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COMPACT OPERATORS

1. DEFINITIONS

An operator M : X — Y, X, Y Banach, is compact if M(Bx (0,1)) is relatively compact, i.e. it has
compact closure. We denote

(1.1) K(X,Y)= {M €L(X,Y) M Compact}
the set of compact operators from X into Y Banach spaces.
Proposition 1.1. The set K(X,Y) is a closed subspace of L(x,y).

Proof. Clearly K(X,Y) is a linear subspace of L(X,Y).
Let M,, — M in the operator norm, where M,, is compact. Fixed € > 0, let n such that

€
IM = Mallexy) < 5

Since M,,(B(0,1)) is relatively compact, then it can be covered by a finite number of balls

By (yi,€/2)
of radius €/2. Then M(Bx(0,1)) is covered by

U By (yi, 6)'

i

O

As for degenerate maps, M o L is compact if one is compact and the other continuous: thus K(X) =
K(X, X) is an ideal w.r.t. map composition.
We recall that a linear operator M is degenerate if it has finite rank:

(1.2) dim(Rwm) < oo.

Clearly such an operator is continuous if X is Banach, and thus it is compact. We thus have that
if M is the limit of a sequence of finite rank operators M,,, then it is compact.
In Hilbert spaces the converse is true:

Lemma 1.2. IfY is a Hilbert space, then every compact operator is the limit of a sequence of finite rank
operators.

Proof. Consider a converging of M(B(0, 1)) with balls of radius € > 0,
K= U B(y;,€).

Let S = span{y;};, and consider the projector Pg. This projection exists because Y is Hilbert.
Define the finite rank operator
M, = Pg o M.
By construction, if 2 € Bx(0, 1), then there is y; such that
Mz — il <,
so that, since the operator norm of a projection in Hilbert spaces is 1 and Pgy; = y;, we have
[(PsoM)z —yil| <e,

It follows that
HMm — MJH = HMm —(Pso M)mH < 2¢,
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2. TRANSPOSE OF A LINEAR OPERATOR
Let X, Y be Banach spaces, with duals X*, Y*, respectively. Let M : X — Y be a bounded linear
map. Define the transpose M* : Y* — X* by
(2.1) (M*€)z = £(Ma).
Because of the estimate
[EMz)| < [I€]ly+ M| 2ex vyl ]l

the right hand side is a linear functional over X, which we denote by M*¢. Thus M* : Y* — X* is well
defined. It is clearly linear and by the above estimate

M [y x+) < [IM2(x,v)-
Proposition 2.1. If M € L(X,Y), then

(2.2) M| 2ove,x) = Ml £x,v)-
Moreover,

(1) Ny = Riy;

(2) NM = Rl%/l*;

(3) (M +N)* = M* + N*.

Proof. The equality (2.2) is an application of Hahn Banach theorem in the space Y.
The other relations follow easily from (2.1). O

We now prove that if M is compact, then also its transpose is compact.
Theorem 2.2 (Schauder). The operator M € K(X,Y) if and only if M* € K(Y*, X*).

Proof. Let &, be a sequence in By»(0,1), and K = M(Bx(0,1)). Consider the functions

(bn(y) =&y € C(K)» §n € By~ (07 ]-)
Clearly these functions are equicontinuous (they are Lipschitz continuous with modulus 1) and K is

compact, so that there is a converging subsequence, which we denote again by ¢,,.
Since ¢,, is Cauchy, we have

|60 (Mu) — & (Mu)| = |[(MF&)u — (M & )ul <€, VYu € Bx(0,1), n,m > 1.

Hence M*¢, is a Cauchy sequence in M*(By« (0, 1)).
Conversely, if M* is compact, then M** is compact because of the first part of the proof. It is easy to
see that if Jx : X — X** Jy : Y — Y™ are the canonical immersions, then

M**(Jxz) = Jy (Mz).
Since Jx(Bx(0,1)) C Bx«+(0,1), then M**(Jx(Bx(0,1))) = Jy(M(Bx(0,1))) is relatively compact in

Y**. Since the canonical immersion J is an isometry, then M(Bx (0, 1)) is relatively compact. O

3. FREDHOLM’S ALTERNATIVE

This section is devoted to the proof of Fredholm’s alternative:

IfM: X — X, X Banach, is compact, then

e cither the equation w — Mu = v has a unique solution,
e oru— Mu =0 has n linearly independent solutions, and u — Mu = v has a solution if and only
if v satisfies the linear conditions

(3.1) v e (Ry)t = {EU =0,Vv e Rﬁ,l}
From M compact it follows that Ry is finite dimensional.

