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Abstract. In this paper we study the regularity of the solutions of viscosity solutions of
the following Hamilton-Jacobi equations

∂tu+H(Dxu) = 0 in Ω ⊂ R× Rn .

In particular, under the assumption that the Hamiltonian H ∈ C2(Rn) is uniformly convex,
we prove that the gradient Dxu belongs to the class SBVloc(Ω).

1. Introduction

Theorem 1.1. Let H ∈ C2(Rn) with

c−1
H Idn ≤ D2H ≤ cHIdn. (1)

Let u be a viscosity solution of the following Hamilton-Jacobi equation

∂tu+H(Dxu) = 0 in Ω ⊂ [0, T ]× Rn, (2)

where Dxu = (∂x1u, . . . , ∂xnu) denotes the spatial gradient of u. Then, the set of times

S := {t : Dxu(t, .) /∈ SBVloc(Ωt)} (3)

is at most countable, where Ωt := {x ∈ Rn : (t, x) ∈ Ω}. In particular Dxu, ∂tu ∈ SBVloc(Ω).

Corollary 1.1. Under the same convexity assumptions on the Hamiltonian H as in Theorem
1.1, the gradient of any viscosity solution u of

H(Dxu) = 0 in Ω ⊂ Rn, (4)

belongs to SBVloc(Ω).

2. Preliminaries: the theory of monotone functions

De�nition 2.1. Let A ⊂ Rn be an open set. We say that a continuous function u : A → R
is semiconcave if, for any convex K ⊂⊂ A, there exists CK > 0 such that

u(x+ h) + u(x− h)− 2u(x) ≤ CK |h|2, (5)

for all x, h ∈ Rn with x, x − h, x + h ∈ K. The smallest nonnegative costant CK such that
(5) holds on K will be called semiconcavity constant of u on K.

Next, we introduce the concept of superdi�erential.

De�nition 2.2. Let u : A → R be a measurable function. The set ∂u(x), called the
superdi�erential of u at point x ∈ A, is de�ned as

∂u(x) :=
{
p ∈ Rn : lim sup

y→x

u(y)− u(x)− p · (y − x)

|y − x|
≤ 0

}
. (6)

1



2 STEFANO BIANCHINI, CAMILLO DE LELLIS, AND ROGER ROBYR

Using the above de�nition we can describe some properties of the semiconcave functions
(see Proposition 1.1.3 of [5]):

Proposition 2.1. Let A ⊂ Rn be an open and convex set. Let u : A → R be a semiconcave
function in A with semiconcavity constant C ≥ 0. Then, the function

ũ : x 7→ u(x)− C

2
|x|2 is concave in A. (7)

In particular, for any given x, y ∈ A, p ∈ ∂ũ(x) and q ∈ ∂ũ(y) we have that

〈q − p, y − x〉 ≤ 0. (8)

From now on, when u is a semi�concave function, we will denote the set-valued map
x → ∂ũ(x) + Cx as ∂u. An important observation is that, being ũ concave, the map
x → ∂ũ(x) is a maximal monotone function.

2.1. Monotone functions in Rn. Following the work of Alberti and Ambrosio [1] we intro-
duce here some results about the theory of the monotone functions in Rn. Let B : Rn → Rn

be a set-valued map (or multifunction), i.e. a map which maps every point x ∈ Rn into some
set B(x) ⊂ Rn. For all x ∈ Rn we de�ne:

• the domain of B, Dm(B) := {x : B(x) 6= ∅},
• the image of B, Im(B) := {y : ∃x, y ∈ B(x)},
• the graph of B, ΓB := {(x, y) ∈ Rn × Rn : y ∈ B(x)},
• then inverse of B, [B−1](x) := {y : x ∈ B(y)}.

De�nition 2.3. Let B : Rn → Rn be a multifunction, then

(1) B is a monotone function if

〈y1 − y2, x1 − x2〉 ≤ 0 ∀xi ∈ Rn, yi ∈ B(xi), i = 1, 2. (9)

(2) A monotone function B is called maximal when it is maximal with respect to the
inclusion in the class of monotone functions, i.e. if the following implication holds:

A(x) ⊃ B(x) for all x,A monotone ⇒ A = B. (10)

Observe that in this work we assume ≤ in (9) instead of the most common ≥. However,
one can pass from one convention to the other by simply considering −B instead of B. The
observation of the previous subsection is then summarized in the following Theorem.

