Vanishing Viscosity Solutions of Hyperbolic Systems with Boundary

Fabio Ancona, CIRAM Bologna

Stefano Bianchini, IAC(CNR) Roma

http://www.iac.cnr.it/

April 13, 2004
We consider the parabolic system

\[u_t + A(t,u)u_x = \epsilon u_{xx}, \quad t, x > 0, \quad u \in \mathbb{R}^n, \quad (1) \]

with Dirichlet boundary conditions \(u_b(t) \) and initial data \(u_0(t) \).
We consider the parabolic system

\[u_t + A(t,u)u_x = \epsilon u_{xx}, \quad t, x > 0, \quad u \in \mathbb{R}^n, \quad (1) \]

with Dirichlet boundary conditions \(u_b(t) \) and initial data \(u_0(t) \).

Assumptions:
We consider the parabolic system

\[u_t + A(t, u)u_x = \epsilon u_{xx}, \quad t, x > 0, \quad u \in \mathbb{R}^n, \]
(1)

with Dirichlet boundary conditions \(u_b(t) \) and initial data \(u_0(t) \).

Assumptions:

(1) the matrix \(A(t, 0) \) is smooth and strictly hyperbolic,

\[\inf_{t,u,v} \left\{ \lambda_{i+1}(t, u) - \lambda_i(t, v) \right\} \geq c > 0 \quad i = 1, \ldots, n - 1; \]
(2)
We consider the parabolic system

\[u_t + A(t, u)u_x = \epsilon u_{xx}, \quad t, x > 0, \quad u \in \mathbb{R}^n, \quad (1) \]

with Dirichlet boundary conditions \(u_b(t) \) and initial data \(u_0(t) \).

Assumptions:

(1) the matrix \(A(t, 0) \) is smooth and strictly hyperbolic,

\[\inf_{t, u, v} \{ \lambda_{i+1}(t, u) - \lambda_i(t, v) \} \geq c > 0 \quad i = 1, \ldots, n - 1; \quad (2) \]

(2) the map \(t \mapsto A(t, u) \) is of uniform bounded variation,

\[\| A \| = \sup_{|u| \leq \delta} \int_{0}^{+\infty} |A_t(s, u)| ds \leq C < +\infty. \quad (3) \]
Theorem. If

\[|u_b(t)|, |u_0(x)|, \text{Tot.Var.}(u_b), \text{Tot.Var.}(u_0) < \min\left\{ K^{-1}, e^{-K\|A\|} \right\}, \]
Theorem. If

\[|u_b(t)|, |u_0(x)|, \text{Tot.Var.}(u_b), \text{Tot.Var.}(u_0) < \min\left\{ K^{-1}, e^{-K\|A\|} \right\}, \]

the solution \(u^\epsilon(t,x) \) of (1) exists for all \(t \geq 0 \) and has total variation uniformly bounded, independently of \(\epsilon \).
Theorem. If

\[|u_b(t)|, |u_0(x)|, \text{Tot.Var.}(u_b), \text{Tot.Var.}(u_0) < \min \{ K^{-1}, e^{-K\|A\|} \}, \]

the solution \(u^\epsilon(t,x) \) of (1) exists for all \(t \geq 0 \) and has total variation uniformly bounded, independently of \(\epsilon \).

If \(u_1, u_2 \) are two different solution with matrices \(A, B \), for \(t \geq s \)

\[
\begin{aligned}
\|u_1(t) - u_2(s)\|_{L^1} &\leq L \left(|t - s| + \|u_1,0 - u_2,0\|_{L^1} + \|u_1,b - u_2,b\|_{L^1(0,s)} \\
&\quad + \text{Tot.Var.}(u) \sup_{\tilde{u}} |A(\tilde{u}, \cdot) - B(\tilde{u}, \cdot)|_{L^1(0,s)} \right),
\end{aligned}
\]

(4)
Theorem. If
\[|u_b(t)|, |u_0(x)|, \text{Tot.Var.}(u_b), \text{Tot.Var.}(u_0) < \min\{K^{-1}, e^{-K\|A\|}\}, \]
the solution \(u^\varepsilon(t, x) \) of (1) exists for all \(t \geq 0 \) and has total variation uniformly bounded, independently of \(\varepsilon \).

If \(u_1, u_2 \) are two different solution with matrices \(A, B \), for \(t \geq s \)
\[\|u_1(t) - u_2(s)\|_{L^1} \leq L\left(|t-s| + \|u_{1,0} - u_{2,0}\|_{L^1} + \|u_{1,b} - u_{2,b}\|_{L^1(0,s)} \right. \]
\[\left. + \text{Tot.Var.}(u) \sup_u |A(u, \cdot) - B(u, \cdot)|_{L^1(0,s)} \right), \]
As \(\varepsilon \to 0 \), \(u^\varepsilon(t) \) converges in \(L^1 \) to a unique \(BV \) function \(u(t, x) \), "vanishing viscosity solution" to
\[u_t + A(t, u)u_x = 0, \quad u(0, x) = u_0(x), \quad u(t, 0) = u_b(t), \quad (5) \]
and satisfying again (4).
Example. Consider the system

\[u_t + A(u)u_x - \epsilon u_{xx} = 0, \quad x \geq x_b(t), \]

which can be rewritten in form (1) by setting

\[y = x - x_b(t), \quad A(t, u) = A(u) - \frac{dx_b}{dt} I. \]
Example. Consider the system

\[
 u_t + A(u)u_x - \epsilon u_{xx} = 0, \quad x \geq x_b(t),
\]

which can be rewritten in form (1) by setting

\[
 y = x - x_b(t), \quad A(t, u) = A(u) - \frac{dx_b}{dt} I.
\]
Example. Consider the system

\[u_t + A(u)u_x - \epsilon u_{xx} = 0, \quad x \geq x_b(t), \]

which can be rewritten in form (1) by setting

\[y = x - x_b(t), \quad A(t, u) = A(u) - \frac{dx_b}{dt} I. \]
Example. Consider the system

$$u_t + A(u)u_x - \epsilon u_{xx} = 0, \quad x \geq x_b(t),$$

which can be rewritten in form (1) by setting

$$y = x - x_b(t), \quad A(t, u) = A(u) - \frac{dx_b}{dt} I.$$

![Diagram](image-url)
Remarks. For $\epsilon > 0$, technical difficulties arise because:
Remarks. For $\epsilon > 0$, technical difficulties arise because:

- no assumptions on the eigenvalues λ_i of A: it may happen that $\exists \bar{k}$ such that $\lambda_{\bar{k}}(t,0) \simeq 0$ (boundary characteristic);
Remarks. For $\epsilon > 0$, technical difficulties arise because:

- no assumptions on the eigenvalues λ_i of A: it may happen that $\exists \bar{k}$ such that $\lambda_{\bar{k}}(t,0) \approx 0$ (boundary characteristic);

- the boundary characteristic eigenvalue $\lambda_{\bar{k}}(t,0)$ changes with time, i.e. $\bar{k} = \bar{k}(t)$;
Remarks. For $\epsilon > 0$, technical difficulties arise because:

