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Hyperbolic systems of balance laws

Consider a system of balance laws with k conserved quantities,

¡
∂tu + ∂xF1(w) = 0
∂tv + ∂xF2(w) = q(w)

(1)

with w = (u, v) ∈ Ω ⊂ Rk × Rn−k, and assume that there exists a strictly convex
function E = E(w) and a related entropy-flux F = F(w), s.t. (for smooth solutions):

∂tE(w) + ∂xF(w) = G(w), (2)

where

F ′ = E ′F ′(w) = E ′
ţ

F ′1
F ′2

ű
, G = E ′G(w) = E ′

ţ
0

q(w)

ű
.

Equilibrium points: w̄ s.t. G(w̄) = 0. Set γ = {w ∈ Ω; G(w) = 0}.
Definition. The system (1) is entropy dissipative, if for every w̄ ∈ γ and w ∈ Ω,

R(w, w̄) :=
ąE ′(w)− E ′(w̄)

ć ·G(w) ≤ 0.



Set W = (U, V ) = E ′(w), Φ(W ) := (E ′)−1(W ), and rewrite (1) in the symmetric form

A0(W )∂tW + A1(W )∂xW = G(Φ(W )) (3)

with A0(W ) := Φ′(W ) symmetric, positive definite and A1(W ) := F ′(Φ(W ))Φ′(W )
symmetric.

The system (3) is strictly entropy dissipative, if there exists a positive definite
matrix B = B(W, W̄ ) ∈M(n−k)×(n−k) such that

Q(W ) := q(Φ(W )) = −D(W, W̄ )(V − V̄ ), (4)

for every W ∈ E ′(Ω) and W̄ = (Ū , V̄ ) ∈ Γ := E ′(γ) = {W ∈ E ′(Ω); G(Φ(W )) = 0}.
In the following we just consider W̄ = 0 and systems like:

A0(W )∂tW + A1(W )∂xW = −
ţ

0
D(W )V

ű
, (5)

with D positive definite.



Kawashima condition. Consider our original system

∂tw + F ′(w)∂xw = G(w). (6)

Condition K. Any eigenvector of F ′(0) is not in the null space of G′(0), which can
be rewritten in entropy framework as

[λA0(0) + A1(0)]

ţ
U
0

ű
6= 0 (K)

Theorem 1. (Hanouzet-Natalini) Assume that system (5) is strictly entropy dissipa-
tive and condition (K) is satisfied. Then there exists δ > 0 such that, if ‖W0‖2 ≤ δ,
there is a unique global solution W = (U, V ) of (5), which verifies

W ∈ C0([0,∞); H2(R)) ∩ C1([0,∞); H1(R)),

and

sup
0≤t<+∞

‖W (t)‖22 +

Z +∞

0

ą‖∂xU(τ)‖21 + ‖V (τ)‖22
ć
dτ ≤ C(δ)‖W0‖22, (7)

where C(δ) is a positive constant.

In multiD the estimate is in Hs, with s sufficiently large (Yong).



The linearized problem. The system of balance law (1) becomes

∂tw +

ů
A11 A12

A21 A22

ÿ
∂xw = −

ů
0 0

D1 D2

ÿ
w, (8)

(H1) ∃ A0 symmetric positive such that AA0 is symmetric and

A0 =

ů
A0,11 A0,12

A0,21 A0,22

ÿ
, BA0 = −

ů
0 0
0 D

ÿ
,

with D ∈ R(n−k)×(n−k) positive definite;

(H2) any eigenvector of A is not in the null space of B.

Consider the projectors Q0 = R0L0 on the null space of B, and its complementary
projector Q− = I −Q0 = R−L−, to which it corresponds the decomposition

w = A0

ů
(A0,11)

−1/2

0

ÿ
wc +

ů
0

((A−1
0 )22)

−1/2

ÿ
wnc, (9)

wc =
h

(A0,11)
−1/2 0

i
u, wnc =

h
0 ((A−1

0 )22)
−1/2

i
A0u. (10)



The system (8) takes now the form
ţ

wc

wnc

ű

t

+

ů
Ã11 Ã12

Ã21 Ã22

ÿ ţ
wc

wnc

ű

x

=

ů
0 0

0 D̃

ÿ ţ
wc

wnc

ű
, (11)

where Ã is symmetric and D̃ is strictly negative,

D̃
.
= L−B̃R− = ((A−1

0 )22)
−1D((A−1

0 )22)
−1.