Theorem 2.1. The supergradient ∂u of a concave function is a maximal monotone function.

An important tool of the theory of maximal monotone functions, which will play a key
role in this paper, is the Hillle-Yosida approximation. (see Chapters 6 and 7 of [1]):

De�nition 2.4. For every ε > 0 we set Ψε(x, y) := (x− εy, y) for all (x, y) ∈ Rn ×Rn, and
for every maximal monotone function B we de�ne Bε as the multifunction whose graph is
Ψε(ΓB), that is, ΓBε = {(x− εy, y) : (x, y) ∈ ΓB}. Hence

Bε := (εId−B−1)−1. (11)

In the next Theorems we collect some properties of maximal monotone functions B and
their approximations Bε de�ned above.
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Theorem 2.2. For a.e. x ∈ Dm(B), the set B(x) is single valued. Therefore, there exists
a classical measurable function B̃ : Dm(B) → Rn which coincides with B a.e.. If Dm(B) is
open, then DB is a measure, i.e. B is a function of locally bounded variation.
Maximal monotone functions B enjoy the following continuity property. If Kn is a sequence

of compact sets contained in the interior of Dm(B) and such that Kn ↓ K, then B(Kn) →
B(K) in the Hausdor� sense.
Finally, if Dm(B) is open and B = ∂u for some concave function u : Dm(B) → R, then

B̃(x) = Du(x) for a.e. x (recall that u is locally Lipschitz, and hence the distributional
derivative of u coincides a.e. with the classical di�erential).

In this paper, since we will always consider monotone functions that are the supergradients
of some concave functions, we will use ∂u for the supergradient and Du for the distributional
gradient. A corollary of Theorem 2.2 is that

Corollary 2.1. If u : Ω → R is semiconcave, then ∂u(x) = {Du(x)} for a.e. x, and at any
point where ∂u is single�valued, Du is continuous. Moreover D2u is a symmetric matrix of
Radon measures.

Next we state the following important convergence theorem. For the notion of current
and the corresponding convergence properties we refer to the work of Alberti and Ambrosio.
However, we remark that very little of the theory of currents is needed in this paper: what
we actually need is a simple corollary of the convergence in (ii), which is stated and proved in
Subsection 5.2. In (iii) we follow the usual convention of denoting by |µ| the total variation
of a (real-, resp. matrix-, vector- valued) measure µ.

Theorem 2.3. Let Ω be an open and convex subset of Rn and let B be a monotone function
such that Ω ⊂ Dm(B). Let Bε be the approximations given in De�nition 2.4. Then, the
following properties hold.

(i) Bε is a 1/ε-Lipschitz maximal monotone function on Rn for every ε > 0. Moreover,
if B = Du, then Bε = Duε for some concave function uε.

(ii) ΓB and ΓBε have a natural structure as integer recti�able currents, and ΓBε Ω×Rn

converges to ΓB Ω× Rn in the sense of currents as ε ↓ 0.
(iii) DBε ⇀

∗ DB̃ and |DBε| ⇀∗ |DB̃| in the sense of measures on Ω.

2.2. BV and SBV functions. We conclude the section by introducing the basic notations
related to the space SBV (for a complete survey on this topic we address the reader to [2]).
If B ∈ BV (A,Rk), then it is possible to split the measure DB into three mutually singular
parts:

DB = DaB +DjB +DcB.

DaB denotes the absolutely continuous part (with respect to the Lebesgue measure). DjB
denotes the jump part of DB. When A is a 1-dimensional domain, DjB consists of a
countable sum of weighted Dirac masses, and hence it is also called the atomic part of DB.
In higher dimensional domains, DjB is concentrated on a recti�able set of codimension 1,
which corresponds to the measure-theoretic jump set JB of B. DcB is called the Cantor
part of the gradient and it is the �di�used part� of the singular measure DsB := DjB+DcB.
Indeed DcB(E) = 0 for any recti�able set E of codimension 1.