- no assumptions on the eigenvalues λ_i of A: it may happen that $\exists \, \bar{k}$ such that $\lambda_{\bar{k}}(t, 0) \simeq 0$ (boundary characteristic);

- the boundary characteristic eigenvalue $\lambda_{\bar{k}}(t, 0)$ changes with time, i.e. $\bar{k} = \bar{k}(t)$;

- one has to study the interaction of travelling waves of (1) with the (non characteristic part of) boundary profiles;
It is essential a careful decomposition of u_x.
It is essential a careful decomposition of u_x,

$$u_x =$$ (6)
It is essential a careful decomposition of \(u_x \),

\[
 u_x = \sum_{i=1}^{n} v_{i,b} \vartheta_{i}(t) \bar{R}_{i}(t, u, v_{j,b} + v_{j})
\]

\[\text{non char. part boun. profile}\]

(6)
It is essential a careful decomposition of u_x,

$$u_x = \sum_{i=1}^{n} v_{i,b} \vartheta_i(t) \tilde{R}_i(t, u, v_{j,b} + v_j) + \sum_{i=1}^{n} v_i \tilde{r}_i(t, u, v_{b,j}, v_i, \sigma_i)$$

(6)
It is essential a careful decomposition of u_x,

$$u_x = \sum_{i=1}^{n} v_{i,b} \vartheta_i(t) \tilde{R}_i(t, u, v_{j,b} + v_j) + \sum_{i=1}^{n} v_i \tilde{r}_i(t, u, v_{b,j}, v_i, \sigma_i)$$ \hspace{1cm} (6)

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations):
It is essential a careful decomposition of u_x,

$$u_x = \sum_{i=1}^{n} v_{i,b} \vartheta_i(t) \tilde{R}_i(t, u, v_{j,b} + v_j) + \sum_{i=1}^{n} v_i \tilde{r}_i(t, u, v_{b,j}, v_i, \sigma_i)$$ \hspace{1cm} (6)

non char. part boun. profile

travelling profiles

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as
It is essential a careful decomposition of u_x,

$$u_x = \sum_{i=1}^{n} v_{i,b} \psi_i(t) \tilde{R}_i(t, u, v_{j,b} + v_j) + \sum_{i=1}^{n} v_i \tilde{r}_i(t, u, v_{b,j}, v_i, \sigma_i)$$

(6)

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$u_x = v_b \tilde{R}_b(t, u, v_b, v_k)$$

(7)
It is essential a careful decomposition of u_x,

$$
u_x = \sum_{i=1}^{n} v_{i,b} \vartheta_i(t) \tilde{R}_i(t, u, v_{j,b} + v_j) + \sum_{i=1}^{n} v_i \tilde{r}_i(t, u, v_{b,j}, v_i, \sigma_i)$$ \hspace{1cm} (6)

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$u_x = v_b \tilde{R}_b(t, u, v_b, v_k)$$ \hspace{1cm} (7)\hspace{1cm} \text{non char. boun. profile}
It is essential a careful decomposition of u_x,

$$u_x = \sum_{i=1}^{n} v_{i,b} \vartheta_i(t) \tilde{R}_i(t, u, v_j, b + v_j) + \sum_{i=1}^{n} v_i \tilde{r}_i(t, u, v_{b,j}, v_i, \sigma_i)$$ \hspace{1cm} (6)

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$u_x = v_b \tilde{R}_b(t, u, v_b, v_k) \quad \text{non char. boun. profile}$$

$$+ v_k \tilde{r}_k(t, u, v_b, v_k)$$ \hspace{1cm} (7)
It is essential a careful decomposition of u_x,

$$
 u_x = \sum_{i=1}^{n} v_{i,b} \vartheta_i(t) \tilde{R}_i(t, u, v_{j,b} + v_j) + \sum_{i=1}^{n} v_i \tilde{r}_i(t, u, v_{b,j}, v_i, \sigma_i) \quad (6)
$$

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$
 u_x = v_b \tilde{R}_b(t, u, v_b, v_k) \quad \text{non char. boun. profile}
 + v_k \tilde{r}_k(t, u, v_b, v_k) \quad \text{boun. char. field} \quad (7)
$$
It is essential a careful decomposition of \(u_x \),

\[
 u_x = \sum_{i=1}^{n} v_{i,b} \vartheta_i(t) \tilde{R}_i(t, u, v_{j,b} + v_j) + \sum_{i=1}^{n} v_i \tilde{r}_i(t, u, v_{b,j}, v_i, \sigma_i)
\]
\(\text{(6)} \)

For simplicity we consider only \(\|A\| \ll 1 \) (small boundary oscillations): only the \(k \)-th eigenvalue (\(k \) fixed) is boundary characteristic, and the decomposition can be simplified as

\[
 u_x = v_b \tilde{R}_b(t, u, v_b, v_k) + v_k \tilde{r}_k(t, u, v_b, v_k) + \sum_{i \neq k} v_i \tilde{r}_i(t, u, v_i, \sigma_i)
\]
\(\text{(7)} \)
It is essential a careful decomposition of u_x,

$$u_x = \sum_{i=1}^{n} v_{i,b} \vartheta_i(t) \tilde{R}_i(t, u, v_j, v) + \sum_{i=1}^{n} v_i \tilde{r}_i(t, u, v_{b,j}, v, \sigma_i)$$ \hspace{1cm} (6)

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue $(k$ fixed) is boundary characteristic, and the decomposition can be simplified as

$$u_x = v_b \tilde{R}_b(t, u, v_b, v_k) + v_k \tilde{r}_k(t, u, v_b, v_k) + \sum_{i \neq k} v_i \tilde{r}_i(t, u, v_i, \sigma_i)$$ \hspace{1cm} (7)
Decomposition of the boundary profile

The equation for the boundary profile are

\[
\begin{align*}
 u_x &= p \\
 p_x &= A(\kappa, u)p \\
 \kappa_x &= 0
\end{align*}
\]

(8)

and we assume that the \(k \)-th eigenvalue of \(A(0,0) \) is 0.
Decomposition of the boundary profile

The equation for the boundary profile are

\[
\begin{aligned}
 u_x &= p \\
p_x &= A(\kappa, u)p \\
\kappa_x &= 0
\end{aligned}
\]

(8)

and we assume that the \(k\)-th eigenvalue of \(A(0,0)\) is 0. The parameter \(\kappa\) is added to the equation to keep into account that \(A\) depends on time.
Decomposition of the boundary profile

The equation for the boundary profile are

\[
\begin{align*}
 u_x &= p \\
 p_x &= A(\kappa, u)p \\
 \kappa_x &= 0
\end{align*}
\]

(8)

and we assume that the k-th eigenvalue of $A(0,0)$ is 0.

The parameter κ is added to the equation to keep into account that A depends on time.

Since $\lambda_k(0,0)$ is characteristic, system (8) has
Decomposition of the boundary profile

The equation for the boundary profile are

\[
\begin{align*}
 u_x &= p \\
 p_x &= A(\kappa, u)p \\
 \kappa_x &= 0
\end{align*}
\]

(8)

and we assume that the \(k \)-th eigenvalue of \(A(0,0) \) is 0.

