CONVERGENCE RATE OF THE GLIMM SCHEME

STEFANO MODENA AND STEFANO BIANCHINI

ABSTRACT. In this paper we prove that there exists a random sequence 6; for the Glimm scheme
such that the approximate solution u€(¢) converges to the exact semigroup solution Si@ of the strictly
hyperbolic system of conservation laws

ut + f(u)s =0, u(t=0)=1u

as follows: for all T"> 0 it holds
. |lus(T) = Sra
lim ——— =
e=0  (/g|loge|
This result is the extension of the analysis of [9] to the general case, when no assumptions on the flux
f are made besides strict hyperbolicity. As a corollary, we obtain a deterministic version of the Glimm
scheme for the general system case, extending the analysis of [15].
The analysis requires an extension of the quadratic interaction estimates obtained in [3] in order to

analyze interaction occurring during an interval of time.
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A system of conservation laws in one space dimension (see [5]) is a system of PDEs of the form

1. INTRODUCTION

(1.1)[E_cons] ur + f(u)s =0,

Date: July 31, 2015.

N OO W N



(Ss:intro_rp)

2 STEFANO MODENA AND STEFANO BIANCHINI

where u : [0,00) x R — R™ is the unknown and f :  C R” — R" is a given smooth (C®) map, called flur,
defined on a neighborhood €2 of a compact set K C R™ and satisfying the strict hyperbolicity condition,
i.e. the Jacobian D f(u) of f has n distinct eigenvalues

A(u) < -0 < Ap(u)
in each point u € Q of its domain. Throughout this paper, we will assume w.l.o.g. that 0 € K C 2 and

(1.2) |[E_bounds_on_lambda | Ak (u) € [0,1] for any k and for any wu.

This can always be achieved by a change of variable in the (¢, z)-plane. As it is customary, denote by
ri(u),...,r,(u) the right eigenvalues (normalized to 1) associated to Aj(u), ..., A,(u) respectively:

Df(u)ri(u) = Ag(u)re(u), for any k=1,...,n and for any u € Q.

Equation (1.1) is usually coupled with an initial datum

(1.3) [E-init _davun] u(t=0) =13,
where @ : R — R" is a given map, with sufficiently small total variation. W.l.o.g. we assume also that @
has compact support.

It is well known that classical (smooth) solutions to the Cauchy problem (1.1), (1.3) are in general
not defined on the whole time interval [0, 00), even if the initial datum is smooth, because they develop
discontinuities in finite time. On the other side, the notion of distributional solution is too weak to
guarantee the uniqueness. For this reasons the notion of solution which is typically used is the following
one.

1

ive 18 said to be a weak solution of the Cauchy

Definition 1.1. A map u : [0,00) x R — R"™ belonging to L
problem (1.1), (1.3) if:

(1) u satisfies equation (1.1) in the sense of distributions;

(2) w is continuous as a map [0,00) — LL (R;R™);

(3) at time t =0, u(0,z) = u(x);

(4) w satisfies some additional admissibility criteria, which come from physical or stability consider-
ations and guarantee the uniqueness of the solution.

Many admissibility criteria have been proposed in the literature: just to name a few, the Lax-Liu condition
on shocks (see [11,13,14]), the entropy condition (see [12]), the vanishing viscosity criterion (see [2]). We
do not want to enter into details: the interested reader can refer to the cited literature.

1.1. The Riemann problem. The basic ingredient to solve the Cauchy problem (1.1), (1.3) is the
solution of the Riemann problem, i.e. the Cauchy problem when the initial datum has the simple form

ul ifz <0,

(1.4)[E_xp] u(0,2) = u(zx) = {uR >0,

The solution of the Riemann problem (1.1)-(1.4) was obtained first by P. Lax in 1957 [11], under the
assumption that each characteristic field is either genuinely non linear (GNL), i.e. Vg (u) -7k (u) # 0 for
any u or linearly degenerate (LD), i.e. VAg(u) -7y (u) = 0 for any u. In this case, if [uf — ul| < 1, using
Implicit Function Theorem, one can find intermediate states u” = wo,ws,...,w, = uf such that each
pair of adjacent states (wg—1,wk) can be connected by either a shock or a rarefaction wave or a contact
discontinuity of the k-th family. The complete solution is now obtained by piecing together the solutions
of the n Riemann problems (wy_1,wy) on different sectors of the (¢, x)-plane.

