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(2) the map t — A(t,u) is of uniform bounded variation,

—+ oo
JAL = sup [T [Ay(s,u)lds < € < +oo. (3)
u] <5 /0
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lup(8)], lug(x)], Tot.Var.(up), Tot.Var.(ug) < min{K—l,e—KlllAlll},

the solution u¢(t,z) of (1) exists for all t > 0 and has total
variation uniformly bounded, independently of e.
If uq, upo are two different solution with matrices A, B, fort > s

Jug () —ua(s)|l ;1 < L(It —s| +[lur,0 —u20llpr + llurp —u2pll L1 s
+ Tot.Var.(u) sup |A(u, -) — B(u, -)|L1(0,8)),(4)

As € — 0, uf(t) converges in L1 to a unique BV function u(t,z),
vanishing viscosity solution” to

ut + A(t, u)uz = 0, u(0,z) = up(x), u(t,0) =uy(t), (5)
and satisfying again (4).
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Remarks. For € > 0, technical difficulties arise because:

e NO assumptions on the eigenvalues \; of A: it may happen that
3 k such that Az(¢t,0) ~ 0 (boundary characteristic);

e the boundary characteristic eigenvalue Az(t,0) changes with
time, i.e. k= k(t);

e one has to study the interaction of travelling waves of (1) with
the (non characteristic part of) boundary profiles;
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Decomposition of the boundary profile

The equation for the boundary profile are

Uy — p
pe = A(k,u)p (8)
Ry — 0

and we assume that the k-th eigenvalue of A(0,0) is O.

The parameter k is added to the equation to keep into account
that A depends on time.

Since A\, (0,0) is characteristic, system (8) has

e kL — 1 strictly negative eigenvalues;
e n + 2 zero eigenvalues;
e n — k strictly positive eigenvalues.
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Theorem. (Hadamar-Perron theorem simplified version)

Let f:R"+— R"™ be C" diffeomorphism, with r > 1, such that

Df(0) = (Az,By), ||A| <, |IB7Y <1/p,

for A < min{1, u}, (z,y) € RF x Rk,
Then there exists a C" locally invariant manifold W —, smoothly
dependent on f in the C" norm,

W = {(a:,(b_(m)),w e R, o] < 1}.

This manifold W™ is identified uniquely by trajectories converg-
ing to O with speed ~ ).
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Center manifold and stable manifold near (u,p) = (0,0):

n_ |

v

(0,0 (Pyse->Py_y

(u,k)
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Applying the Hadamar-Perron theorem to the point (u,0)

Pk ‘/

\j

— (0.9 (P1>Pk
(u,0)

(u,k)
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Manifold of all trajectories converging as e~ (A—1-6)t tg (u,0)

o
/

13



Write the center stable manifold of (7) as

p = Rcs(/f, u, ch)’UCSa Res € RnXk;

14



Write the center stable manifold of (7) as

p = Rcs(/f, u, ch)’UCSa Res € RnXk;

on this manifold, the center manifold and the manifold C' as

VUcs — Tk<l<’7 u, Uk)’()k, Ucs — RS(K}a u, US)U&

with r, € R¥, Ry € Rkx(k—1)

14



Write the center stable manifold of (7) as
p = Res(k,u, ves)ves,  Res € RV¥F;
on this manifold, the center manifold and the manifold C' as

VUcs — Tk<l<’7 u, Uk)’()k, Ucs — RS(K}a u, US)U&

with r, € R¥, Ry € Rkx(k—1)
Then the vectors 7, € R, R ¢ R™<(k=1) are given by

fk(lﬁ),u,’l)b,?}k) RCS(K;/U') Rs’Ub _I_ Tk’()k)’f'k(lﬁ),u,vk) (9)
Rb<K’7 u, Vp, Uk) — RCS(K;a u, RS’Ub _I_ Tkvk)RS<K’7 u, US) (10)

14



Write the center stable manifold of (7) as

p = Rcs(/f, u, ch)’UCSa Res € RnXk;

on this manifold, the center manifold and the manifold C' as

Ves = (K, u, V) VL, ves = Rs(k, u,vs)vs,
with r, € R¥, Ry € Rkx(k—1)
Then the vectors 7, € R?, R € R**(k=1) are given by
(K, uw, vy, VL) Res(k,u, Rsvy + rpve)re (K, u, vg) (9)
Ry(k,u,vp,vi) = Res(k,u, Rsvp + rpvr) Rs(k, u,vs)  (10)

The dependence on o can be added to 7, by replacing A(k,u)
with A(k,u) — oI, with o; = 0.