4 STEFANO BIANCHINI, CAMILLO DE LELLIS, AND ROGER ROBYR

De�nition 2.5. Let B ∈ BV (A), then B is a special function of bounded variation, and we
write B ∈ SBV (B), if DcB = 0, i.e. if the measure DB has no Cantor part. The more
general space SBVloc(Ω) is de�ned in the obvious way.

In what follows, when u is a (semi)-concave function, we will denote by D2u the distributi-
nal hessian of u. Since Du is, in this case, a BV map, the discussion above applies. In this
case we will use the notation D2

au, D
2
ju and D2

cu. An important property of D2
cu is the

following regularity property.

Proposition 2.2. Let u be a (semi)-concave function. If D denotes the set of points where
∂u is not single�valued, then |D2

cu|(D) = 0.

3. Hamilton-Jacobi equations

In this section we collect some de�nitions and well-known results about Hamilton-Jacobi
equations. For a complete survey on this topic we redirect the reader to the vast literature.
For an introduction to the topic we suggest the following sources [4],[5],[7]. In this paper we
will consider the following Hamilton-Jacobi equations

∂tu+H(Dxu) = 0, in Ω ⊂ [0, T ]× Rn , (12)

H(Dxu) = 0, in Ω ⊂ Rn , (13)

under the assumption that

A1: The Hamiltonian H ∈ C2(Rn) satis�es:

p 7→ H(p) is convex and lim
|p|→∞

H(p)

|p|
= +∞.

We will often consider Ω = [0, T ]× Rn in (12) and couple it with the initial condition

u(0, x) = u0(x) (14)

under the assumption that

A2: The initial data u0 : Rn → R is Lipschitz continuous and bounded.

De�nition 3.1 (Viscosity solution). A bounded, uniformly continuous function u is called
a viscosity solution of (12) (resp. (13)) provided that

(1) u is a viscosity subsolution of (12) (resp. (13)): for each v ∈ C∞(Ω) such that u− v
has a maximum at (t0, x0) (resp. x0),

vt(t0, x0) +H(Dxv(t0, x0)) ≤ 0 (resp. H(Dv(x0)) ≤ 0); (15)

(2) u is a viscosity supersolution of (12) (resp. (13)): for each v ∈ C∞(Ω) such that
u− v has a minimum at (t0, x0) (resp. x0),

vt(t0, x0) +H(Dxv(t0, x0)) ≥ 0 (resp. H(Dv(x0)) ≥ 0). (16)

In addition, we say that u solves the Cauchy problem (12)-(14) on Ω = [0, T ] × Rn if (14)
holds in the classical sense.
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Theorem 3.1 (The Hopf-Lax formula as viscosity solution). The unique viscosity solution
of the initial-value problem (12)-(14) is given by the Hopf-Lax formula

u(t, x) = min
y∈Rn

{
u0(y) + tL

(x− y

t

)}
(t > 0, x ∈ Rn), (17)

where L is the Legendre transform of H:

L(q) := sup
p∈Rn

{p · q −H(p)} (q ∈ Rn). (18)

In the next Proposition we collect some properties of the viscosity solution de�ned by the
Hopf-Lax formula:

Proposition 3.1. Let u(t, x) be the viscosity solution of (12)-(14) and de�ned by (17), then

(i) A functional identity: For each x ∈ Rn and 0 ≤ s < t ≤ T , we have

u(t, x) = min
y∈Rn

{
u(s, y) + (t− s)L

(x− y

t− s

)}
. (19)

(ii) Semiconcavity of the solution: For any �xed τ > 0 there exists a constant C(tau)
such that the function de�ned by

ut(.) : Rn → Rn with ut(x) := u(t, x), (20)

is semiconcave with constant less than C for any t ≥ τ .
(iii) Characteristics: The minimum point y in (17) is unique if and only if ∂ut(x) is

single valued. Moreover, in this case we have y = x− tDH(Du(t, x)).
(iv) The linear programming principle: Let t > s > 0, x ∈ Rn and assume that y

is a minimum for (17). Let z = s
t
x + (1 − s

t
)y. Then y is the unique minimum for

u0(w) + sL((z − w)/s).