In the general case (here and in the rest of the paper, by general case we mean that no assumption
on f is made besides strict hyperbolicity) the solution to the Riemann problem (u”,uf*) was obtained
by S. Bianchini and A. Bressan in [2]. They first construct, for any left state u” and for any family
k=1,...,n,acurve s — TFul of admissible right states, defined for s € R small enough, such that the
Riemann problem (u”, T¥u%) can be solved by (countable many) admissible shocks (in the sense of limit
of viscosity approximations), contact discontinuities and rarefactions waves. Then, as in the GNL/LD
case, the global solution of (u”,u®) is obtained by piecing together the solutions of n Riemann problems,
one for each family: uf = T o...o T} u*. In Section 2.1 we briefly recall the construction of the

admissible curves s — TFur.
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(s_glimn_gnl) 1 9 Glimm approximate solutions in the GNL/LD case. The first result about existence of so-
lutions to the Cauchy problem (1.1), (1.3) can be found in the celebrated paper by J. Glimm [10] in
1965, in which the existence of solutions is proved under the assumption that each characteristic field is
either GNL or LD. In [10], for any € > 0 an approximate solution u®(t,z) is constructed by recursion
as follows. First of all, take any sampling sequence {#;};eny C [0,1]. The algorithm starts choosing,
at time ¢ = 0, an approximation u° of the initial datum u, such that u® is compactly supported, right
continuous, piecewise constant with jumps located at point ¢ = me, m € Z. We can thus separately solve
the Riemann problems located at (¢, ) = (0, me), m € Z. Thanks to (1.2), the solution u®(¢,z) can now
be prolonged up to time t = €. At t = € a restarting procedure is used. The value of u® at time ¢ is
redefined as

(1.5) ut(e+, z) = u®(e—, me + V1), if x € [me, (m + 1)e).

The solution u(e,-) is now again piecewise constant, with discontinuities on points of the form z = me,
m € Z. If the sizes of the jumps are sufficiently small, we can again solve the Riemann problem at each
point (t,z) = (g,me), m € Z and thus prolong the solution up to time 2¢, where again the restarting
procedure (1.5) is used, with and ¥5 instead of ¥;. The above procedure can be repeated on any time
interval [ie, (i + 1)¢], i € N, as far as the size of the jump at each point (ie, me), i € N,m € Z, remains
small enough, or, in other words, as far as

(1.6)[E_tv_small] Tot.Var.(u®(t); R) < 1.

In order to prove (1.6), Glimm introduced a uniformly bounded decreasing functional ¢ ~ QCH™™ (¢) <
O(1)Tot.Var.(i)?, such that at any time ic, i € N,

(1.7)[E_incr Tt} Var.(u® (ie+); R) — Tot. Var.(u(ie—); R) < O(l)(QG“mm (ie—) — QG“mm(is-i-)).

Here and in the following O(1) denotes a constant which depends only on the flux f and on the sampling
sequence {¥;};. As an immediate consequence, we get Tot.Var.(u®(¢); R) < O(1)Tot. Var.(u®(0); R) <« 1
and thus the solution u®(¢,z) can be defined on the whole (¢, z)-plane [0,00) x R. The uniform bound
on the Tot.Var.(u®(t); R) yields a compactness on the family {u}.: we can thus extract a converging
subsequence, which turns out to be, for almost every sampling sequence {J; };, a weak admissible solution
of the Cauchy problem (1.1), (1.3).