We prove in fact the following theorem:

Theorem 3.1. I[f M : X — X, X Banach, is compact, then
(1) Ni—wm has finite dimension;
(2) Ri_wm is closed and Ri—m = N ppe;
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(3) Ni—m = 0 is equivalent to Ri—nv = X ;
(4) the dimension of Ni_m is equal to the dimension of Nj_pp«.

In particular, the index of the operator I — M, M compact, is 0:

1nd(I - M) = dim NIfM — dim RI,M =0.

Proof. Point (1) follows from the observation that
Ni-m = M(Ni-m),

and since M is compact, the space Ny_yp is locally compact, hence finite dimensional.
Let uw, — Mu, = y, — y. Since Ny_p has finite dimension, there is v,, € N1_n; which minimize
Uy — Up|| = inf  ||lu, —v|.
lin = vnll = _ipf o]

and (u, — vn) — M(u, — v,) = y,. By dividing the above equation by ||u, — v,||, one sees that if
|ty — vy ]| — o0, then the sequence w,, = (u, — vp)/||un — vy || satisfies

wy, + Mw, — 0, |w,|] =1

Since M is compact, then we can extract a subsequence Mw,, — w, so that w + Mw = 0, but ||w|| = 1,
This is a contradiction, because w ¢ Ni_p.

It follows that ||u,, — vy, || remains bounded. Thus up to subsequences we have that u,, — v, converges.
This prove that Ry_n is closed.

Since for a closed subspace Y, the Hahn Banach theorem implies (Y1)+ =Y, then (2) follows.

To prove (3), assume that Ny_n = {0}, and Ryj_n = X1 # X, then for v € Rp_m

Mv = M(I — M)x = (I — M)Mx C X1, X closed.

The operator M € K(X1), so that we can consider again Xo = (I — M)(X;) = (I - M)?(X) € Xi,
because I — M is injective and X7 = (I — M)(X).

Proceding in this way we find a sequence of subspaces X,, = (I—M)"(X), and thus we can find points
T, € X,_1 such that

1
Hxn*y” Z 57 y€X7L~
We have for n < m
M(zy — Tm) = Uup — U + (T =My, — (T— M)uy, = Un — Ynm,  Ynm € Xn-

Hence [|[M(z,, — )| > 1/2, but this contradicts the assumption M compact.

Conversely, if Ry_ym = X, then we have Ny_p+ = {0}, and thus using the first part Rp_a+ = X*.
Using again Proposition 2.1, we conclude Ny_p; = {0}. This concludes (3).

Since M € K(X), then M* € K(X*), so that both kernels have finite dimension. Assume that
d = dimNi_m < d = dim Ny_p+. Since Ny_n is finite dimensional, then there is a continuous
projector from X into Ni_ng.

Using the fact that Ry_pp has finite codimension, there is a continuous projector on a linear complement
E of Ry_m. By assumption, there is A : Ny_n — E which is injective but not surjective. Define

S:M+AOPN17M.

Then S € K(X), because A has finite rank. Moreover Ni_g = {0}. From point (3) it follows that
Rj_s = X, but this contradict the fact that S is not surjective. We have thus proved that d* < d.
Using the above result, it follows that for M*

dim NIfM** S dimNI,M* S dim NIfM-

Since Ni_m++ D J(Ni—m), we have proved (4). O
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4. SPECTRAL ANALYSIS

If M € L(X), then the resolvent set of M is
E:resolv| (4.1) p(M) = {/\6@2 (AL —-M) ! Gﬁ(X)}.

S:spect

The spectrum of M is

M — M not injective
E:spectr| (4.2) o(M)=C\pM)=cA€C:{AX[—M injective but not surjective

M — M injective, surjective but with not continuous inverse

For bounded operators the last case cannot occur, because of the open mapping theorem.
The values A such that the first case holds are the eigenvalues of M. The space Nai—m # {0} is the
eigenspace associated to A, and its elements are the eigenvectors of M.

E:solve| Proposition 4.1. If M € L(X), then
E:contr | (4.3) (M) C {|)\| < ||M||£(X)}.

Proof. The proof follows from the fact that the series

+oo 1
ZO )\n+1 M"

converges strongly and it is the inverse of A\I — M. 0

For compact operators the spectrum has a precise form.

Theorem 4.2. Let M € K(X), with X infinite dimensional Banach. Then
o 0 co(M);
e A€ o(M)\ {0} is an eigenvalue;
e o(M)\ {0} is either empty, or finite, or it is a sequence of eigenvalues converging to 0.