We want to study the Green kernel Γ(t, x) of (11),
¡

∂tΓ + Ã∂xΓ = B̃Γ
Γ(0, x) = δ(x)I

B̃ =

ů
0 0

0 D̃

ÿ
,

by means of Fourier transform Γ̂(t, ξ) and perturbation analysis of the characteristic
function

E(z) = B̃ − zA.

We will consider the Green kernel as composed of 4 parts,

Γ(t, x) =

ů
Γ00(t, x) Γ0−(t, x)
Γ−0(t, x) Γ−−(t, x)

ÿ
.



For ξ small (large space scale), the reduction of E(z) on the eigenspace of the 0
eigenvalue of B̃ is

−zÃ11 − z2Ã12D̃
−1Ã21 +O(z3),

and one has to consider the decomposition

Ã11 =
X

j

`jrj lj , ljÃ12D̃
−1Ã21rj =

X

k

(cjkI + djk)pjk,

with djk nilpotent matrix. Let us denote by gjk(t, x) the heat kernel of

gt + `jgx = (cjkI + djk)gxx.

For ξ large (small space scale), E(z) = z(Ã + B̃/z), one has to consider the
decomposition

Ã =
X

j

λjRjLj , LjB̃Rj =
X

k

(bjkI + ejk)qjk,

and let hjk(t, x) be Green kernel of the transport system

ht + λjhx = (bjkI + ejk)h.



Define the matrix valued functions

K(t, x) =
X

jk

2
4

rjgjk(t, x)pjklj − d
dx

rjgjk(t, x)pjkljÃ12D̃
−1

− d
dx

D̃−1Ã21rjgjk(t, x)pjklj
d2

dx2 D̃−1Ã21rjgjk(t, x)pjkljÃ21D̃
−1

3
5

K(t, x) =
X

jk

Rj(hjk(t, x)qjk)Lj .

Theorem. The Green kernel for (11) is

Γ(t, x) = K(t, x)χ
ľ
λt ≤ x ≤ λ̄t, t ≥ 1

ł
+K(t, x) + R(t, x)χ

ľ
λt ≤ x ≤ λ̄t

ł
, (12)

where λ, λ̄ are the minimal and maximal eigenvalue of Ã and the rest R(t, x) can be
written as

R(t, x) =
X

j

e−(x−`jt)2/ct

1 + t

ů O(1) O(1)(1 + t)−1/2

O(1)(1 + t)−1/2 O(1)(1 + t)−1

ÿ

for some constant c.



Differences with the previous result by Y. Zeng (1999):

1. finite propagation speed (hyperbolic domain);

2. Structure of the diffusive part (operators R0 and L0);

3. BA0 not symmetric ⇔ D̃ not symmetric (as in Hanouzet-Natalini (2002), Yong
(2002)).

From a technical point of view, when we study the function

Ĝ(t, ξ) = exp(E(z)t) = exp
ą
(B̃ − zÃ)t

ć
,

and we compute its inverse Fourier transform, the differences w.r.t. Y. Zeng are:

• a carefully analysis of the families of eigenvalues whose projectors do not blow
up near the exceptional points z = 0, z = ∞;

• when estimating eE(z)t, one has to deal always with matrices;

• the path of integration in the complex plane depends now on the viscosity
coefficients cjk, which is a complex number.



Asymptotic behavior

Consider now the original problem

wt + F (w)x = G(w) =

ţ
0

q(w)

ű
, w(x, 0) = w0 (13)

We have

wt + F ′(0)wx −G′(0)w =
ą
F ′(0)w − F (w)

ć
x
− ą

G′(0)w −G(w)
ć

Then we can write the solution as

w = Γ(t) ∗ w0 +

Z t

0

Γ(t− τ) ∗
şą

F ′(0)w − F (w)
ć

x
− ą

G′(0)w −G(w)
ćť

dτ.

