlo method. Despite the very different sizes of the Hilbert spaces scanned,
remarkably enough, the extrapolated ground state energy estimates obtained from the three
wave functions are the same within error bars, as shown in Fig. 8.2.

on the respective clusters. The results of our study on the 48 site cluster are shown in
Fig. 8.2(a), all three wave functions give the same extrapolated value of the ground state
energy, within error bars, showing that the extrapolation technique is indeed reliable, as we
already saw before. Our estimate of the ground state energy obtained in this manner on
the 48-site cluster is, energy per site E/J = −0.437845(4). It is important to mention that
the Monte Carlo random walk only visits those configurations for which 〈x|Ψ〉 6= 0, hence
the sizes of the Hilbert spaces scanned by the Monte Carlo is very different for these three
wave functions, see Fig. 8.1. Thus, despite the completely different structure of these wave
functions, the extrapolated estimate of the ground state energy is the same (within error
bars), which is quite remarkable.

Since, on the 48 site cluster, the extrapolations for ground state energy for the three
wave functions match within error bars; for obtaining the ground state energies on larger
clusters, we used only the U(1) Dirac spin liquid wave function as the starting point to
perform the extrapolation. The results are given in Fig. 8.2(b). As a proof of principle,
to check if the VMC estimate is exact or not, it is useful to plot the energy obtained from
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Figure 8.2: (a) On the 48 (3 × 4 × 4) site cluster, for the spin-1/2 Heisenberg antiferro-
magnet, we plot the energies and variances for up to two Lanczos step wave functions for
three different starting variational wave functions. These are the U(1) Dirac, the Z2[0, π]β
and the uniform RVB spin liquids. The zero-variance extrapolated estimates for the ground
state energies obtained from a quadratic fit for these three wave functions, all match within
error bars. The U(1) Dirac spin liquid has also been analyzed using fixed node Monte Carlo,
marked by {FN}, and it converges to the same value (within error bars) as the VMC value.
(b) The ground state energy estimates on cluster sizes of 108-, 144- and 192-sites, from
extrapolations using the U(1) Dirac spin liquid starting wave function only.
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Figure 8.3: (a) On different cluster sizes, for the U(1) Dirac spin liquid the plot of EFN

vs EVMC−FN is shown. (b) Finite size extrapolation of the ground state energy. The value
for the 36 site cluster is taken from exact diagonalization. The estimates from the DMRG
studies are also marked.
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fixed-node Monte Carlo versus the difference of energy between VMC and fixed node Monte
Carlo, i.e. EFN vs (EVMC − EFN), and verify if the extrapolated value obtained in this
manner matches (within error bars) to that of the VMC. This is so, because, if the VMC is
exact then so is the fixed-node Monte Carlo value, and the extrapolations should give the
same estimate (within error bars). We found that this is indeed the case, the corresponding
results for the U(1) Dirac spin liquid on different cluster sizes are plotted in Fig. 8.3(a). After
having obtained the ground state energy estimates on different cluster sizes, we performed
a finite size extrapolation which is shown in Fig. 8.3(b). Our estimate of the infinite 2-
d energy for the spin-1/2 quantum Heisenberg antiferromagnet on the kagomé lattice is
E2−d
∞ /J = −0.4365(2). This estimate is slightly higher compared to similar estimates from

recent DMRG studies [20, 21], see Fig. 8.3(b) and Fig. 8.4 for a global comparison with
many previous results. A point of difference to be noted is that, our lattice is generated
from an equal number of Bravais lattice translations in both directions on which the infinite
limit is taken, whereas DMRG estimates have been obtained on cylindrical geometries in
the quasi 2-d limit.

We would like to mention that work is in progress on the calculation of spin correlations
and structure factors for the Lanczos wave functions and the ground state, so as to extract
the properties of the ground state on finite clusters and also the thermodynamic limit.
The results of the study will be presented in an article whose manuscript is currently in
preparation.
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Chapter 9

Conclusions and perspectives

In my thesis work I demonstrated that algebraic spin liquids, which are argued to be “brittle”
in 2 + 1 dimensions [15], can surprisingly enough be robust (both locally and globally) to
a large class of potential instabilities on a kagomé lattice, even for spin-1/2 Heisenberg
systems. Since, a particular algebraic state, the so called U(1) Dirac spin liquid has the
lowest variational energy within slave particle approaches [12, 13], for the kagomé spin-
1/2 Heisenberg antiferromagnetic model, we argue that it is the ground state. A gapless
spin liquid behavior of the algebraic type, of the ground state is also backed up by Raman
spectroscopic studies on Herbertsmithite [14], and till date no probe has detected a gap to
excitations. We also found that a non-trivial 36-site VBC phase is stabilized on addition of
a small ferromagnetic exchange coupling (J2 ≈ −0.045) to the Hamiltonian, but the U(1)
Dirac spin liquid remains energetically lowest for J2 ' −0.045 into the antiferromagnetic
region also.