The parameter \(\kappa \) is added to the equation to keep into account that \(A \) depends on time.

Since \(\lambda_k(0,0) \) is characteristic, system (8) has

- \(k - 1 \) strictly negative eigenvalues;
Decomposition of the boundary profile

The equation for the boundary profile are

\[
\begin{cases}
 u_x = p \\
 p_x = A(\kappa, u) p \\
 \kappa_x = 0
\end{cases}
\]

(8)

and we assume that the k-th eigenvalue of $A(0,0)$ is 0.

The parameter κ is added to the equation to keep into account that A depends on time. Since $\lambda_k(0,0)$ is characteristic, system (8) has

- $k - 1$ strictly negative eigenvalues;
- $n + 2$ zero eigenvalues;
Decomposition of the boundary profile

The equation for the boundary profile are

\[
\begin{align*}
 u_x &= p \\
 p_x &= A(\kappa, u)p \\
 \kappa_x &= 0
\end{align*}
\] \hspace{1cm} (8)

and we assume that the k-th eigenvalue of $A(0,0)$ is 0.

The parameter κ is added to the equation to keep into account that A depends on time.

Since $\lambda_k(0,0)$ is characteristic, system (8) has

- $k - 1$ strictly negative eigenvalues;
- $n + 2$ zero eigenvalues;
- $n - k$ strictly positive eigenvalues.
Theorem. (Hadamard-Perron theorem simplified version)
Theorem. (Hadamar-Perron theorem simplified version)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be C^r diffeomorphism, with $r \geq 1$, such that

$$Df(0) = (Ax, By), \quad \|A\| \leq \lambda, \quad \|B^{-1}\| \leq 1/\mu,$$

for $\lambda < \min\{1, \mu\}$, $(x, y) \in \mathbb{R}^k \times \mathbb{R}^{n-k}$.
Theorem. (Hadamar-Perron theorem simplified version)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be C^r diffeomorphism, with $r \geq 1$, such that

$$Df(0) = (Ax, By), \quad \|A\| \leq \lambda, \quad \|B^{-1}\| \leq 1/\mu,$$

for $\lambda < \min\{1, \mu\}$, $(x, y) \in \mathbb{R}^k \times \mathbb{R}^{n-k}$.

Then there exists a C^r locally invariant manifold W^-, smoothly dependent on f in the C^r norm,
Theorem. (Hadamar-Perron theorem simplified version)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be C^r diffeomorphism, with $r \geq 1$, such that

$$Df(0) = (Ax, By), \quad \|A\| \leq \lambda, \quad \|B^{-1}\| \leq 1/\mu,$$

for $\lambda < \min\{1, \mu\}$, $(x, y) \in \mathbb{R}^k \times \mathbb{R}^{n-k}$.

Then there exists a C^r locally invariant manifold W^-, smoothly dependent on f in the C^r norm,

$$W^- = \left\{(x, \phi^-(x)), x \in \mathbb{R}^k, |x| \ll 1 \right\}.$$
Theorem. (Hadamar-Perron theorem simplified version)

Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be \(C^r \) diffeomorphism, with \(r \geq 1 \), such that

\[
Df(0) = (Ax, By), \quad \|A\| \leq \lambda, \quad \|B^{-1}\| \leq 1/\mu,
\]

for \(\lambda < \min\{1, \mu\} \), \((x, y) \in \mathbb{R}^k \times \mathbb{R}^{n-k} \).

Then there exists a \(C^r \) locally invariant manifold \(W^- \), smoothly dependent on \(f \) in the \(C^r \) norm,

\[
W^- = \left\{ (x, \phi^-(x)), x \in \mathbb{R}^k, |x| \ll 1 \right\}.
\]

This manifold \(W^- \) is identified uniquely by trajectories converging to 0 with speed \(\simeq \lambda \).
Center manifold and stable manifold near \((u, p) = (0, 0)\):
Applying the Hadamard-Perron theorem to the point \((u, 0)\)
Manifold of all trajectories converging as $e^{-(\lambda_{k-1}-\epsilon)t}$ to $(u,0)$
Write the center stable manifold of (7) as

\[p = R_{cs}(\kappa, u, v_{cs})v_{cs}, \quad R_{cs} \in \mathbb{R}^{n \times k}; \]
Write the center stable manifold of (7) as

\[p = R_{cs}(\kappa, u, v_{cs})v_{cs}, \quad R_{cs} \in \mathbb{R}^{n \times k}; \]

on this manifold, the center manifold and the manifold \(C \) as

\[v_{cs} = r_k(\kappa, u, v_k)v_k, \quad v_{cs} = R_s(\kappa, u, v_s)v_s, \]

with \(r_k \in \mathbb{R}^k, R_s \in \mathbb{R}^{k \times (k-1)}. \)
Write the center stable manifold of (7) as

\[p = R_{cs}(\kappa, u, v_{cs})v_{cs}, \quad R_{cs} \in \mathbb{R}^{n \times k}; \]

on this manifold, the center manifold and the manifold \(C \) as

\[v_{cs} = r_{k}(\kappa, u, v_{k})v_{k}, \quad v_{cs} = R_{s}(\kappa, u, v_{s})v_{s}, \]

with \(r_{k} \in \mathbb{R}^{k}, \ R_{s} \in \mathbb{R}^{k \times (k-1)}. \)

Then the vectors \(\tilde{r}_{k} \in \mathbb{R}^{n}, \ \tilde{R} \in \mathbb{R}^{n \times (k-1)} \) are given by

\[\tilde{r}_{k}(\kappa, u, v_{b}, v_{k}) = R_{cs}(\kappa, u, R_{s}v_{b} + r_{k}v_{k})r_{k}(\kappa, u, v_{k}) \quad (9) \]
\[\tilde{R}_{b}(\kappa, u, v_{b}, v_{k}) = R_{cs}(\kappa, u, R_{s}v_{b} + r_{k}v_{k})R_{s}(\kappa, u, v_{s}) \quad (10) \]
Write the center stable manifold of (7) as

\[p = R_{cs}(\kappa, u, v_{cs})v_{cs}, \quad R_{cs} \in \mathbb{R}^{n \times k}; \]
on this manifold, the center manifold and the manifold \(C \) as

\[v_{cs} = r_k(\kappa, u, v_k)v_k, \quad v_{cs} = R_s(\kappa, u, v_s)v_s, \]
with \(r_k \in \mathbb{R}^k, R_s \in \mathbb{R}^{k \times (k-1)} \).
Then the vectors \(\tilde{r}_k \in \mathbb{R}^n, \tilde{R} \in \mathbb{R}^{n \times (k-1)} \) are given by