Since for any vector vector (0, V ) ∈ Rk × Rn−k one has for the principal part K of
the kernel Γ

K(t, x)

ţ
0
V

ű
=

X

jk

d

dx

ţ −rjgjk(t, x)pjkljÃ12D̃
−1

d
dx

D̃−1Ã21rjgjk(t, x)pjkljÃ21D̃
−1

ű
,

also the second term in the convolution contains an x derivative, so that one may use
standard L2 estimates.



Theorem. Let u(t) be the solution to the entropy strictly dissipative system (13),
and let wc(t) = L0w(t), wnc(t) = L−w(t). Then, if ‖u(0)‖Hs is bounded and small
for s sufficiently large, the following decay estimates holds: for all β,

‖∂β
x wc(t)‖Lp ≤ C min

n
1, t−1/2(1−1/p)−β/2

o
max

ľ‖u(0)‖L1 , ‖u(0)‖Hs

ł
, (14)

‖∂β
x wnc(t)‖Lp ≤ C min

n
1, t−1/2(1−1/p)−1/2−β/2

o
max

ľ‖u(0)‖L1 , ‖u(0)‖Hs

ł
, (15)

with p ∈ [1, +∞].

Remark. These decay estimates correspond to the decay of the heat kernel 1√
2πt

e−x2/4t,
and in particular the solution to the linearized problem

wt + Ãwx = B̃w

satisfies (14), (15). As a consequence these estimates cannot be improved.

Remark. Observe moreover that the non conservative variables wnc decays as a deriva-
tive of wc.



Chapman-Enskog expansion

Consider now the Chapman-Enskog expansion

A0(W )∂tW + A1(W )∂xW = −
ţ

0
D(W )V

ű
, W = (U, V )

V ∼ h(U, Ux) := −D−1
ş
(A1)21 − (A0)21(A0)

−1
11 (A1)11

ť
Ux

In the original coordinates, equilibrium at v = h(u) and

ut + F1

ş
u, h(u)−D−1(u, h(u))

ą
F2(u, h(u))x −Dh(u)F1(u, h(u))x

ćť
x

= 0 (16)

The linearized form of (16) is

ut + Ã11ux − Ã12D̃
−1Ã21uxx = 0,

so that its Green kernel G is

Γ̃(t) = K00(t) + K̃(t) + R̃(t), K00(t, x) =
X

jk

rjgjk(t, x)pjklj .



Since the principal part of the linear Green kernel is the same (up to the finite speed
of propagation), one can prove

Theorem. If w(t) is the solution to the parabolic system (16), then for all κ ∈ [0, 1/2)

‖Dβ(wc(t)− w(t))‖Lp ≤ C min
n

1, t−m/2(1−1/p)−κ−β/2
o

max
ľ‖u(0)‖L1 , ‖u‖Hs

ł
,

if the initial data is sufficiently small, depending on κ, and tending to 0 as κ → 1/2.

Remark. At the linear level one gains exactly t−1/2 (one derivative), but in dimension
1 the quadratic parts of F , G matter and this is way we can only prove the decay for
all k ∈ [0, 1/2).



A Glimm Functional for Relaxation

Stefano Bianchini - IAC (CNR) ROMA



Consider the Jin-Xin relaxation model
¡

F−t − F−x =
ą
U −A(U)

ć− F−

F+
t + F+

x =
ą
U + A(U)

ć− F+ (17)

where A(u) is strictly hyperbolic with eigenvalues |λi| < 1, and

U =
1

2
(F− + F+) ∈ Rn, M−(u) = U −A(u), M+(u) = U + A(u).