In 1977 T.-P. Liu [?] improved Glimm’s result, showing that if the sampling sequence is equidistributed,
that means that for any X € [0, 1],

Lo HIEN |1 << and v, € [0,A]}

. =\
j—oo i
then the subsequence extracted from {u®}. converges to a weak admissible solution of (1.1), (1.3).
A different approach which relies on results about the stabilty of the solution of (1.1), (1.3) w.r.t the

initial datum @ led to the introduction of the notion of standard Riemann semigroup.

7(0_sr8)? Definition 1.2. A standard Riemann semigroup for the system of conservation laws (1.1) is a map

S :D x [0,00) = D, defined on a domain D C L!(R;R™) containing all functions with sufficiently small
total variation, with the following properties:

(1) for some Lipschitz constants L, L',

(1.8)[E_semigr_1ip|||S;u — Ss0l[y < Lllu — ||y + L[t — 5|, for any 4,0 € D, t,5>0;

(2) if u € D is piecewise constant, then for ¢ > 0 sufficiently small S;@ coincides with the solution
of (1.1), (1.3), which is obtained by piecing together the standard self-similar solutions of the
corresponding Riemann problems.

In the GNL/LD case it is proved (see, among others, [6], [17], [8]) that any system of conservation laws
admits a standard Riemann semigroup and that at any time ¢ > 0 the solution u(t) obtained as limit of
Glimm approximations u®(t), for the initial datum @, coincides with the semigroup Siu. We will discuss
in the next section the general case.
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Relying on the existence of the standard Riemann semigroup for GNL/LD systems, in 1998 A. Bres-
san and A. Marson [9] further improved the Glimm sampling method, constructing an equidistributed
sequence {¥; }, satisfying the additional assumption:

(19)[Edisere] sup |2

- H{Z€N|]1 <1< Jo andﬁiE[O,)\]} <C. 1+10g(j2—_]1)
A€[0,1] Je— 1

- J2—n

Using this sequence, they were able to prove that the rate of convergence of the Glimm approximate
solutions u°(t) to the exact weak admissible solution u(t) = S;u at any time ¢ is given by
(1.10)[E_rate-conv| g L50) = Setllpy
’ — e—0 |loge|y/z
(s_glimm_general) ] 3. Glimm approximate solutions in the general case. All the results in the previous section were
obtained under the assumption that each characteristic field is either GNL or LD. In this section we
consider now the general case, when this assumption is removed and the only property of f is its strict

hyperbolicity.
The problem of finding a suitable decreasing potential to bound the increase of ¢t — Tot.Var.(u®(¢); R)
for a Glimm approximate solution u° (see (1.7)) was solved first by T.-P. Liu in [16] for fluxes with a

finite number of inflection points. Later, in [1], Bianchini solved the problem for general hyperbolic fluxes,
introducing the cubic functional

t = QOUPE(t) = / lo(t,s) — a(t,s")|dsds’ < O(1)Tot.Var.(u®(t))?,

where s, s’ are two waves in the approximate solution at time ¢ and o(¢, s), o (¢, s") denote their speed (see
Section 2.4 for a precise definition). In [2] Bianchini and Bressan also proved that any strictly hyperbolic
f admits a standard Riemann semigroup {S; |t > 0} of vanishing viscosity solutions with small total
variation obtained as the (unique) limits of solutions to the viscous parabolic approximations

up + f(u)e = ptigs,
when the viscosity g — 0. The semigroup S is defined on
D := {uc L'(R;R") | Tot.Var.(u) < 1, im u(z) € K}
and satisfies the Lipschitz condition

(1.11)‘E:semigrzlipHé§tﬂ—S,ﬂ?”l < Llla—17|1 +L/‘t—5|, for any u,v € D, t,s>0;

Aim of this paper is to prove that the same rate of convergence (1.12) proved by Bressan and Marson
in the GNL/LD case holds also in the general case, when no assumption on f is made except its strictly
hyperbolicity. In particular we prove the following theorem.

