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@ Mean-field approaches to spin liquids
@ Non-standard mean-field approaches to spin-liquid phases
@ Fermionic representation of a spin-1/2
@ Projective symmetry group (PSG)

© Beyond the mean-field approaches
@ “Low-energy” gauge fluctuations
@ Variational Monte Carlo for fermions

© Numerical results
@ An example: the Heisenberg model on the Kagome lattice
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Standard mean-field approach

Consider the spin-1/2 Heisenberg model on a generic lattice
ij

In a standard mean-field approach, each spin couples to an effective field generated by
the surrounding spins:

Hur = i {(Si)-S; +Si- (S;) — (Si) - (S))}
i
However, by definition, spin liquids have a zero magnetization:

(S =0

How can we construct a mean-field approach for such disordered states?

We need to construct a theory in which all classical order parameters are vanishing
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Halving the spin operator

e The first step is to decompose the spin operator in terms of spin-1/2 quasi-particles
creation and annihilation operators.

e One possibility is to write:
S," —c, aaaﬁcyﬁj
ol 5 are the Pauli matrices
(Vo) =0 ) e B)
10 i 0 0 -1
i

¢/ (c; ) creates (destroys) a quasi-particle with spin-1/2
These may have various statistics, e.g., bosonic or fermionic

At this stage, splitting the original spin operator in two pieces is just a formal trick.
Whether or not these quasi-particles are true elementary excitations is THE questionJ
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Fermionic representation of a spin-1/2

e A faithful representation of spin-1/2 is given by:

1 {Cior ] 5} = 0ijdagp
S = f(cfrc- —cfc-) e Gp
2 i1 i, =il {CIO(7JB}_O
ST o= C,-T,TC,-,L /T,T (or c ) changes SZ by 1/2 (or —1/2)
i | and creates a “spinon”
Si= GGy

e For a model with one spin per site, we must impose the constraints:

:T :T+C:¢CL—1J 1, =0 |

e Compact notation by using a 2 X 2 matrix:

+
i C'-‘% St = —lTr [a“\ll,-\ll;r] GI'= 1Tr [U“\IJ}L\U,} =0
—Ciq 4 4
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Local redundancy and “gauge” transformations

S = —%Tr [a“w,.wj]

i

S-S = 1i6 ST ot vl T ot w wl] = %TY v vl v
u

e Spin rotations are left rotations:
V., - R V.
The Heisenberg Hamiltonian is invariant under global rotations

e The spin operator is invariant upon local SU(2) “gauge” transformations, right
rotations:

v, -V W,

S —S;

There is a huge redundancy in this representationJ

Affleck, Zou, Hsu, and Anderson, Phys. Rev. B 38, 745 (1988)
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Mean-field approximation

e We transformed a spin model into a model of interacting fermions
(subject to the constraint of one-fermion per site)

e The first approximation to treat this problem is to consider a mean-field decoupling:

vivviv, — (v )viv, +wiv (v, — wiv ywiv,)

We define the mean-field 2 x 2 matrix

o — ﬁ(qﬁw ) = Ji | (g telig) (it e | g
9 = ) = -
oA A [ augtguas) GG, T gpay) i

® X; = Xji is the spinon hopping

e 1); = n; is the spinon pairing

.
i

.

-
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Mean-field approximation

The mean-field Hamiltonian has a BCS-like form:
HMF—ZXU(C 1Gi1 6 lcli)"'%(c 1 ,¢+C,TC )+ h.c.
+ 2 mi(elie e, =1+ G eliel, +he

o {x;:m: 11;, C; } define the mean-field Ansatz

At the mean-field level x; and n; are fixed numbers

The SU(2) gauge is broken!

It is restored when computing quantities in sub-space with one electron per site
(the physical Hilbert space) J

Elitzur, Phys. Rev. D. 12 3978 (1975)
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Mean-field approximation and gauge symmetry

o Let [®yr(UJ)) be the ground state of the mean-field Hamiltonian
(with a given Ansatz for the mean-field UJ)

e Let us consider an arbitrary site-dependent SU(2) matrix W,
(sauge transformation)

7

Leaves the spin unchanged S; — S;.

U - w, Uw

e Therefore, U,? and W, U,? WjT define the same physical state
(the same physical state can be represented by many different Ansatze U,S)-)

(OITT; 6.0, |Pmr(U])) = (OITT; € o, |Pmr(W; U} W,-T)U
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An example on the square lattice

e The staggered flux state is defined by

Affleck and Marston, Phys. Rev. B 37, 3774 (1988)

_ ai®0/4
, Xjjix = €
jEA Jod Ny
{ Xj iy =€ A
. — —idg/4
jeB Xjjx e.d) ]
— o/®0/4
Xjj+y = €

e The d-wave “superconductor’ state is defined by

Baskaran, Zou, and Anderson, Solid State Commun. 63, 973 (1987)

Xjjrx =
Xjj+y =
=A
=-A

M j+x
Mj.j+y
e For A = tan(®o/4), these two mean-field states become the same state after projection

e The mean-field spectrum is the same for the two states
(it is invariant under SU(2) transformations)
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Projective symmetry group (PSG)

e Ansitze that differ by a gauge transformation describe the same physical state

e A non-fully-symmetric mean-field Ansatz U,? (e.g., breaking translational symmetry)
may correspond to a fully-symmetric physical state