\[\tilde{r}_k(\kappa, u, v_b, v_k) = R_{cs}(\kappa, u, R_s v_b + r_k v_k)r_k(\kappa, u, v_k) \quad (9) \]
\[\tilde{R}_b(\kappa, u, v_b, v_k) = R_{cs}(\kappa, u, R_s v_b + r_k v_k)R_s(\kappa, u, v_s) \quad (10) \]
The dependence on \(\sigma \) can be added to \(\tilde{r}_k \) by replacing \(A(\kappa, u) \) with \(A(\kappa, u) - \sigma I \), with \(\sigma_x = 0 \).
Write the center stable manifold of (7) as
\[p = R_{cs}(\kappa, u, v_{cs})v_{cs}, \quad R_{cs} \in \mathbb{R}^{n \times k}; \]
on this manifold, the center manifold and the manifold \(C \) as
\[v_{cs} = r_{k}(\kappa, u, v_{k})v_{k}, \quad v_{cs} = R_{s}(\kappa, u, v_{s})v_{s}, \]
with \(r_{k} \in \mathbb{R}^{k}, R_{s} \in \mathbb{R}^{k \times (k-1)} \).
Then the vectors \(\hat{r}_{k} \in \mathbb{R}^{n}, \hat{R} \in \mathbb{R}^{n \times (k-1)} \) are given by
\begin{align*}
\hat{r}_{k}(\kappa, u, v_{b}, v_{k}) & = R_{cs}(\kappa, u, R_{s}v_{b} + r_{k}v_{k})r_{k}(\kappa, u, v_{k}) \quad (9) \\
\hat{R}_{b}(\kappa, u, v_{b}, v_{k}) & = R_{cs}(\kappa, u, R_{s}v_{b} + r_{k}v_{k})R_{s}(\kappa, u, v_{s}) \quad (10)
\end{align*}
The dependence on \(\sigma \) can be added to \(\hat{r}_{k} \) by replacing \(A(\kappa, u) \) with \(A(\kappa, u) - \sigma I \), with \(\sigma_{x} = 0 \).
Moreover the center manifold of (8) is \{ \[p = v_{k}\hat{r}_{k}(\kappa, u, 0, v_{k}) \} \}.
Write the center stable manifold of (7) as

\[p = R_{cs}(\kappa, u, v_{cs})v_{cs}, \quad R_{cs} \in \mathbb{R}^{n \times k}; \]
on this manifold, the center manifold and the manifold \(C \) as

\[v_{cs} = r_k(\kappa, u, v_k)v_k, \quad v_{cs} = R_s(\kappa, u, v_s)v_s, \]
with \(r_k \in \mathbb{R}^k, R_s \in \mathbb{R}^{k \times (k-1)} \).

Then the vectors \(\hat{r}_k \in \mathbb{R}^n, \hat{R} \in \mathbb{R}^{n \times (k-1)} \) are given by

\[
\begin{align*}
\hat{r}_k(\kappa, u, v_b, v_k) & = R_{cs}(\kappa, u, R_sv_b + r_kv_k)r_k(\kappa, u, v_k) \\
\hat{R}_b(\kappa, u, v_b, v_k) & = R_{cs}(\kappa, u, R_sv_b + r_kv_k)R_s(\kappa, u, v_s)
\end{align*}
\]

The dependence on \(\sigma \) can be added to \(\hat{r}_k \) by replacing \(A(\kappa, u) \) with \(A(\kappa, u) - \sigma I \), with \(\sigma_x = 0 \).

Moreover the center manifold of (8) is \(\{ p = v_k\hat{r}_k(\kappa, u, 0, v_k) \} \), and the stable manifold is \(\{ p = R_b(\kappa, u, v_b, 0)v_b \} \).
Diagonalization of system (8)
Diagonalization of system (8)

By writing

\[u_x = \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k, \]
Diagonalization of system (8)

By writing

$$u_x = \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k,$$

the equation (8) becomes

$$\begin{align*}
 u_x &= \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k \\
 v_{b,x} &= \tilde{A}_b(\kappa, u, u_x)v_b \\
 v_{k,x} &= \tilde{\lambda}_k(\kappa, u, u_x)v_k \\
 \kappa_x &= 0
\end{align*}$$

(11)
Diagonalization of system (8)

By writing

\[u_x = \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k, \]

the equation (8) becomes

\[
\begin{align*}
 u_x &= \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k \\
 v_{b,x} &= \hat{A}_b(\kappa, u, u_x)v_b \\
 v_{k,x} &= \hat{\lambda}_k(\kappa, u, u_x)v_k \\
 \kappa_x &= 0
\end{align*}
\]

\[
\hat{A}_b(0, 0, 0) = \text{diag}(\lambda_1, \ldots, \lambda_{k-1}), \quad \hat{\lambda}_k(0, 0, 0) = \lambda_k.
\]
Diagonalization of system (8)

By writing

\[u_x = \tilde{R}_b(\kappa, u, u_x) v_b + \tilde{r}_k(\kappa, u, u_x) v_k, \]

the equation (8) becomes

\[
\begin{cases}
 u_x &= \tilde{R}_b(\kappa, u, u_x) v_b + \tilde{r}_k(\kappa, u, u_x) v_k \\
 v_{b,x} &= \tilde{A}_b(\kappa, u, u_x) v_b \\
 v_{k,x} &= \tilde{\lambda}_k(\kappa, u, u_x) v_k \\
 \kappa_x &= 0
\end{cases}
\]

(11)

\[\tilde{A}_b(0, 0, 0) = \text{diag}(\lambda_1, \ldots, \lambda_{k-1}), \quad \tilde{\lambda}_k(0, 0, 0) = \lambda_k. \]

Then:
Diagonalization of system (8)

By writing

\[u_x = \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k, \]

the equation (8) becomes

\[
\begin{align*}
u_x &= \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k \\
v_{b,x} &= \tilde{A}_b(\kappa, u, u_x)v_b \\
v_{k,x} &= \tilde{\lambda}_k(\kappa, u, u_x)v_k \\
\kappa_x &= 0
\end{align*}
\]

(11)

\[\tilde{A}_b(0, 0, 0) = \text{diag}(\lambda_1, \ldots, \lambda_{k-1}), \quad \tilde{\lambda}_k(0, 0, 0) = \lambda_k. \]

Then:

- \(v_b \) is exponentially decreasing (non characteristic part);
Diagonalization of system (8)

By writing

\[u_x = \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k, \]

the equation (8) becomes

\[
\begin{align*}
 u_x & = \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k \\
 v_{b,x} & = \tilde{A}_b(\kappa, u, u_x)v_b \\
 v_{k,x} & = \tilde{\lambda}_k(\kappa, u, u_x)v_k \\
 \kappa_x & = 0
\end{align*}
\]

\[\tilde{A}_b(0, 0, 0) = \text{diag}(\lambda_1, \ldots, \lambda_{k-1}), \quad \tilde{\lambda}_k(0, 0, 0) = \lambda_k. \]

Then:

- \(v_b \) is exponentially decreasing (non characteristic part);
- the eigenvalue \(\tilde{\lambda}_k \) determines the structure of boundary profile;
Diagonalization of system (8)