(T_rate_conv)

Theorem 1.3. Consider the Cauchy problem (1.1)-(1.3) and assume that the map f is strictly hyperbolic.
Let u® be a Glimm approximate solution with mesh size ¢ > 0 and denote by t — Syt the semigroup of
vanishing viscosity solution. Then for any time T € [0,+00) the following limit holds:

() — s,

1.12 !
(1.12) [E-zate_conv] My eloge]

(8s:BM:technique) ] 4, Bressan’s and Marson’s technique. We recall now the technique used by A. Bressan and A.
Marson in [9] to prove Theorem 1.3 in the GNL/LD case. In particular we wish to highlight which is the
point in Bressan’s and Marson’s proof which can not be easily extended to the general case, where no
assumption of f is made except its strict hyperbolicity, and whose detailed proof is given in this paper,
using the tools introduced by the authors in [3].

Bressan’s and Marson’s technique is as follows. Thanks to the Lipschitz property of the semigroup
(1.8), in order to estimate the distance

=0.

l*(T ) = Sz,

we can partition the time interval [0, 7] in subintervals J, := [tq, to+1] and estimate the error

(1.13) |[E_error_interval] Hue (ta+1) - Sta+1,tau€(ta) ||L1
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on each interval J,. The error (1.13) on J, comes from two different sources:

(1) first of all there is an error due to the algorithm itself: indeed, in a Glimm approximate solution,
roughly speaking, we give each wave either speed 0 or speed 1 (according to the sampling sequence
{¥;}:), while in the exact solution it would have a speed in [0, 1], but not necessarily equal to 0
or 1;

(2) secondly, there is an error due to the fact that some waves can be created at times t > t,, some
waves can be canceled at times t < t,41 and, above all, some waves, which are present both at
time ¢, and at time 441, can change their speeds, when they interact with other waves.

The first error source is estimated by choosing the intervals J, sufficiently large in order to use estimate
(1.9) with j, — j; > 1.

The second error source can be estimated (choosing the intervals J, not too large) if we are able to
(uniformly) bound the change in speed of the waves present in the approximate solution. In the GNL/LD
case, this was achieved by Liu in [15], where he provided a wave tracing algorithm which splits each
wavefront in the approximate solution into a finite number of discrete waves, whose trajectories can be
traced and whose changes in speed at any interaction time are bounded by the corresponding decrease of
the functional Q™™ In particular, using Liu’s wave tracing, Bressan and Marson prove that for any
i1,92 € N, on the time interval [t1,ts], t1 = i1€, t2 = iae, it holds

T 1+ IOg(ZQ — ’Ll)

- - +e|(ta — t1).
12 — 11 (2 1)

(1.14) [E:fef oo Thz_gnif (t1)]|, < O(1) {(QG“mm(tz) - QGlimm(tl))

As e — 0, it is convenient to choose the asymptotic size of the intervals J, in such a way that the errors
in (1) and (2) have approximately the same order of magnitude. In particular, the estimate (1.12) is
obtained by choosing |J,| ~ /€ log|log¢].

Estimate (1.14) is precisely the point in Bressan’s and Marson’s proof which can not be easily extended
to the general case, because the functional Q™™ is not of help in this case. Improving the results recently
obtained by the authors in [3], in this paper a suitable functional

T :[0,4+00) = [0,+00), T(0) < O(1)Tot.Var.(up);
is constructed, such that for any i;,i5 € N, 43 < g,

(115) E-orrofl 352} 511,001, < O (V(e) = T(0)) +

In order to prove (1.15), one could be tempted to use the well know semigroup inequality

" =(t+h) — Spus(t
u®(t2) — Sty—t,u(t1)|h < L lim su Hu( = hu()Hldt.
[u”(t2) = Str—t, p

t1 h—0 h

1+ 10g(i2 — il)

ta — t1).
io — i1 (t2 = t1)