Remark 3.1. For a detailed proof of Theorem 3.1 and Proposition 3.1 we address the reader
to Chapter 6 of [5] and Chapters 3, 10 of [7] .

Next, we state a useful locality property of the solutions of (12).

Proposition 3.2. Let u be a viscosity solution of (12) in Ω. Then u is locally Lipschitz.
Moreover, for any (t0, x0) ∈ Ω, there exists a neighborhood U of (t0, x0), a positive number ε
and a Lipschitz function v0 on Rn such that

(Loc) u coincides on U with the viscosity solution of ∂tv +H(Dxv) = 0 in [t0 − ε, t0 + ε]× Rn

v(t0 − ε, x) = v0(x) .

4. Proof of the main Theorem

4.1. Preliminary remarks. Let u be a viscosity solution of (12). By Proposition 3.2 and
the time invariance of the equation, we can, without loss of generality, assume that u is
a solution on [0, T ] × Rn of the Cauchy-Problem (12)-(14) under the assumptions A1, A2.
Clearly, it su�ces to show that, for every j > 0, the set of times S∩]1/j,+∞[ is countable.
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Therefore, by Proposition 3.1 and the time�invariance of the Hamilton�Jacobi equations, we
can restrict ourselves to the following case:

∃C such that uτ is semiconcave with constant less than C for any τ ∈ [0, T ]. (21)

Arguing in the same way, we can further assume that

T is smaller than some constant ε(C) > 0, (22)

where the choice of the constant ε(C) will be speci�ed later.
Next we consider a ball BR(0) ⊂ Rn and a bounded convex set Ω ⊂ [0, T ]× Rn with the

properties that:

• BR(0)× {s} ⊂ Ω for every s ∈ [0, T ];
• For any (t, x) ∈ Ω and for any y reaching the minimum in the formulation (17),
(0, y) ∈ Ω (and therefore the entire segment joining (t, x) to (0, y) is contained in Ω).

This set exists because Du is bounded. Our goal is now to show the countability of the set
S in (3).

4.2. A function depending on time. For any s < t ∈ [0, T ], we de�ne the set�valued
map

Xt,s(x) := x− (t− s)DH(∂ut(x)) . (23)

Moreover, we will denote by χt,s the restriction of Xt,s to the points where Xt,s is single�
valued. According to Theorem 2.2 and Proposition 3.1(iii), the domain of χt,s consists of
those points where Dut(·) is continuous, which are those where the minimum point y in (19)
is unique. Moreover, in this case we have χt,s(x) = {y}.
Clearly, χt,s is de�ned a.e. on Ωt. With a slight abuse of notation we set

F (t) := |χt,0(Ωt)| , (24)

meaning that, if we denote by Ut the set of points x ∈ Ωt such that (17) has a unique
minimum point, we have F (t) = |Xt,0(Ut)|.
The proof is then split in the following three lemmas:

Lemma 4.1. The functional F is nonincreasing,

F (σ) ≥ F (τ) for any σ, τ ∈ [0, T ] with σ < τ. (25)

Lemma 4.2. If ε in (22) is small enough, then the following holds. For any t ∈]0, T [ and
δ ∈]0, T − t] there exists a Borel set E ⊂ Ωt such that

(i) |E| = 0, and |D2
cut|(Ωt \ E) = 0;

(ii) Xt,0 is single valued on E (i.e. Xt,0(x) = {χt,0(x)} for every x ∈ E);
(iii) and

χt,0(E) ∩ χt+δ,0(Ωt+δ) = ∅. (26)

Lemma 4.3. If ε in (22) is small enough, then the following holds. For any t ∈]0, ε] and
any Borel set E ⊂ Ωt, we have

|Xt,0(E)| ≥ c0|E| − c1t

∫
E

d(∆ut) , (27)

where c0 and c1 are positive constants and ∆ut is the Laplacian of ut.
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4.3. Proof of Theorem 1.1. The three key lemmas stated above will be proved in the next
two sections. We now show how to complete the proof of the Theorem. First of all, note
that F is a bounded function. Since F is, by Lemma 4.1, a monotone function, its points of
discontinuity are, at most, countable. We claim that, if t ∈]0, T [ is such that ut 6∈ SBVloc(Ωt),
then F has a discontinuity at t.
Indeed, in this case we have

|D2
cut|(Ωt) > 0. (28)