By writing

\[u_x = \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k, \]

the equation (8) becomes

\[
\begin{align*}
 u_x &= \tilde{R}_b(\kappa, u, u_x)v_b + \tilde{r}_k(\kappa, u, u_x)v_k \\
 v_{b,x} &= \tilde{A}_b(\kappa, u, u_x)v_b \\
 v_{k,x} &= \tilde{\lambda}_k(\kappa, u, u_x)v_k \\
 \kappa_x &= 0
\end{align*}
\]

\[
\tilde{A}_b(0,0,0) = \text{diag}(\lambda_1, \ldots, \lambda_{k-1}), \quad \tilde{\lambda}_k(0,0,0) = \lambda_k.
\]

Then:

- \(v_b \) is exponentially decreasing (non characteristic part);
- the eigenvalue \(\tilde{\lambda}_k \) determines the structure of boundary profile;
- \(\tilde{r}_k \) is ok for \(k \)-th travelling profiles or bdry profile \((\sigma_k = 0) \).
Equation for the components v_b, v_i

By substituting into $u_t + A(t, x)u_x - u_{xx} = 0$

\[
\begin{align*}
 u_x &= v_b \tilde{R}_b + v_k \tilde{r}_k + \sum_{i \neq k} v_i \tilde{r}_i \\
 u_t &= w_b \tilde{R}_b + w_k \tilde{r}_k + \sum_{i \neq k} w_i \tilde{r}_i
\end{align*}
\]

\[\sigma_i = \theta_i(w_i/v_i), \quad (12)\]
Equation for the components v_b, v_i

By substituting into $u_t + A(t, x)u_x - u_{xx} = 0$

$$
\left\{
\begin{array}{l}
u_x = v_b \tilde{R}_b + v_k \tilde{r}_k + \sum_{i \neq k} v_i \tilde{r}_i \\
u_t = w_b \tilde{R}_b + w_k \tilde{r}_k + \sum_{i \neq k} w_i \tilde{r}_i
\end{array}
\right.
\quad \sigma_i = \theta_i(w_i/v_i), \quad (12)
$$
after some computation one obtains (similarly for u_t)

$$
\begin{align*}
&\left(\tilde{R}_b + (\tilde{R}_b,v_b)\cdot v_b + \tilde{r}_k,v_b,v_k\right)[v_{b,t} + (\tilde{A}_b v_b)x - v_{b,xx}] \\
&\quad + \left(\tilde{R}_b,v_k\cdot v_b + \tilde{r}_k,v_k,v_k + v_k \sigma_k,v \tilde{r}_k,\sigma\right)[v_{k,t} + (\tilde{\lambda}_k v_k)x - v_{k,xx}] \\
&\quad + \sum_{i \neq k} (\tilde{r}_i + v_i \tilde{r}_i,v + v_i \sigma_i,v \tilde{r}_i,\sigma)[v_{i,t} + (\tilde{\lambda}_i v_i)x - v_{i,xx}] \\
&\quad = \phi(\kappa, u, v, v_x, w, w_x) + O(1)\left(|v_b| + \sum_{i=1}^n |v_i|\right) \sup_u \|A_t\|.
\end{align*}
\quad (13)
$$
Equation for the components v_b, v_i

By substituting into $u_t + A(t, x)u_x - u_{xx} = 0$

\[
\begin{cases}
 u_x &= v_b \tilde{R}_b + v_k \tilde{r}_k + \sum_{i \neq k} v_i \tilde{r}_i \\
 u_t &= w_b \tilde{R}_b + w_k \tilde{r}_k + \sum_{i \neq k} w_i \tilde{r}_i
\end{cases}
\]

\[\sigma_i = \theta_i(w_i/v_i), \quad (12)\]

after some computation one obtains (similarly for u_t)

\[
(\tilde{R}_b + (\tilde{R}_b, v_b) v_b + \tilde{r}_k, v_b v_k) [v_{b,t} + (\tilde{A}_b v_b)x - v_{b,xx}] \\
+ (\tilde{R}_b, v_k v_b + \tilde{r}_k, v_k v_k + v_k \sigma_k, v \tilde{r}_k, \sigma) [v_{k,t} + (\tilde{\lambda}_k v_k)x - v_{k,xx}] \\
+ \sum_{i \neq k} (\tilde{r}_i + v_i \tilde{r}_i, v + v_i \sigma_i, v \tilde{r}_i, \sigma) [v_{i,t} + (\tilde{\lambda}_i v_i)x - v_{i,xx}] \\
= \phi(\kappa, u, v, v_x, w, w_x) + O(1) \left(|v_b| + \sum_{i=1}^{n} |v_i| \right) \sup_u \|A_t\|. \quad (13)
\]

There are $n + k - 1$ variables in n equations.
Ideas to recover one $k \times k$ system for v_b and n scalar equation with source for v_i:
Ideas to recover one \(k \times k \) system for \(v_b \) and \(n \) scalar equation with source for \(v_i \):
Ideas to recover one \(k \times k \) system for \(v_b \) and \(n \) scalar equation with source for \(v_i \):

\[
\text{Boundary data } = 0 \text{ for } h_1, \ldots, h_{k-1}
\]
Ideas to recover one $k \times k$ system for v_b and n scalar equation with source for v_i:

- Initial data $= 0$ for v_{b}
- Boundary data $= 0$ for $h_1, ..., h_{k-1}$
Ideas to recover one $k \times k$ system for v_b and n scalar equation with source for v_i:

- Initial data $= 0$ for v_b
- Boundary data $= 0$ for h_1, \ldots, h_{k-1}
- No source for v_b
Ideas to recover one $k \times k$ system for v_b and n scalar equation with source for v_i:

\[
\text{Boundary data} = 0 \text{ for } h_1, \ldots, h_{k-1} \\
\text{No source for } v_b \\
\text{Initial data} = 0 \text{ for } v_b
\]

v_b, v_i determined by solving (13), not by the decomposition (12).
To understand the condition \(v_i = 0, \ i = 1, \ldots, v_{k-1} \), consider the scalar equation

\[
U_t - U_x = U_{xx}, \quad u(0, x) = u_0(x), \quad u(t, 0) = 0
\]
To understand the condition $v_i = 0$, $i = 1, \ldots, v_{k-1}$, consider the scalar equation

$$U_t - U_x = U_{xx}, \quad u(0, x) = u_0(x), \quad u(t, 0) = 0$$

which splits into $U = u + u_b$, with

$$\begin{cases} u_t - u_x = u_{xx} \\ u|_{t=0} = u_0(x), \\ u_x|_{x=0} = 0 \end{cases} \begin{cases} u_{b,t} - u_{b,x} = u_{b,xx} \\ u|_{x=0} = 0, \\ u|_{t=0} = -\int_0^t u_{xx}(s, 0) ds \end{cases}$$
To understand the condition $v_i = 0, i = 1, \ldots, v_{k-1}$, consider the scalar equation

\[U_t - U_x = U_{xx}, \quad u(0, x) = u_0(x), \quad u(t, 0) = 0 \]