However, for a Glimm solution u® this estimate can not be directly applied, because it does not take
into account the error due to the restarting procedure. To go beyond this difficulty, in the same spirit as
in [9], we will introduce in Section 3 a “wavefront” map

"LZ) : [tl,tg] xR — R"
with the following properties:

(1.168) [E:pei_vguste 52 Ult2,2) = w(ta, ),

(1.16b>‘E:semigrouHS}a__pﬁjW(tl) — 1/)(t2)|’1 < O(l) |:<T(t1) — T(tz)) +

(E:psi_prop)

1 + log(i2 — i1)
io — 11

](t2 —t1)

(1.16¢) [Exaistancepsiit] [[¢(t1) — us(t1)]|, < 0(1)(T(t1) - mg))(t2 —ty).
Clearly (1.15) is an immediate consequence of (1.16) and the Lipschitz continuity of the semigroup S.

Remark 1.4. Notice that all the functionals QE™™ Qcubic Y are defined on the approximate solution
uf, or, in other words, they depend on g, even if we do not write this dependence explicitly. What is
important, is that they are decreasing and uniformly (i.e. without any reference to €) bounded at ¢ = 0.
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1.5. Proof of Theorem 1.3. We conclude this Introduction proving Theorem 1.3 in the general case,
assuming that estimate (1.15) holds and using Bressan’s and Marson’s techniques. Fix T,e > 0, say
T = ic + ¢ for some integer i and some &' € [0,¢). In connection with a constant § > & (whose
precise value will be specified later), we construct a partition of the interval [0,ig] into finitely many
subintervals J, = [tq,tq+1], inserting the points ¢, = i, inductively as follows. Set ig := 0. If the
integers ig < iy < --- < i, < 1 have already been defined, then

(i) if T¢(iae) — Y°((iq + 1)€) < 0, let iq41 be the largest integer < i such that (i1 — iq)e < 6 and

Ye(ige) — Y (igr16) < 5

(ii) if Y (iqe) — T((iq 4+ 1)€) > 6, define iq4q :=iq + 1.
Clearly i 4 = 4 for some integer A < i. Call A’, A" respectively the set of indices a for which the alternative
(i), (ii) holds. Observe that the cardinalities of these sets can be bounded by

T

(1.17) [Epdcarda] LA, A” < O(1) = Tot Var. (uo)” < O(1) ¢

On each subinterval J,, a € A" we can apply (1.15), thus obtaining

14" (ia18) = Sia—ia)et (i),
< O)| (T2(ianre) = 17(0ae)) +

On the other hand, on each interval J, with a € A”, the 1-Lipschitz continuity of u® : [0, 00) — L*(R; R")
implies that

(1.19) |45 (fat18) = S(inys—ia)ets (iag) ||, < (a1 — ia)e =&

Using the Lipschitz property (1.11) of the semigroup we get

(L18) [E-a7]

1+ IOg(ia-‘rl — Za)

Z.aJrl - ia

+e|(lat1 — ia)e.

A1
||u (ie) — Szu(0) < Z HS(Liaﬂ)su(iaHE) - S(Lia)eu(iaé‘)Hl
a=0

A-1
<Ly [utiat12) = S(isy—ireuiad),

(by (1.18)-(1.19)) < 0(1){ > [(Te(mlg) - Te(iag)) 41 +log(iat1 — ia) +E] (fasr — ia)e

) —1
ac A’ a+1 a

+Z€}

ac A"

(by Points (i), (ii) above) < 0(1){ > (52+5+5logg +55) + > 5}

ac A’ ac A"’

(by (1.17)) < (’)(1)T<5 + % + %logg + 5)

Hence

|[u(T) = Stuo|| < ||u(T) — u®(ie)|| + ||u (ie) — Szus(0)]|

(1.20) [E-Frmarest] + || S5.u7(0) — Szeuo || + | Szeuo — Sruol|
€

< O(1) max{1,T} <5+ o flog? +g>.