Consider any δ > 0 and let B be the set of Lemma 4.2. Clearly, by Lemma 4.2(i) and (ii),
(26) and (27),

F (t+ δ) ≤ F (t) + c1t

∫
B

∆sut ≤ F (t) + c1t

∫
Ωt

∆cut , (29)

where the last inequality follows from ∆sut = ∆cut + ∆jut and ∆jut ≤ 0 (because of the
semiconcavity of u).
Next, consider the Radon�Nykodim decompositionD2

cut = M |D2
cut|, whereM is a matrix�

valued Borel function with |M | = 1. Since we are dealing with second derivatives, M is
symmetric, and since ut is semiconcave, M ≤ 0. Let λ1, . . . , λn be the eigenvalues of −M .
Then 1 = |M |2 = λ2

1 + . . . + λ2
n and −TrM = λ1 + . . . + λn. Since λi ≥ 0, we easily get

−TrM ≥ 1. Therefore,

−∆cut(.) = −TrM |D2
cut| ≥ |D2

cut| . (30)

Hence

F (t+ δ)
(29)+(30)

≤ F (t)− c1t|D2
cut|(Ωt) .

Letting δ ↓ 0 we conclude

lim sup
δ↓0

F (t+ δ) < F (t) .

Therefore t is a point of discontinuity of F , which is the desired claim.

4.4. Easy corollaries. The conclusion that Dxu ∈ SBV follows from the slicing theory of
BV functions, whereas to prove the same property for ∂tu we apply the Volpert chain rule
to ∂tu = −H(Dxu). We refer in both cases to the book [2].
As for Corollary 1.1, let u be a viscosity solution of (13) and set ũ(t, x) := u(x). Then ũ

is a viscosity solution of

∂tũ+H(Dxũ) = 0

in R × Ω. By our main Theorem 1.1 the set of times for which Dxũ(t, .) /∈ SBVloc(Ω) is at
most countable. Since Dxũ(t, ·) = Du, for every t, we conclude that Du ∈ SBVloc(Ω).

Remark 4.1. The special case of this Corollary for Ω ⊂ R2 was already proved in [3] (see
Corollary 1.4 therein). We note that the proof proposed in [3] was more complicated than
the one above. This is due to the power of Theorem 1.1. In [3] the authors proved the
1�dimensional case of Theorem 1.1. The proof above reduces the 2�dimensional case of
Corollary 1.1 to the 2 + 1 case of Theorem 1.1. In [3] the 2-dimensional case of Corollary
1.1 was reduced to the 1 + 1 case of Theorem 1.1, which requires a subtler argument.
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5. Estimates

In this section we prove two important estimates. The �rst is the one in Lemma 4.3. The
second is an estimate which will be useful in proving Lemma 4.2 and will be stated here.

Lemma 5.1. If ε(C) in (22) is su�ciently small, then the following holds. For any t ∈]0, T ],
any δ ∈ [0, t] and any Borel set E ⊂ Ωt we have∣∣∣Xt,δ(E)

∣∣∣ ≥ (t− δ)n

tn

∣∣∣Xt,0(E)
∣∣∣ . (31)

5.1. Injectivity. In the proof of both lemmas, the following remark plays a fundamental
role.

Proposition 5.1. For any C > 0 there exists ε(C) > 0 with the following property. If v is a
semiconcave function with constant less than C, then the map x 7→ x− tDH(∂v) is injective
for every t ∈ [0, ε(C)].

Here the injectivity of a set�valued map B is understood in the following natural way

x 6= y =⇒ B(x) ∩B(y) = ∅ .

Proof. We assume by contradiction that there exist x1, x2 ∈ Ωt with x1 6= x2 and such that:

[x1 − tDH(∂v(x1))] ∩ [x2 − tDH(∂v(x2))] 6= ∅.
This means that there is a point y such that{

x1−y
t

∈ DH(∂v(x1)),
x2−y

t
∈ DH(∂v(x2));

⇒
{

DH−1(x1−y
t

) ∈ ∂v(x1),
DH−1(x2−y

t
) ∈ ∂v(x2).