which splits into $U = u + u_b$, with

\[
\begin{align*}
\begin{cases}
 u_t - u_x &= u_{xx} \\
 u|_{t=0} &= u_0(x), \\
 u_x|_{x=0} &= 0
\end{cases}
\quad \begin{cases}
 u_{b,t} - u_{b,x} &= u_{b,xx} \\
 u|_{x=0} &= 0, \\
 u|_{t=0} &= -\int_0^t u_{xx}(s, 0) \, ds
\end{cases}
\end{align*}
\]
To understand the condition \(v_i = 0, \ i = 1, \ldots, v_{k-1} \), consider the scalar equation

\[
U_t - U_x = U_{xx}, \quad u(0, x) = u_0(x), \ u(t, 0) = 0
\]

which splits into \(U = u + u_b \), with

\[
\begin{cases}
 u_t - u_x = u_{xx} \\
 u|_{t=0} = u_0(x), \\
 u_x|_{x=0} = 0
\end{cases}
\]

\[
\begin{cases}
 u_{b,t} - u_{b,x} = u_{b,xx} \\
 u|_{x=0} = 0, \\
 u|_{t=0} = -\int_0^t u_{xx}(s, 0) ds
\end{cases}
\]
To understand the condition $v_i = 0$, $i = 1, \ldots, v_{k-1}$, consider the scalar equation

$$U_t - U_x = U_{xx}, \quad u(0, x) = u_0(x), \quad u(t, 0) = 0$$

which splits into $U = u + u_b$, with

\[
\begin{align*}
&\begin{cases}
 u_t - u_x = u_{xx} \\
 u|_{t=0} = u_0(x), \\
 u_x|_{x=0} = 0
\end{cases} &\quad &\begin{cases}
 u_{b,t} - u_{b,x} = u_{b,xx} \\
 u|_{x=0} = 0, \\
 u|_{t=0} = -\int_0^t u_{xx}(s, 0)\,ds
\end{cases}
\end{align*}
\]
To understand the condition $v_i = 0$, $i = 1, \ldots, v_{k-1}$, consider the scalar equation

$$U_t - U_x = U_{xx}, \quad u(0, x) = u_0(x), \quad u(t, 0) = 0$$

which splits into $U = u + u_b$, with

$$\begin{cases}
 u_t - u_x = u_{xx} \\
 u|_{t=0} = u_0(x), \\
 u_x|_{x=0} = 0
\end{cases} \quad \begin{cases}
 u_{b,t} - u_{b,x} = u_{b,xx} \\
 u|_{x=0} = 0, \\
 u|_{t=0} = -\int_0^t u_{xx}(s, 0)\, ds
\end{cases}$$
With the \(k - 1 \) conditions on the initial-boundary data data and source terms, one arrives to the system

\[
\begin{align*}
\frac{\partial v_b}{\partial t} + (\tilde{A}_b v_b)_x - v_{b,xx} &= 0 \\
\frac{\partial v_k}{\partial t} + (\tilde{\lambda}_k v_k)_x - v_{k,xx} &= s_k(t, x) \\
\frac{\partial v_i}{\partial t} + (\tilde{\lambda}_i v_i)_x - v_{i,xx} &= s_i(t, x)
\end{align*}
\]

(14)
With the \(k - 1 \) conditions on the initial-boundary data and source terms, one arrives to the system

\[
\begin{align*}
 v_{b,t} + (\tilde{A}_b v_b)_x - v_{b,xx} &= 0 \\
 v_{k,t} + (\tilde{\lambda}_k v_k)_x - v_{k,xx} &= s_k(t, x) \\
 v_{i,t} + (\tilde{\lambda}_i v_i)_x - v_{i,xx} &= s_i(t, x)
\end{align*}
\]

(14)

- **Interaction among** \(i \neq k \) **trav. waves and bdry profile**
With the $k - 1$ conditions on the initial-boundary data data and source terms, one arrives to the system

$$\begin{cases}
 v_{b,t} + (\tilde{A}_b v_b)x - v_{b,xx} = 0 \\
 v_{k,t} + (\lambda_k v_k)x - v_{k,xx} = s_k(t, x) \\
 v_{i,t} + (\tilde{\lambda}_i v_i)x - v_{i,xx} = s_i(t, x)
\end{cases} \quad (14)$$

- **Interaction among $i \neq k$ trav. waves and bdry profile**

Since \tilde{A}_b is strictly negative definite, one obtains that

$$|v_b(t, x)| \leq \text{Tot. Var.} (u)e^{-cx}, \quad c \text{ strict hyperbolicity.}$$
With the $k - 1$ conditions on the initial-boundary data data and source terms, one arrives to the system

$$
\begin{align*}
\frac{\partial v_b}{\partial t} + \left(\hat{A}_b v_b \right)_x - v_{b,xx} &= 0 \\
\frac{\partial v_k}{\partial t} + \left(\lambda_k v_k \right)_x - v_{k,xx} &= s_k(t, x) \\
\frac{\partial v_i}{\partial t} + \left(\tilde{\lambda}_i v_i \right)_x - v_{i,xx} &= s_i(t, x)
\end{align*}
$$

(14)

• Interaction among $i \neq k$ trav. waves and bdry profile

Since \hat{A}_b is strictly negative definite, one obtains that

$$
|v_b(t, x)| \leq \text{Tot.Var.}(u)e^{-cx}, \quad c \text{ strict hyperbolicity.}
$$

Since $\lambda_i \neq 0$, $i \neq k$, then the following terms can be estimated

$$
\sum_{i \neq k} |v_i v_b|, \quad \sum_{i \neq k} |v_{i,x} v_b|,
$$
With the $k - 1$ conditions on the initial-boundary data and source terms, one arrives to the system

\[
\begin{align*}
 v_{b,t} + (\tilde{A}_b v_b)x - v_{b,xx} &= 0 \\
 v_{k,t} + (\lambda_k v_k)x - v_{k,xx} &= s_k(t, x) \\
 v_{i,t} + (\tilde{\lambda}_i v_i)x - v_{i,xx} &= s_i(t, x)
\end{align*}
\]

(14)

- **Interaction among $i \neq k$ trav. waves and bdry profile**

Since \tilde{A}_b is strictly negative definite, one obtains that

\[
|v_b(t, x)| \leq \text{Tot.Var.}(u)e^{-cx}, \quad c \text{ strict hyperbolicity.}
\]

Since $\lambda_i \neq 0, i \neq k$, then the following terms can be estimated

\[
\sum_{i \neq k} |v_i v_b|, \quad \sum_{i \neq k} |v_i x v_b|,
\]

waves with speed $\neq 0$ cross an integrable function of x.
• Interaction of k-th trav. waves and bdry profile
• *Interaction of k-th trav. waves and bdry profile*

Since for $\sigma_k = 0$ we have an exact boundary profile (11),
• Interaction of k-th trav. waves and bdry profile

Since for $\sigma_k = 0$ we have an exact boundary profile (11), the basic interaction term is

$$v_b v_k (\sigma_b - \sigma_k) = v_b w_k,$$
• Interaction of k-th trav. waves and bdry profile

Since for $\sigma_k = 0$ we have an exact boundary profile (11), the basic interaction term is

$$v_b v_k (\sigma_b - \sigma_k) = v_b w_k,$$

with w_k is k-th component of u_t.
• Interaction of k-th trav. waves and bdry profile

Since for $\sigma_k = 0$ we have an exact boundary profile (11), the basic interaction term is

$$v_b v_k (\sigma_b - \sigma_k) = v_b w_k,$$

with w_k is k-th component of u_t.