To prove BV bounds, we follow an approach similar to vanishing viscosity:

1. decompose the derivatives f−, f+ of F−, F+ along travelling profiles,

f− =
X

i

f−i r̃−i , f+ =
X

i

f+
i r̃+

i ;

2. write the 2n× 2n system (17) as n 2× 2 systems
¡

f−i,t − f−i,x = −a−i (t, x)f−i + (1− a−i (t, x))f+
i + s−i (t, x)

f+
i,t + f+

i,x = a−i (t, x)f−i − (1− a−i (t, x))f+
i + s+

i (t, x)
(18)

3. estimate the sources s−i , s+
i .



Center manifold. Let Ux = vir̃i(U, vi, σ) be the center manifold for

−σUx + A(U)x = Uxx − σ2Uxx

near the equilibrium (U = 0, Ux = 0, λi(0)), so that the center manifold for (17) can
be written as

F− = M−(U)− (1− σ2)vir̃i(U, vi, σ)
F− = M−(U)− (1− σ2)vir̃i(U, vi, σ)

=⇒ f− = (1 + σ)vir̃i(U, vi, σ)
f− = (1− σ)vir̃i(U, vi, σ)

Define g− = F−t , g+ = F+
t , and decompose the couple (f−, g−) by

f− =
X

i

f−i r̃i(U, f−i /(1 + σ−i ), σ−i ) =
X

i

f−i r̃−i (U, f−i , σ−i )

g− =
X

i

g−i r̃i(U, f−i /(1 + σ−i ), σ−i ) =
X

i

g−i r̃−i (U, f−i , σ−i ) (19)

with σ−i = θi(g
−
i /f−i ). The same for the couple (f+, g+), with r̃+

i (u, f+
i , σ+

i ) =
r̃i(U, f+

i /(1− σ+
i ), σ+

i ), σ+
i = θi(g

+
i /f+

i ).

We thus have 2n travelling waves, n for each family of particles, and the ”inter-
action” among these profiles occurs because of the left hand side of (18).



If we define
λ̃i(u, v, σ) = 〈r̃i(u, v, σ), DA(u)r̃i(u, vi, σ)〉,

one ends up with the system
8
<
:

f−i,t − f−i,x = − 1+λ̃−i
2

f−i +
1−λ̃−i

2
f+

i + s−i (t, x)

f+
i,t + f+

i,x =
1+λ̃−i

2
f−i − 1−λ̃−i

2
f+

i + s+
i (t, x)

(20)

8
<
:

g−i,t − g−i,x = − 1+λ̃−i
2

g−i +
1−λ̃−i

2
g+

i + r−i (t, x)

g+
i,t + g+

i,x = − 1+λ̃−i
2

g−i +
1−λ̃−i

2
g+

i + r+
i (t, x)

(21)

Among other terms, the source s±, r± contains the interaction term

f−i g+
t − f+

t g−i = f−i f+
i

ą
σ+

i − σ−i
ć
, (22)

where the last equality holds for speeds close to λi(0).

We want to show that (22) corresponds to an interaction term, to which we can
associate a Glimm functional: we consider this as the kinetic interpretation of the
Glimm interaction functional for waves of the same family.

For simplicity we will set λ̃i = 0 in the following analysis.



The interaction functional

For a piecewise constant solution u of the scalar equation

ut + f(u)x = 0,

we consider the interaction functional Q(u) defined as (outside the interacting points)

Q(u) =
X

jumps i,j

|δi||δj ||σi − σj |, δi strength, σi speed of the jump.

This functional can be extended to the parabolic equation

ut + f(u)x = uxx,

and its ”form” remains the same,

Q(u) =

Z Z

R2

ŕŕŕut(t, x)ux(t, y)− ut(t, y)ux(t, x)
ŕŕŕdxdy

=

Z Z

R2

ŕŕŕŕ
ut(t, x)

ux(t, x)
− ut(t, y)

ux(t, y)

ŕŕŕŕ |ux(t, x)|dx|ux(t, y)|dy.

We can interpret its time derivative as the area swept by the curve γ = (ux, ut).