(32)

By the semiconcavity of v we get:

M(x1, x2) :=
〈
DH−1

(x1 − y

t

)
−DH−1

(x2 − y

t

)
, x1 − x2

〉
≤ C|x1 − x2|2. (33)

On the other hand, D(DH−1)(x) = (D2H)−1(DH(x)). Therefore D(DH−1)(x) is a sym-
metric matrix, with D(DH−1)(x) ≥ c−1

H Idn. It follows that

M(x1, x2) = t
〈
DH−1

(x1 − y

t

)
−DH−1

(x2 − y

t

)
,
x1 − y

t
− x2 − y

t

〉
≥

≥ t

2cH

∣∣∣x1 − y

t
− x2 − y

t

∣∣∣2 ≥ 1

2tcH
|x1 − x2|2 ≥

1

2εcH
|x1 − x2|2. (34)

But if ε > 0 is small enough, or more precisely if it is chosen to satisfy 2εcH < 1
C
the two

inequalities (33) and (34) are in contradiction. �

5.2. Approximation. We next consider u as in the formulations of the two lemmas, and
t ∈ [0, T ]. Then the function ṽ(x) := u(x)−C|x|2/2 is concave. Consider the approximations
Bη (with η > 0) of ∂ṽ given in De�nition 2.4. By Theorem 2.3(i), Bη = Dṽη for some concave
function ṽη with Lipschitz gradient. Consider therefore the function vη(x) = ṽη(x)+C|x|2/2.
The semiconcavity constant of vη is not larger than C.
Therefore we can apply Proposition 5.1 and choose ε(C) su�ciently small in such a way

that the maps

x 7→ A(x) = x− tDH(∂ut) x 7→ Aη(x) = x− tDH(Dvη) (35)
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are both injective. Consider next the following measures:

µη(E) := |(Id− tDH(Dvη))(E)| µ(E) := |(Id− tDH(∂ut))(E)| . (36)

These measures are well-de�ned because of the injectivity property proved in Proposition
5.1.
Now, according to Theorem 2.3, the graphs ΓDvη and Γ∂ut are both recti�able currents

and the �rst are converging, as η ↓ 0, to the latter. We denote them, respectively, by Tη and
T . Similarly, we can associate the recti�able currents S and Sη to the graphs ΓA and ΓAη

of the maps in (35). Note that these graphs can be obtained by composing Γ∂ut and ΓDvη
with the following global di�eomorphism of Rn:

(x, y) 7→ Φ(x, y) = x− tDH(y) .

In the language of currents we then have Sη = Φ]Tη and S = Φ]T . Therefore, Sη → S in the
sense of currents.
We want to show that

µη ⇀∗ µ . (37)

First of all, note that S and Sη are recti�able currents of multiplicity 1 supported on the
recti�able sets ΓA = Φ(Γ∂ut) and ΓAη = Φ(ΓBη) = Φ(ΓDvη). Since Bη is a Lipschitz map,

the approximate tangent plane
→
v to Sη in (a.e.) point (x,Aη(x)) is spanned by the vectors

ei +DAη(x) · ei.
Now, by the calculation of Proposition 5.1, it follows that detDAη ≥ 0. Hence

〈dy1 ∧ . . . ∧ dyn,
→
v 〉 ≥ 0 . (38)

By the convergence Sη → S, (38) holds for the tangent planes to S as well.
Next, consider a ϕ ∈ C∞

c (Ωt). Since both ΓA and ΓAη are bounded sets, consider a
ball BR(0) such that supp (ΓA), supp (ΓAη) ⊂ Rn × BR(0) and let χ ∈ C∞

c (Rn) be a cut-
o� function with χ|BR(0) = 1. Then, by standard calculations on currents, the injectivity
property of Proposition 5.1 and (38) imply that∫

ϕdµ = 〈S, ϕ(x)χ(y)dy1 ∧ . . . ∧ dyn〉, (39)∫
ϕdµη = 〈Sη, ϕ(x)χ(y)dy1 ∧ . . . ∧ dyn〉 . (40)

Therefore, since Sη → S, we conclude that

lim
η↓0

∫
ϕdµη =

∫
ϕdµ .

This shows (37).