Due to $\hat{\lambda}_k \simeq 0$ and the presence of boundary, it follows

$$\int_{\mathbb{R}^+} |e^{-dy} w_k(t, y)| dt \leq C \cdot \text{Tot.Var.}(u), \quad d \simeq \|\hat{\lambda}_k\|_{L^\infty},$$
• *Interaction of* k*-th trav. waves and bdry profile*

Since for $\sigma_k = 0$ we have an exact boundary profile (11), the basic interaction term is

$$v_b v_k (\sigma_b - \sigma_k) = v_b w_k,$$

with w_k is k-th component of u_t.

Due to $\lambda_k \approx 0$ and the presence of boundary, it follows

$$\int_{\mathbb{R}^+} |e^{-dy} w_k(t, y)| dt \leq C \cdot \text{Tot. Var.}(u), \quad d \simeq \|\lambda_k\|_{L^\infty},$$

Hence

$$\int \int_{\mathbb{R}^+ \times \mathbb{R}^+} |v_b w_k| dx \, dt \leq C \int_{\mathbb{R}^+} e^{(d-c)x} \int_{\mathbb{R}^+} |e^{-dy} w_k(t, y)| dt \, dx \leq C.$$
Solution of the Boundary Riemann problem
Solution of the Boundary Riemann problem

To characterize the unique limit of u^ε as $\varepsilon \to 0$, one has to study
Solution of the Boundary Riemann problem

To characterize the unique limit of u^ϵ as $\epsilon \to 0$, one has to study

$$u_t + A(\kappa, u)u_x = 0,$$

$$\begin{cases} u(0, x) = u_0 \\ u(t, 0) = u_b \end{cases} \quad (15)$$
Solution of the Boundary Riemann problem

To characterize the unique limit of \(u^\epsilon \) as \(\epsilon \to 0 \), one has to study

\[
\frac{\partial u}{\partial t} + A(\kappa, u) \frac{\partial u}{\partial x} = 0, \quad \begin{cases}
 u(0, x) = u_0 \\
 u(t, 0) = u_b
\end{cases} \quad (15)
\]

The solution \(u = u(x/t) \) will have the structure
Solution of the Boundary Riemann problem

To characterize the unique limit of u^ϵ as $\epsilon \to 0$, one has to study

$$u_t + A(\kappa, u)u_x = 0, \quad \begin{cases} u(0, x) = u_0 \\ u(t, 0) = u_b \end{cases}$$ (15)

The solution $u = u(x/t)$ will have the structure

- waves of the $i > k$ families entering the domain;
Solution of the Boundary Riemann problem

To characterize the unique limit of \(u^\varepsilon \) as \(\varepsilon \to 0 \), one has to study

\[
\frac{\partial u}{\partial t} + A(\kappa, u) \frac{\partial u}{\partial x} = 0, \quad \begin{cases} u(0, x) = u_0 \\ u(t, 0) = u_b \end{cases} \tag{15}
\]

The solution \(u = u(x/t) \) will have the structure

- waves of the \(i > k \) families entering the domain;
- waves of the \(k \)-th family entering the domain;
Solution of the Boundary Riemann problem

To characterize the unique limit of u^ϵ as $\epsilon \to 0$, one has to study

$$u_t + A(\kappa, u)u_x = 0,$$

with initial conditions

$$u(0,x) = u_0, \quad u(t,0) = u_b$$

(15)

The solution $u = u(x/t)$ will have the structure

- waves of the $i > k$ families entering the domain;
- waves of the k-th family entering the domain;
- waves of the k-th family with speed 0;
Solution of the Boundary Riemann problem

To characterize the unique limit of u^ϵ as $\epsilon \to 0$, one has to study

\[u_t + A(\kappa, u)u_x = 0, \quad \begin{cases} u(0, x) = u_0 \\ u(t, 0) = u_b \end{cases} \quad (15) \]

The solution $u = u(x/t)$ will have the structure

- waves of the $i > k$ families entering the domain;
- waves of the k-th family entering the domain;
- waves of the k-th family with speed 0;
- a characteristic boundary profile.
Solution of the Boundary Riemann problem

To characterize the unique limit of u^ϵ as $\epsilon \to 0$, one has to study

$$u_t + A(\kappa, u)u_x = 0,$$

subject to

$$\begin{cases}
 u(0, x) = u_0 \\
 u(t, 0) = u_b
\end{cases} \quad (15)$$

The solution $u = u(x/t)$ will have the structure

- waves of the $i > k$ families entering the domain;
- waves of the k-th family entering the domain;
- waves of the k-th family with speed 0;
- a characteristic boundary profile.

In $u(x/t)$ one sees only the first two points, the last two are in the jump at $x = 0$.

27
Starting from u_0, we construct the map $\Phi: (s_1, \ldots, s_n) \mapsto \mathbb{R}^n$.
Starting from u_0, we construct the map $\Phi: (s_1, \ldots, s_n) \mapsto \mathbb{R}^n$
From u_0 to u_1, waves of the $i > k$ family,
From u_1 to u_2, waves of the k-th family with $\sigma_k \geq 0$, \\

waves of the $k+1,...,n$-th families \\

waves of the k-th family \\

u_b
From u_2 to u_b there is a char. bdry profile,
By means of system (11), we decompose the bdry profile as
Exponentially decaying part of bdry profile
Exponentially decaying part of bdry profile

This solves

\[
\begin{align*}
 u_b, x &= \hat{R}_b(u_b + u_k(x), p_b, p_k(x))p_b \\
 p_b, x &= \hat{A}_b(u_b + u_b(x), p_b, p_k(x))p_b
\end{align*}
\] \tag{16}
Exponentially decaying part of bdry profile

This solves

\[
\begin{align*}
 u_b, x &= \tilde{R}_b(u_b + u_k(x), p_b, p_k(x))p_b \\
 p_b, x &= \tilde{A}_b(u_b + u_b(x), p_b, p_k(x))p_b
\end{align*}
\] (16)

Since \tilde{A}_b strictly negative, then
Exponentially decaying part of bdry profile

This solves

\[
\begin{align*}
 u_{b,x} &= \tilde{R}_b(u_b + u_k(x), p_b, p_k(x))p_b \\
 p_{b,x} &= \tilde{A}_b(u_b + u_b(x), p_b, p_k(x))p_b
\end{align*}
\]

(16)

Since \(\tilde{A}_b\) strictly negative, then

\[p_b(x) = \mathcal{O}(1)p_b(0)e^{-cx},\]
Exponentially decaying part of bdry profile