The fermionic variational quantum Monte Carlo method allowed us to access rather large
system sizes. A sophisticated implementation of the stochastic reconfiguration algorithm
for wave function optimization enabled us to thoroughly scan the variational landscape
which can be quite non-trivial. For VBC phases, there are large number of variational
parameters leading to highly complex terrains in parameter space, which can be difficult
to navigate through using ordinary minimization schemes such as steepest descent method.
On the other hand, when studying quantum phase transitions between U(1) and Z2 spin
liquids, the energy landscape can be very flat, and ordinary optimization schemes can lead to
incorrect conclusions about the nature of the energy minima. Thus, only by performing an
accurate stochastic reconfiguration optimization we could transparently and unambiguously
demonstrate the existence of the U(1) Dirac spin liquid as a stable phase and hence vouch
for it to be the ground state. To go beyond the variational level we performed a couple of
Lanczos steps on the U(1) Dirac spin liquid wave function and performed a zero-variance
extrapolation of to extract the ground state energy. In this way, we gave an estimate of the
ground state energy on the 48 site cluster and also larger cluster sizes, which are inaccessible
to exact diagonalization. Using finite size extrapolation we then extracted the ground state
energy of the infinite 2-d system.

I would now like to comment on the conflict of our results which point to a gapless
ground state with those from recent DMRG calculations [20, 21], which instead suggested the
presence of a fully gapped spectrum. This issue is open and deserves further investigations.
One possible direction would be to classify and explore the energetics of gapped Z2 spin
liquids which break some symmetries such as time-reversal, i.e. chiral Z2 spin liquids. In
fact, such a chiral topological Z2 spin liquid has been proposed as the ground state within
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the Schwinger boson mean field theory, but the energy of the corresponding projected wave
function has yet to be computed so as to enable comparison with its competitors [138]. For
reasons of completeness, if not for surprise the energetics of chiral gapless Z2 spin liquids
would also be worth investigating. It may also be the case that the spin liquid ground
state and maybe those discovered in the DMRG studies break point group symmetries, and
thus the question of classification and energetics of such gapped Z2 spin liquids within slave
particle approaches remains to be investigated. Another direction would be to investigate
the energetics of incommensurate chiral flux phases, these class of chiral states have not been
studied previously. Finally one cannot a priori rule out the possibility of a competing ground
state possessing a different and possibly more complicated low energy gauge structure. An
investigation along all these directions would be form steps towards pinning down the exact
nature of this elusive ground state.

The above discussion dealt with the myriad of different spin liquid ground state possi-
bilities that still need to be investigated. However, it must be kept in mind that a possible
VBC ground state is not totally out of the game. There are again various new VBC candi-
dates which have yet to be investigated and furthermore several improvements can be made
to the simple Gutzwiller projected wave functions used here, and thus make them better
in being able to capture VBC order faithfully. One possible direction would be to study
the possibility that an unconventional VBC breaking time-reversal symmetry is stabilized
as the ground state [145]. The possibility that a VBC with a much larger unit cell of 48
sites is stabilized, cannot be ruled out. Another direction would be to study the possible
onset of VBC order via confinement transitions of Z2 spin liquids [177]. The mechanism
and detailed study of confinement transitions in U(1) spin liquids using monopole PSG
would be interesting and is yet to be carried out. To this effect, it may be necessary to
include vison dynamics in the projected wave functions in order to capture topological order
faithfully [176]. A further step would be to improve our variational wave functions based
upon the application of a few Lanczos steps and then perform an approximated fixed-node
projection technique. As mentioned before, all these investigations would form steps in the
path leading towards a precise and unanimous identification of this elusive ground state.

111



Chapter 10
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