One can give another interpretation of the interaction functional for the scalar
parabolic system by considering the variable P (t, x, y) = ut(t, x)ux(t, y)−ut(t, y)ux(t, x),
which satisfies

Pt + div
şą

f ′(u(t, x)), f ′(u(t, y))
ć
P

ť
= ∆P

for t ≥ 0, x ≥ y and the boundary condition P (t, x, x) = 0.
The interaction functional Q(P ) is now its L1 norm in {x ≥ y},

Q(P ) =

Z Z

x≥y

|P (t, x, y)|dxdy,

and the amount of interaction is the flux of P along the boundary {x = y},
d

dt
Q(P ) ≤ −

Z

x=y

ŕŕŕ∇P · (1,−1)
ŕŕŕdx = −2

Z

R

ŕŕutxux − utuxx

ŕŕdx.

We will show how to interpret the interaction term

f−g+ − g−f+

as a flux along a boundary. As a consequence we will be able to construct a Glimm
type functional, and prove that the above term is bounded and of second order w.r.t.
the L1 norm of the components.



Consider the system (20), (21), and construct the scalar variables

P−−(t, x, y) = f−(t, x)g−(t, y)− f−(t, y)g−(t, x)
P−+(t, x, y) = f+(t, x)g−(t, y)− f−(t, y)g+(t, x)
P+−(t, x, y) = f−(t, x)g+(t, y)− f+(t, y)g−(t, x)
P++(t, x, y) = f+(t, x)g+(t, y)− f+(t, y)g+(t, x)

which satisfy the system
8
>><
>>:

P−−t + div((−1,−1)P−−) = (P+− + P−+)/2− P−−

P−+
t + div((−1, 1)P−+) = (P−− + P++)/2− P−+

P+−
t + div((1,−1)P+−) = (P−− + P++)/2− P+−

P++
t + div((1, 1)P++) = (P+− + P−+)/2− P++

(23)

for x ≥ y and the boundary conditions

P−+(t, x, x) + P+−(t, x, x) = 0, P++(t, x, x) = P−−(t, x, x) = 0.

We may read the boundary conditions as follows: a particle P−+ hits the boundary
and bounce back as P+− but with opposite sign. We are interested in an estimate of
the number of particles colliding with the boundary {x = y}.



To prove that the average numbers of collision with the boundary is finite if the
initial number of particles is finite (note that this is quadratic w.r.t. the L1 norm of
f , g)

Q(P ) =

Z Z

x≥y

ş
|P−−|+ |P+−|+ |P−+|+ |P++|

ť
dxdy < +∞,

we consider the system for P in R2 and an initial data of the form

P+− = −P−+ = δ(x, y), P++ = P−− = 0.

The solution will be constructed as the sum of the solutions of the cascade of systems:

P−+,0
t + div((−1, 1)P−+,0) = −P−+,0, P+−,0

t + div((1,−1)P+−,0) = −P+−,0

¡
P−−,1

t + div((−1,−1)P−−,1) = (P+−,0 + P−+,0)/2− P−−,1

P++,1
t + div((1, 1)P++,1) = (P+−,0 + P−+,0)/2− P++,1

¡
P−+,2

t + div
ą
(−1, 1) · P−+,2

ć
= 1

2
(P−−,1 + P++,1)− P−+,2

P+−,2
t + div

ą
(1,−1) · P+−,2

ć
= 1

2
(P−−,1 + P++,1)− P+−,2

The remaining terms are left as source terms for system (23).



x

y

t

P−+,0

P+−,0



x

y

t

P−+,0

P+−,0

P−−,1

P−−,1

P++,1

P++,1



x

y

t

P−+,0

P+−,0

−+,2P     +P+−,2

P++,1

P++,1



The solution to the second equation is

P−+,2 =
1

16
e−tχ

n
|x|, |y| ≤ 2t

o
, P+−,2 = − 1

16
e−tχ

n
|x|, |y| ≤ 2t

o

and the crossing due to this solution is

1

4
√

2

Z +∞

0

te−tdt =
1

4
√

2
.

Due to symmetry, the total mass disappearing is thus

1

2

Z +∞

0

t2e−tdt = 1.

We thus obtain that the total crossing is less than.

ţ
2 +

1

2
√

2

ű
Q(u)

Remark. Observe that the amount of interaction is non local in time.