This solves

\[
\begin{align*}
 u_{b,x} &= \tilde{R}_b(u_b + u_k(x), p_b, p_k(x))p_b \\
 p_{b,x} &= \tilde{A}_b(u_b + u_b(x), p_b, p_k(x))p_b
\end{align*}
\] (16)

Since \(\tilde{A}_b \) strictly negative, then

\[
p_b(x) = \mathcal{O}(1)p_b(0)e^{-cx},
\]

\[
u_s(x) = u_s(0) + \int_0^x \tilde{R}_b(y; u_k, p_k)p_b(y; u_k, p_k)dy.
\]

By contraction principle (small data), we can verify that
Exponentially decaying part of bdry profile

This solves

\[
\begin{align*}
 u_{b,x} &= \tilde{R}_b(u_b + u_k(x), p_b, p_k(x)) p_b \\
 p_{b,x} &= \tilde{A}_b(u_b + u_b(x), p_b, p_k(x)) p_b
\end{align*}
\]

Since \tilde{A}_b strictly negative, then

\[p_b(x) = O(1)p_b(0)e^{-cx},\]

\[u_s(x) = u_s(0) + \int_0^x \tilde{R}_b(y; u_k, p_k)p_b(y; u_k, p_k)dy.\]

By contraction principle (small data), we can verify that

the manifold of solutions converging to 0 as $x \to \infty$ is $k - 1$ dimensional parameterized by $(u_1(0), \ldots, u_{k-1}(0))$, smoothly dependent on u_k, p_k.\]
The characteristic part of bdry profile
The characteristic part of bdry profile

The system for \(u_k, p_k \) and \(\sigma_k \) is

\[
\begin{align*}
 u_k(s) &= u_1 + \int_0^s \tilde{r}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau \\
 p_k(s) &= \text{b-conc}_{[0,s_k]} \left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau \right)(s) \\
 \sigma_k &= \frac{d}{ds} \text{b-conc}_{[0,s_k]} \left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau \right)(s)
\end{align*}
\]
The characteristic part of bdry profile

The system for u_k, p_k, and σ_k is

\[
\begin{align*}
u_k(s) &= u_1 + \int_0^s \hat{r}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau \\
p_k(s) &= b-\text{conc}_{[0,s_k]}\left(\int_0^s \hat{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau\right)(s) \\
\sigma_k &= \frac{d}{ds}b-\text{conc}_{[0,s_k]}\left(\int_0^s \hat{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau\right)(s)
\end{align*}
\]

The function $\hat{f}_k = \int \hat{\lambda}_k d\tau$ is
The characteristic part of bdry profile

The system for u_k, p_k and σ_k is

\[
\begin{align*}
 u_k(s) &= u_1 + \int_0^s \tilde{r}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau \\
 p_k(s) &= \text{b-conc}_{[0,s_k]}\left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau\right)(s) \\
 \sigma_k &= \frac{d}{ds} \text{b-conc}_{[0,s_k]}\left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau\right)(s)
\end{align*}
\]

The function $\hat{f}_k = \int \hat{\lambda}_k d\tau$ is
The characteristic part of bdry profile

The system for u_k, p_k and σ_k is

$$
\begin{align*}
 u_k(s) &= u_1 + \int_0^s \tilde{r}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau \\
p_k(s) &= \text{b-conc}_{[0,s_k]}\left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau\right)(s) \\
 \sigma_k &= \frac{d}{ds} \text{b-conc}_{[0,s_k]}\left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau\right)(s)
\end{align*}
$$

The concave hull for Riemann problem is
The characteristic part of bdry profile

The system for u_k, p_k and σ_k is

\[
\begin{align*}
 u_k(s) &= u_1 + \int_0^s \tilde{r}_k(u_b + u_k, p_b, p_k, \sigma_k) \, d\tau \\
 p_k(s) &= b \text{-conc}_{[0,s_k]} \left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) \, d\tau \right)(s) \\
 \sigma_k &= \frac{d}{ds} b \text{-conc}_{[0,s_k]} \left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) \, d\tau \right)(s)
\end{align*}
\]

The boundary concave hull for Riemann problem is
The characteristic part of bdry profile

The system for u_k, p_k and σ_k is

$$
\begin{align*}
 u_k(s) &= u_1 + \int_0^s \tilde{r}_k(u_b + u_k, p_b, p_k, \sigma_k) \, d\tau \\
 p_k(s) &= b\text{-conc}_{[0,s_k]}(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) \, d\tau)(s) \\
 \sigma_k &= \frac{d}{ds} b\text{-conc}_{[0,s_k]}(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) \, d\tau)(s)
\end{align*}
$$

With the exponentially decaying (in space) perturbation u_b, p_b
The characteristic part of bdry profile

The system for u_k, p_k and σ_k is

$$\begin{cases}
 u_k(s) = u_1 + \int_0^s \tilde{r}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau \\
 p_k(s) = b\text{-conc}_{[0,s_k]}(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau)(s) \\
 \sigma_k = \frac{d}{ds} b\text{-conc}_{[0,s_k]}(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau)(s)
\end{cases}$$

With the exponentially decaying (in space) perturbation u_b, p_b

the structure of \tilde{f}_k remains essentially the same,
The characteristic part of bdry profile

The system for u_k, p_k and σ_k is

\[
\begin{aligned}
 u_k(s) &= u_1 + \int_0^s \hat{r}_k(u_b + u_k, p_b, p_k, \sigma_k) \, d\tau \\
 p_k(s) &= \text{b-conc}_{[0,s_k]} \left(\int_0^s \hat{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) \, d\tau \right)(s) \\
 \sigma_k &= \frac{d}{ds} \text{b-conc}_{[0,s_k]} \left(\int_0^s \hat{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) \, d\tau \right)(s)
\end{aligned}
\]

With the exponentially decaying (in space) perturbation u_b, p_b

the structure of \hat{f}_k remains essentially the same,

because the uniform exponentially decaying estimate on u_k, p_k
yields
The characteristic part of bdry profile

The system for u_k, p_k and σ_k is

\[
\begin{aligned}
 u_k(s) &= u_1 + \int_0^s \tilde{r}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau \\
 p_k(s) &= \text{b-conc}_{[0,s_k]}\left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau\right)(s) \\
 \sigma_k &= \frac{d}{ds}\text{b-conc}_{[0,s_k]}\left(\int_0^s \tilde{\lambda}_k(u_b + u_k, p_b, p_k, \sigma_k) d\tau\right)(s)
\end{aligned}
\]

With the exponentially decaying (in space) perturbation u_b, p_b the structure of \hat{f}_k remains essentially the same, because the uniform exponentially decaying estimate on u_k, p_k yields

\[
\left| \hat{f}_k(s; u_k = 0, p_k = 0) - \hat{f}_k(s; u_k, p_k) \right| \leq \frac{1}{2}(b-\text{conc}\hat{f}_k - \hat{f}_k)(s; u_k = 0, p_k = 0).
\]
Final Remark. By studying the unperturbed k-th field we recover the structure of the boundary profile, hence the bdry RP.
Final Remark. By studying the unperturbed k-th field we recover the structure of the boundary profile, hence the bdry RP.