Since (1.20) holds for any § > €, choosing d(e) := y/clog|loge|, we finally obtain (1.12).
?(ss_notation)? ] 6 Notations.
e For any s € R, define

_)(0,s] ifs>0,
I(s) = {[S,O) if s <0.
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e Let X be any set and let f:I(s') = X, g: s +1(s") = X;
— if §'s” > 0 and f(s') = g(s'), define

f(z) ifxel(s),
g(z) ifzes +1I(s");

(1.21)[Ef_cupg] fUg:I(s'+5") = X, (fUg)(=) ::{

— if §'s” < 0, define

f(z) if |§'| > |s"|, x € I(s' + "),

1.22 ; S I(s " X A =
( ) (S +s )_> ’ (f g)(x) {g(xs’) if |S/| < |S”|, = I(S/JFS//)'

e For a continuous real valued function f, we denote its convex envelope in the interval [a,b] as

conv f.
[ab] !

e Given a totally ordered set (A, <), we define a partial pre-ordering on 24 setting, for any I,.J C A,
I < J if and only if for any a € I,b € J it holds a < b.

We will also write I < J if either I < J or I = J, i.e. we add the diagonal to the relation, making
it a partial ordering.

e The L* norm of a map g : [a,b] — R™ will be denoted either by ||g|[cc or by ||g]|Le([a,p)), if We
want to stress the domain of g; similar notation for the L'-norm.

e Given a C' map ¢ : R — R and an interval I C R, possibly made by a single point, let us define
the Rankine-Hugoniot speed

g(supI) — g(inf I)
o™ (g, 1) == supl —inf

, if I is not a singleton,

Y , if I is a singleton.
d

2. SUMMARY OF THE PAPER [ } WITH A MODIFIED VERSION OF THE QUADRATIC POTENTIAL

In [3] an estimate on the change of the speeds of the infinitesimal waves present in a Glimm approximate
solution u® is provided. This estimate is achieved in two steps. First of all it is proved that at each grid
point (ie,me), i € N, m € Z, the change in speed of the waves interacting at (ic, me) is bounded by a
quantity A(ie, me), called amount of interaction. Then it is shown that there exists an uniformly bounded,
decreasing functional ¢ — Y(¢) such that at each time ie

3 Aie, me) < O(l)(T(iz—:—) - T(i5+)).

meZ
The functional Y (¢) is defined as the sum of some already known decreasing functionals (see Section 2.4
below) and of a new quadratic functional ¢ — 9Q(¢), whose definition requires a careful analysis of waves
collisions. Aim of this section is to summarize the main results present in the cited paper [3], providing
however in the meanwhile a stronger definition of the functional Q(¢). This stronger definition is needed
to prove in Section 5 estimate (1.15) and thus Theorem 1.3.

(Ss:rp)9 1. Entropic self similar solution to the Riemann problem. As we pointed out in Section 1.1,
the crucial point to solve the Riemann problem (1.1)-(1.4) is to find, for any left state u”, a curve
s + TFul of admissible right state, defined for |s| < 1, such that the Riemann problem (ul,TFul)
can be solved by (countable many) admissible shocks (in the sense of limit of viscosity approximations),
contact discontinuities and rarefaction waves. In the GNL/LD case the admissible curve s +— TFul
coincides with the rarefaction curve for s > 0 and with the shock curve for s < 0 (see [5]). In the general
case, however, the situation is much more difficult and the problem was completely solved by Bianchini
and Bressan in [2]. Here we describe just the main points of their construction, in order to recall the
notations we will need.