Let us define a generic lattice symmetry (translations, rotations, reflections) by T:

TUj = Uryrg) # Uj

but still the physical state may have all lattice symmetries.
Indeed, we can still play with gauge transformations.

e To have a fully-symmetric physical state, a gauge transformation G, must exist,
such that

G TUJG; = G/UsyryG; = U |

{T, G} define the PSG:
for each lattice symmetry T, there is an associated gauge symmetry GJ
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Wen's conjecture on quantum order

e In general, the PSG is not trivial
(the set of gauge transformations G associated to lattice symmetries T is non-trivial)

e Distinct spin liquids have the same lattice symmetries (i.e., they are totally symmetric),
but different PSGs (i.e., different gauge transformations G)

e Wen proposed to use the PSG to characterize quantum order in spin liquids

e As in the Landau’s theory for classical orders, where symmetries define various phases,
the PSG can be used to classify spin liquids
(the PSG of an Ansatz is a universal property of the Ansatz)

Although Ansatze for different spin liquids have the same symmetry,
the Ansatze are invariant under different PSG. Namely different sets of
gauge transformations associated to lattice symmetries

Wen, Phys. Rev. B 65, 165113 (2002)
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“Low-energy” gauge fluctuations

e The SU(2) gauge structure

v, - v W,

is a "high-energy” gauge structure that only depends upon our choice on how
to represent the spin operator [e.g., for the bosonic representation, it is U(1)]

e What are the “relevant” gauge fluctuations above a given mean-field Ansatz Ug?

e The “relevant” (“low-energy”) gauge fluctuations are determined by the IGG
(Wen's conjecture)

The IGG of a mean-field Ansatz is defined by all gauge symmetries
that leave U,-?- unchanged:

These are the “unbroken” gauge symmetries of the mean-field Ansatz
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The PSG + IGG allow us to classify spin liquid phases

e Consider the square lattice and a Z; IGG, e.g. Gi = £I

o Consider the case where only translations T, and T, are considered
Only two Z5 spin liquids are possible:

G(T)=1  G(T)=1 — Uli,=Uy
G(T) = (1" G(T,) =1 — U= (1)™"U5
e The case with also point-group and time-reversal symmetries is much more complicated
Two classes of Z; spin liquids are possible: S

G(T)=1 G(T,)=1
Gi(Px) = Ei?pxegpngx GI(Py) = el;xpye;ypngy
Gi(Py) =gr, Gi(T)=cigr

G(T) = (-1 G(T)=1
Gi(PX) = E;(pre';{pygl’x Gf(P,V) = ?ifpye;{pxg:"y
Gi(Py) = (-1)""gp, Gi(T)=cigr

In total, 272 possibilities
At most 196 different Z, spin liquids!

Wen, Phys. Rev. B 65, 165113 (2002)
Federico Becca (CNR and SISSA) Quantum Spin Liquids

LOTHERM 14 / 25



Fluctuations above the mean field and gauge fields

e Some results about lattice gauge theory (coupled to matter)
may be used to discuss the stability/instability of a given mean-field Ansatz

e What is known about U(1) gauge theories?
Monopoles proliferate — confinement

Polyakov, Nucl. Phys. B 120, 429 (1977)

Spinons are glued in pairs by strong gauge fluctuations and are not physical excitations
e Deconfinement may be possible in presence of gapless matter field

The so-called U(1) spin liquid

Hermele et al., Phys. Rev. B 70, 214437 (2004)
e In presence of a charge-2 field (i.e., spinon pairing) the U(1) symmetry

can be lowered to Z, — deconfinement

Fradkin and Shenker, Phys. Rev. D 19, 3682 (1979)
e For example in D=2:

e 7, gauge field (gapped) + gapped spinons may be a stable deconfined phase
short-ra nge RVB physics Read and Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

e U(1) gauge field (gapless) + gapped spinons should lead to an instability
towards confinement and valence-bond order Read and Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
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Variational Monte Carlo for fermions

e The exact projection on the subspace with one spin per site can be treated within the
variational Monte Carlo approach (part of the gauge fluctuations are considered!)

|®) = Plowr(UD))
e The variational energy

E() = ¢g|14\>¢ ZP( x\H|¢

P(x)  |{x|®)|> and |x) is the (Ising) basis in which spins are distributed in the lattice
e E(®) can be sampled by using “classical” Monte Carlo, since P(x) > 0
e (x|®) is a determinant

e The ratio of to determinants (needed in the Metropolis acceptance ratio) can be
computed very efficiently, i.e., O(N), when few spins are updated

e The algorithm scales polynomially, i.e., O(N*) to have almost independent spin
configurations
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The projected wave function

e The mean-field wave function has a BCS-like form

|®ur) _exp{ Xy 'le}|0>J

It is a linear superposition of all singlet configurations (that may overlap)

Y

e After projection, only non-overlapping singlets survive:

the resonating valence-bond (RVB) wave function Anderson, Science 235, 1196 (1987)
T N
« e
N
« e « e
+
¢ ¢ > N N
¢ r. % -
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The projected wave function

e The mean-field wave function has a BCS-like form

|®umr) = exp {% i fhjciichtl} 10) J

e Depending on the pairing function f;;, different RVB states may be obtained...