14



Write the center stable manifold of (7) as

p = Rcs(/f, u, ch)’UCSa Res € RnXk;

on this manifold, the center manifold and the manifold C' as

Ves = (K, u, V) VL, ves = Rs(k, u,vs)vs,

with r, € R¥, Ry € Rkx(k—1)
Then the vectors 7, € R?, R € R**(k=1) are given by

(K, uw, vy, VL) Res(k,u, Rsvy + rpve)re (K, u, vg) (9)

Ry(k,u,vp,vi) = Res(k,u, Rsvp + rpvr) Rs(k, u,vs)  (10)
The dependence on o can be added to 7, by replacing A(k,u)
with A(k,u) — oI, with o; = 0.
Moreover the center manifold of (8) is {p = vi7i(k,u,0,v;)},

14



Write the center stable manifold of (7) as

p = Rcs(/f, u, ch)’UCSa Res € RnXk;

on this manifold, the center manifold and the manifold C' as

Ves = (K, u, V) VL, ves = Rs(k, u,vs)vs,
with r, € R¥, Ry € Rkx(k—1)
Then the vectors 7, € R?, R € R**(k=1) are given by
(K, uw, vy, VL) Res(k,u, Rsvy + rpve)re (K, u, vg) (9)
Ry(k,u,vp,vi) = Res(k,u, Rsvp + rpvr) Rs(k, u,vs)  (10)
The dependence on o can be added to 7, by replacing A(k,u)
with A(k,u) — oI, with o; = 0.

Moreover the center manifold of (8) is {p = v, 7, (k,u,0,v;)},
and the stable manifold is {p = Ry(k,u, vy, 0)vy}.
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L Rz — 0
Ap(0,0,0) =diag(M1,..., Ap_1), A.(0,0,0) = \g.

Then:

e v, is exponentially decreasing (non characteristic part);

e the eigenvalue Xk determines the structure of boundary profile;
e 7. is ok for k-th travelling profiles or bdry profile (o, = 0).

15



Equation for the components vy, v;

By substituting into u; + A(t, x)ugy — ugy = 0O
Uy 'vbl?b + URTE T Ditk Uil
u wy Ry + wiry + Xk wiT;

o; = 0;(w;/v;), (12)
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Equation for the components vy, v;

By substituting into u; + A(t, x)ugy — ugy = 0O

L
Uy
after some computation one obtains (similarly for u;)
(Rp + (Rpp, )0 + T 0, Vk) [’Ub,t + (Apvp)z — Ub,a:a:]
+ (Rp, v, 0% + Tk + Tl Uk + U0k 4Tk o) [’Uk,t + (Apvg)z — Uk:,:c:c}
+ _;{(ﬁ; + VT + V05 4T o) [Uz',t + (Nv)z — vi,xm]
7

— ¢(K’7 u,v,vx,w,wx) _I_ O(l) (lvb| _I_ Z |UZ|> SliJLD ||At|| (13)
1=1

Ry + VT T+ Dk Uil

~ ~ _ .= 0. . ), 12
wp Ry + Wi Tl 1 2z Wit oi = Oi(wi/vi),  (12)
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Equation for the components vy, v;

By substituting into u; + A(t, x)ugy — ugy = 0O

L
Uy
after some computation one obtains (similarly for u;)
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+ _;{(ﬁ; + VT + V05 4T o) [Uz',t + (Nv)z — vi,xm]
7

— ¢(K’7 u,v,vx,w,wx) _I_ O(l) (lvb| _I_ Z |UZ|> SliJLD ||At|| (13)
1=1

There are n+ k — 1 variables in n equations.

Vp Ly + VT T 2istk Vil
Wy Ry + WETE 4 itk WiT;

o; = 0;(w;/v;), (12)
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Ideas to recover one k X k system for vy, and n scalar equation
with source for v;:

Boundary data =0 for h,....,h, _,

AN X
Initial data =0 for vy

vy, v; determined by solving (13), not by the decomposition (12).
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To understand the condition v; =0, 1= 1,...,v_1, consider the
scalar equation

Ut — Uz = Ugg, ’U,(O,CU) — ’LLO(QZ‘), U(t, O) =0
which splits into U = u + u, with
Ut — Uy = Ugx Upt — Upx — Up,zx

uli=0 = uo(x), ulz=0 = 0,
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To understand the condition v; =0, 1= 1,...,v_1, consider the
scalar equation

which splits into U = u + wuy, with

Ut — Uy = Uz Upt — Upx — Up,zx

ult=0 = ug(x), u|z=0 = 0,
Ugly,—0 = 0 uli—g = — J§ uzz(s,0)ds
t A

u(ty,x)
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To understand the condition v; =0, 1= 1,...,v_1, consider the
scalar equation

U — Uz = U:UQ?; ’U,(O,CU) — ’LLO(QZ‘), U(t, O) =0
which splits into U = u + wu, with

Ut — Ux = Uzx Upt — Up,x — Up,zx
ult:O — ’UO(CU), u|a?:O — Oa
Uglp,—0 = 0 Ulp=0 = — fé ugpz(s,0)ds
t A
u(t,,x)
_ub(tz,x)
e
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To understand the condition v; =0, 1= 1,...,v_1, consider the
scalar equation

U — Uz = Uazaz; ’U,(O,$) — UO(QZ‘), U(t, O) =0
which splits into U = u + wu, with