Proof. The first point follows because M1 cannot exists, otherwise M~! o M(X) = X is compact.

To prove point (2), we just use the (3) implication of Theorem 3.1, which gives a contradiction if
Nyi-m = {0}.

To prove the last point, we consider a sequence A, € (M) \ {0}. converging to some A. For all
eigenvalues A, let e, € Ny 1—m with norm 1. It is easy to verify that Ny 1—m N Ny, 1-m = {0} if
n # m, so that all e,, are different.

Define

En = span{ela €2, .., en}a
and consider u,, € E,, such that ||u,| =1, ||u, —y|| > 1/2 for y € E,,_1. We have for m <n

)\inMun - )inMumH = {|up — U + %(/\Unl - M)u, — i(/\ml —M)u,|| > %,
since
/\in()\unI —M)u, € E—1.
Since Mu,, has a converging subsequence, then A, — 0.
This shows that the set (M) N{|A| > 1/n} has at most a finite number of eigenvalues. O

X 5. SPECTRAL DECOMPOSITION OF COMPACT SELF ADJOINT OPERATORS
S:sefladji1

We say that M € L(H), H Hilbert space is self adjoint if

(5.1) (Mz,y) = (z,My), Vz,ye€ H.
Proposition 5.1. Let M € L(H) be self adjoint, and define
(5.2) m= \|iI|\1f1(Mu’u)’ M = sup (Mu,u).
ull= lull=1

Then o(M) C [m, M], m, M € o(M).
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Proof. f A€ C\R or A > M, then
(AL = M)u,u) = AJul|* — (Mu, u) # 0,

since (Mu,u) € R. Moreover, (A\I — M)(H) is a subspace of H, which is closed because from the above
relation
(IA = M|+ SN [lull < (AT = M)u].
The same argument implies that (A\I — M)(H) = H. This proves that ¢(M) C (—o0, M).
For A = M, then we have as in the proof of Schwartz inequality that

|(Mu — Mu,v)| < |(Mu — Mu, u)|*?|(Mv — Mo, v)|*/2

If wy,, [Ju,| = 1, is a maximizing sequence (Mu,u) — M, it follows that (MI — M)u,, converges to 0. If
now M € p(M), then
= (MT = M)~ (MI — M), — 0,
which contradicts |lu,|| = 1.
Replacing M with —M, we obtain the other part of (1). O

In particular, if o(M) = {0}, then (Mu,u) = 0, and Mu = 0.

Theorem 5.2. If M € K(H), H Hilbert, is self adjoint, then there exists an Hilbert base generated by
eigenvector of M.

Proof. The result follows if we can prove that

H=NgyU U N/\nlfM-
An#0

In fact, the orthonormal base is just the union of the orthonormal bases of each eigenspace. Moreover,
as in the finite dimensional space, one sees that the eigenvalue of M are real, and the spaces Ny, 1—m are
orthogonals each other.

To prove that the vector space Y generated by Ny and { Ny 1-m}n is dense in H, we first observe
that Y is invariant for M, so that M(Y+) C Y+, because M is self adjoint.

The operator M|y 1 is self adjoint and compact, and by construction o(M|y1) = {0}. It follows
M|y¢ =0and Y+ C N g

6. EXERCISES

(1) Let M: X — Y, X Banach, Y reflexive. Show that if z,, — x, then Mz,, — Maz.
(2) Define the adjoint of M : H — H, H Hilbert space, by
(z,M*y) = (Muz,y).

Prove that Proposition 2.1 holds for the adjoint operator.
(3) Prove that if Y C X, X Banach, is a subspace, then ¥ = (Y1)L.
(4) On £°°, consider the linear operator

Su(n) =u(n +1).
Compute the spectrum of S (consider the functions A™).
(5) Consider the Hilbert space £2 and a sequence of real numbers x,, — 0. Define

Show that T is compact and find its spectrum.

(6) Find the eigenvalues and eigenvectors of the orthogonal projection Py; on M subspace of H
Hilbert. Is Pj; compact?

(7) Fixed g(t,s) € C1([0,1]%,C), consider the linear operator

M: C([0,1],C) — C([0,1],C), Mu(t) = /0 g(t, s)u(s)ds.

Discuss its spectrum.
(8) Let H be a separable Hilbert space, K C C a compact set in C, {\, },, a countable dense sequence
in K.
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e Show that there is a unique bounded linear operator M € L(H) such that
Me,, = M\ en.

e Show that o(M = K, but the eigenvalues of M are {\, },.
e Prove that for A € K\ {\,},, then Ryr_n is dense in H.