5.3. Proof of Lemma 5.1. First of all we choose ε so small that the conclusions of Propo-
sition 5.1 and those of Subsection 5.2 hold.
We consider therefore, the approximations vη of Subsection 5.2, we de�ne the measures µ

and µη as in (36) and the measures µ̂ and µ̂η as

µ̂(E) := |(Id− (t− δ)DH(∂ut))(E)| µ̂η(E) := |(Id− (t− δ)DH(Dvη))(E)| . (41)

By the same arguments as in Subsection 5.2, we necessarily have µ̂η ⇀
∗ µ̂.
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The conclusion of the Lemma can now be formulated as

µ̂ ≥ (t− δ)n

tn
µ . (42)

By the convergence of the measures µη and µ̂η to µ and µ̂, it su�ces to show

µ̂η ≥ (t− δ)n

tn
µη . (43)

On the other hand, since the maps x 7→ x − tDH(Dvη) and x 7→ x − (t − δ)DH(Dvη) are
both injective and Lipschitz, we can use the area formula to write:

µ̂η(E) =

∫
E

det
(
Idn − (t− δ)D2H(Dvη(x))D

2vη(x)
)
dx, (44)

µη(E) =

∫
E

det
(
Idn − tD2H(Dvη(x))D

2vη(x)
)
dx (45)

Therefore, if we set

M1(x) := Idn − (t− δ)D2H(Dvη(x))D
2vη(x)

M2(x) := Idn − tD2H(Dvη(x))D
2vη(x) ,

the inequality (42) is equivalent to

detM1(x) ≥ (t− δ)n

tn
detM2(x) for a.e. x. (46)

Note next that

detM1(x) = det(D2H(Dvη(x))) det
(
[D2H(Dvη(x))]

−1 − (t− δ)D2vη(x)
)

detM2(x) = det(D2H(Dvη(x))) det
(
[D2H(Dvη(x))]

−1 − tD2vη(x)
)

Set A(x) := [D2H(Dvη(x))]
−1 and B(x) = D2vη(x). Then it su�ces to prove that:

det(A(x)− (t− δ)B(x)) ≥ (t− δ)n

tn
det(A(x)− tB(x)) . (47)

Note that

A− (t− δ)B =
δ

t
A+

t− δ

t
(A− tB) .

By choosing ε su�ciently small (but only depending on cH and C), we can assume that
A− tB is a positive semide�nite matrix. Since A is a positive de�nite matrix, we conclude

A− (t− δ)B ≥ t− δ

t
(A− tB) . (48)

A standard argument in linear algebra shows that

det(A− (t− δ)B) ≥ (t− δ)n

tn
det(A− tB) (49)

which concludes the proof. We include, for the reader convenience, a proof of (48) =⇒(49).
It su�ces to show that, if E and D are positive semide�nite matrices with E ≥ D, then
detE ≥ detD. Without loss of generality, we can assume that E is in diagonal form,
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i.e. E = diag (λ1, . . . , λn), and that E > D. Then each λi is positive. De�ne G :=
diag (

√
λ1, . . . ,

√
λn). Then

Idn ≥ G−1DG−1 = D̃ .

Our claim would follow if we can prove 1 ≥ det D̃, that is, if we can prove the original
claim for E and D in the special case where E is the identity matrix. But in this case we
can diagonalize E and D at the same time. Therefore D = diag (µ1, . . . , µn). But, since
E ≥ D ≥ 0, we have 0 ≤ µi ≤ 1 for each µi. Therefore

detE = 1 ≥ Πiµi = detD .

5.4. Proof of Lemma 4.3. As in the proof above we will show the Lemma by approximation
with the functions vη. Once again we introduce the measures µη and µ of (36). Then, the
conclusion of the Lemma can be formulated as

µ ≥ c0 − tc1∆ut . (50)

Since ∆vη ⇀
∗ ∆ut by Theorem 2.3(iii), it su�ces to show

µη ≥ c0 − tc1∆vη . (51)

Once again we can use the area formula to compute

µη(E) =

∫
E

det(D2H(Dvη(x))) det
(
[D2H(Dvη(x))]

−1 − tD2vη(x)
)
dx (52)