CCCC/EA/E A/§<2</E CCCCCKECC
~alen AT QA ¢
CCCQCC/E %(CCQ( CC/EQCKEC

e ...even with valence-bond order (valence-bond crystals)

22222202
22222207
22222207
22222207
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The Heisenberg model on the Kagome lattice

H=1JYS-S;+J Y Si-S;+ DM+ distortions + 3D couplings + ...
(i) ()

Cu

e No magnetic order down to 50mK (despite Tcw =~ 200K)

e Spin susceptibility rises with T — 0 but then saturates below 0.5K
e Specific heat C, < T below 0.5K

e No sign of spin gap in dynamical Neutron scattering measurements

Mendels et al., PRL 98, 077204 (2007)
Helton et al., PRL 98, 107204 (2007)

Bert et al., PRB 76, 132411 (2007)
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Some of the previous results

Nearest-neighbor Heisenberg model on the Kagome lattice

Author GS proposed Energy/site Method used
P.A. Lee U(1) gapless SL —0.42866(1)J | Fermionic VMC
Singh 36-site HVBC —0.433(1)J | Series expansion
Vidal 36-site HVBC —0.43221 J MERA
Poilblanc 12- or 36-site VBC QDM
Lhuillier Chiral gapped SL SBMF
White Z, gapped SL —0.4379(3)J DMRG
Schollwoeck Z> gapped SL —0.4386(5)J DMRG
Ran, Hermele, Lee, and Wen, PRL 98, 117205 (2007)
Yan, Huse, and White, Science 332, 1173 (2011)
LOTHERM
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"
j 2Ci,aog,ﬁci,,6
1 ¥ 1 o
H= ) Z Ji <Cua aGsCis T 5 2 lacla .88
i, B
T _
Ci,aci,a =1
o At the mean-field level

:a lﬁEaﬂ_O

Huvr = Z(XU +H5U)C, aCja Tt Z(UU + C‘Su) €16, 1 + h.c.
isjser isj
(ClTaCl a>

1

(€ aCiplap =0
e Then, we reintroduce the constraint of one-fermion per site

[P Oxs M0 1))

Pe|Pur (X 1 145 C))
P =[I;(L = niyniy)

DA



/

b)

e The U(1) gapless (Dirac) spin liquid is a good variational Ansatz
Ran, Hermele, Lee, and Wen, PRL 98, 117205 (2007)
e It is stable for dimerization

Igbal, Becca, and Poilblanc, PRB 83, 100404 (2011); New Journal of Phys., to appear
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Can we have a Z; gapped spin liquid (DMRG)?

Projective symmetry-group (PSG) analysis

Lu, Ran, and Lee, PRB 83, 224413 (2011)

No. ni2 A Uy ug u, i, Label  Gapped?

1 +1 5 22 2200 20 A7 Z,00,01A Yes
. 2 122t ] At A 00 L0 Yes
0 Xii nij 3041 0 27 0 0 0 ZlzxlA  No
Uij = Y N 4 -1 0 7 0 0 A7 Zr0A  No
nij —Xij 541 2 2 P Z,0001B 0 Yes
6 -1 © o ? 2 Z0.7le No
7 41 0 0 0 0 - -
8 —1 0 0 2 0 0 - -

9 41 0 0 0 it 0
N 0 -1 0 0 0 = 0 - -
/4 1+ 0 0 & 2 0 - -
i3 2 -1 0 0 ©? £ 0 - -
AR 13 41 2 22D D 200D Yes
~ 4 -1 o o 0 Zl0xly No
L 15 +1 ¢ 2 222 0 Z001C  Yes
6 -1 7 7 o 0 Z[0x)8 No
>< 17 +1 0 7? & 0 0 Zn.x|B No
18 —1 0 2 7 0 * Z[n,01B  No
19 +1 0 7? 0 72 0 Zn.x|C No
20 -1 0 7 0 ' Zfx0]C No

Only ONE gapped SL connected with the U(1) Dirac SL: The Z»[0,7]3 spin liquid
FOUR gapped SL connected with the Uniform U(1) SL: Z5[0,0]A, B, C, and D
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...and also the Uniform U(1) spin liquid is stable

: o B S B ——
—07Z[0.0]A; L, =0

+—— Z,[0, 0]A ; Lp{A,}

04111 A—AZ[0.0]B ]

2 I =—mZ][0,0]C ]

7 x +—e7,[0,0ID il

Q o 1
(="

So04ns Ny £ ]

<] L ]
b

o L 4

-0.412f ]

Bf ]

A 4

cl ]

L L | L L L L l
-0.04 -0.02 0 0.02 0.04
Gauge breaking parameters

The gapless U(1) Dirac SL is very stable

e Against dimerization

e For breaking the gauge structure down to Z,

The gapless uniform U(1) SL is stable against Z SLs
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