Ut — Ux = Uzx Upt — Up,x — Up,zx
ult:O — u0($)7 u|$:O — Oa
Uglp,—0 = 0 Ulp=0 = — fé ugpz(s,0)ds
t A
u(ts,x)
U(t5,x)
—ub(t3,x)
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With the £ — 1 conditions on the initial-boundary data data and

source terms, one arrives to the system

vpt + (Apvp)e —Vhge = O
Vgt T (ApVk)z — Vkze = Skt @)
Vit + (Nvi)z — Vige = si(t,x)

(14)
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With the £ — 1 conditions on the initial-boundary data data and
source terms, one arrives to the system

vpt + (Apvp)e —Vhge = O
Vgt T (ApVk)z — Vkze = Skt @) (14)
Vit + (Nvi)z — Vige = si(t,x)

e Interaction among i # k trav. waves and bdry profile

Since Ab IS strictly negative definite, one obtains that

v (¢, )| < Tot.Var.(u)e™“*, ¢ strict hyperbolicity.
Since \; # 0, + # k, then the following terms can be estimated
> lviwgl, > |vizvpl,
iZk iZk
waves with speed # 0 cross an integrable function of x.
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e Interaction of k-th trav. waves and bdry profile

Since for o, = 0 we have an exact boundary profile (11),
the basic interaction term is

vy (o — o)) = Vpwg,
with w; is k-th component of wu.
Due to Xk ~ 0 and the presence of boundary, it follows

[, le” Myt y)ldt < € Tot.Var.(u),  d= Al =,

Hence

//]R+ R+|’Ubwk|d$dt < C/]R+ e(d—C)x /R+ |€_dywk(t,y)|dtd$ <C.
X
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Solution of the Boundary Riemann problem

To characterize the unique limit of u¢ as e — 0, one has to study

uQo
Up

(15)

ur + A(k,u)ugz = 0, { Z(((B:C:)C))

The solution v = u(x/t) will have the structure

e waves of the 7 > k£ families entering the domain;
e waves of the k-th family entering the domain;

e waves of the k-th family with speed O;

e a characteristic boundary profile.

In u(x/t) one sees only the first two points, the last two are in
the jump at =z = 0.
27
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J uO
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From ug to uy, waves of the ¢ > k family,

A

U
8§

$

waves of the k+1,...,n—th families <

[
\
o S
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From uq to up, waves of the k-th family with o > 0,

|

Up
waves of the k+1,...,n—th families < < $
8

u

\

1
waves of the k—th family u_\
Uy
u
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From wuo to

|

up, there is a char. bdry profile,

waves of the k+1,...,n—th families < <
o S
waves of the k—th family u—) |

\
Uy

Ug
s

<

Sk

boundary profile

\
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By means of system (11), we decompose the bdry profile as

Up

waves of the k+1,...,n—th families /
\ s

u, \ 4

[

waves of the k—th family

manifold of the uniformly stable fields
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Exponentially decaying part of bdry profile

T his solves
Up,x
Pbv.x

Ry (up 4+ ug(x), pp, i (2)) 0y
Ap(up + up(x), pp, P (x) ) 0p (16)
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Exponentially decaying part of bdry profile
This solves

{ Up o Ry (up + ug (@), pp, p1(2) )0y (16)
poe = Ap(up + up(x), py, pr(z))py

Since A, strictly negative, then

pp(x) = O(1)pp(0)e™ ",

:'B ~
us(@) = us(0) + | Ro(yi g, prIpo(yi g, P dy.
By contraction principle (small data), we can verify that
the manifold of solutions converging to O as x — oo iIs kK —1

dimensional parameterized by (u1(0),...,ur_1(0)), smoothly de-
pendent on uy, p.
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T he characteristic part of bdry profile
The system for up, pr. and oy is

( uk(s) — uj _I_ fg ?k,\(ub + Uk, Pbs Pk Gk)dT
{ pr(s) = b-concg g (fS Ak (up + uk, Py, P Uk:)dT) (s)
| or = Jb-concpg ] (f()s Ak (up + ug, Py, P Uk)dT) (s)

The boundary concave hull for Riemann problem is

N
fy
b—conc—{
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T he characteristic part of bdry profile
The system for up, pr. and oy is
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T he characteristic part of bdry profile
The system for up, pr. and oy is

( uk(s) — uj _I_ fg ?k,\(ub + Uk, Pbs Pk Gk)dT
{ pr(s) = b-concg g (fS Ak (up + uk, Py, P Uk:)dT) (s)
| or = Jb-concpg ] (fés Ak (up + ug, Py, P Uk)dT) (s)

With the exponentially decaying (in space) perturbation uy, p

the structure of f;. remains essentially the same,

because the uniform exponentially decaying estimate on wy, pg
yields

fe(siup =0,pp, =0) — fr(s; Ukapk)‘ <

1 . .
E(b-CO”ka - fk) (s;up = 0,pp = 0).
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Final Remark. By studying the unperturbed k-th field we recover
the structure of the boundary profile, hence the bdry RP.
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characteristic boundary profile

waves of the k+1,...,n—th families /

\Js
w S

waves of the k—th family u—\
—

(Sq»esSy_p)
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