Since D2H ≥ c−1
H Idn and [D2H]−1 ≥ c−1

H Idn, we can estimate

det(D2H(Dvη(x))) det
(
[D2H(Dvη(x))]

−1 − tD2vη(x)
)

≥ c−n
H det

(
1

cH
Idn − tD2vη(x)

)
(53)

arguing as in Subsection 5.3. If we choose ε so small that 0 < ε < 1
2cHC

, then M(x) :=
1

2cH
Idn − tD2vη(x) is positive semide�nite. Therefore

det(D2H(Dvη(x))) det
(
[D2H(Dvη(x))]

−1 − tD2vη(x)
)

≥ c−n
H det

(
1

2cH
Idn +M(x)

)
.

(54)
Diagonalizing M(x) = diag(λ1, . . . , λn), we can estimate

det

(
1

2cH
Idn +M(x)

)
=

(
1

2cH

)n n∏
i=1

(1 + 2cHλi) ≥
(

1

2cH

)n

(1 + 2cHTrM(x))

= c2 − c3t∆vη(x) (55)

Finally, by (52), (53), (54) and (55), we get

µη(E) ≥
∫
E

(c0 − c1t∆vη(x)) dx .

This concludes the proof.



12 STEFANO BIANCHINI, CAMILLO DE LELLIS, AND ROGER ROBYR

6. Proofs of Lemma 4.1 and Lemma 4.2

6.1. Proof of Lemma 4.1. The claim follows from the following consideration:

χt,0(Ωt) ⊂ χs,0(Ωs) for every 0 ≤ s ≤ t ≤ T . (56)

Indeed, consider y ∈ χt,0(Ωt). Then there exists x ∈ Ωt such that y is the unique minimum
of (17). Consider z := s

t
x + t−s

t
y. Then z ∈ Ωs. Moreover, by Proposition 3.1(iv), y is the

unique minimizer of u0(w) + sL((z − w)/s). Therefore y = χs,0(z) ∈ χs,0(Ωs).

6.2. Proof of Lemma 4.2. First of all, by Proposition 2.2, we can select a Borel set E of
measure 0 such that

• ∂ut(x) is single-valued for every x ∈ E;
• |E| = 0;
• |D2

cut|(Ωt \ E) = 0.

If we assume that our statement were false, then there would exist a compact set K ⊂ E
such that |D2

cut|(K) > 0 and Xt,0(K) = χt,0(K) ⊂ χt+δ,0(Ωt+δ). Therefore it turns out that

Xt,0(K) = χt+δ,0(K̃) = Xt+δ,0(K̃) for some Borel set K̃.

Now, consider x ∈ K̃ and let y := χt+δ,0(x) ∈ Xt+δ,0(K̃) and z := χt+δ,t(x). By Proposition
3.1(iv), y is the unique minimizer of u0(y) + tL((z − y)/t), i.e. χt,0(z) = y.
Since y ∈ χt,0(K), there exists z′ such that χt,0(z

′). On the other hand, by Proposition 5.1,
provided ε has been chosen su�ciently small, χt,0 is an injective map. Hence we necessarily
have z′ = z. This shows that

Xt+δ,t(K̃) ⊂ K . (57)

By Lemma 5.1,

|K| ≥ |Xt+δ,t(K̃)| ≥ δn

(t+ δ)n
|Xt+δ,0(K̃)| =

δn

(t+ δ)n
|Xt,0(K)| . (58)

Hence, by Lemma 4.3

|K| ≥ c0|K| − c1t
δn

(t+ δ)n

∫
K

∆ut . (59)

On the other hand, recall that K ⊂ E and |E| = 0. Thus,

|K| ≥ −c1t
δn

(t+ δ)n

∫
K

∆sut ≥ c1t
δn

(t+ δ)n

∫
K

∆cut , (60)

where the last inequality follows from−∆sut = −∆cut−∆jut ≥ −∆cut (by the semiconcavity
of u). Arguing as in Subsection 4.3, we can show −∆cut ≥ |D2

cut|, and hence

|K| ≥ c0t
δn

(t+ δ)n
|D2

cut|(K) > 0 . (61)

This contradicts the assumptions K ⊂ E and |E| = 0, and hence concludes the proof.
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