First of all, for any index k € {1,...,n}, through a Center Manifold technique, one can find a neigh-
borhood of the point (0,0, A\¢(0)) of the form

Dy := {(u, v, 0%) €R" x RX R | |u| < p, || < p,lox — Ae(0)] < p}
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for some p > 0 (depending only on f) and a smooth vector field

’I:k :Dk—)Rn, szfk(u,vk,ok),
satisfying
oF
(2.1) ‘E_generalized_eigenve’f:ﬁ(mL 0, Jk) =Tk (u), ‘ aﬂ(u, Vg, Jk) < O(l) ”Uk|
o

We will call 7 the k-generalized eigenvector. The characterization of 7 is that
Dy > (u7vk7ok) — (’U,/ka]ﬁak) eR" xR" xR

is a parameterization of a center manifold near the equilibrium (0,0, A5 (0)) € Dy, for the ODE of traveling
waves

(A(u) - UH)Ux = Uzzx — vy = (A(u) —ol)v
o, =0

where A(u) = Df(u), the Jacobian matrix of the flux f, and I is the identity n X n matrix.
Associated to the generalized eigenvectors, we can define smooth functions A : Dy — R by

N (u, vi, o) == (L (w), A(w)ie (u, vg, 03) ).
We will call Aj, the k-generalized eigenvalue. By (2.1) and the definition of S\k, we can get

~ O\
(2.2) [E_delambdasudev]  Ag(u,0,0%) = Ax(u), ’ak(u’vk,ffk) < O(1)|vg.
ok

For the construction of the generalized eigenvectors and eigenvalues and the proof of (2.1), (2.2), see
Section 4 of [2].

Then, by a fixed point technique one can now prove that there exist n > 0 (depending only on f),
such that for any

ke{l,...,n}, u* € B(0,p/2), 0<s<mn,

there is a curve
v : [0,s] — Dy,

T = 7(T> = (’LL(T), vk(T)a Uk,(T))
such that u, v, € CH1([0, s]), o € C%1(]0, s]) and this curve is the unique solution to the system
u(r) =ut+ [ (o)
0
(2.3) uk(7) = fily; ™) — conw fi(77)

d
(1) = ko Jr(y;7)

where

(2.4) frlyr) = /0 M (7(<))ds.

and convig 4 fx is the convex envelope of f in the interval [0, s]:

C[orafg(u) = sup {h(u) ‘ h:[a,b] — R is convex and h < g}.

In the case s < 0 a completely similar result holds, replacing the convex envelope with the concave one.
If we want to stress the dependence of the curve v on u” and s we will use the notation

Yu®,)(7) = (uu®, (), v, 8)(7), 01", 5)(7)).

Finally the curve of admissible right states (—n,7) 3 s — T*ul is defined as TFu® = u(ul, s)(s).
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(Ss:elem_estim) 9 o Elementary estimates on two merging Riemann problems. Consider two contiguous Rie-
mann problem

(2.5) [E_two_riemann_1 WM =T) o oThut,  wf=THo- oThu
n n
and the Riemann problem obtained joining them,
_n 1, L
=T o---0T  u

In particular the incoming curves are

v = (ul, v, o) =y (ul, s)), Ve = (W, V), 0F) = Vi (uk 1(S%—1), s%) fork=2,...,n,
V= (vl o) =y (M s, v = (ul, vy, 0p) = Wk(ug_l(s%_l),s%) fork=2,...,n,

while the outcoming ones are

v = (u1,v1,01) ==y (u®, s1), Vi = (g, Ok, 0k) := i (up—1(sk-1),5%) for k=2,... n.
We will denote by f7, f//, fr the reduced fluxes associated by (2.4) to 7., vy, Y respectively; for simplicity,
we will assume that v} and f;/ are defined on s}, + I(s}), instead of I(s}) and f/(s}.) = fr.(s}): indeed,

it is clear that adding a constant to fi does not vary system (2.3).
Fix an index k € {1,...n} and consider the points (Figure 1)

1 1
ul =l uk —Tj/ Tf o--oT} oThul, k>2
k—1 k—1 1 1
T/uk, u}f T,/uk, k=1,...,n.

By definition, the Riemann problem between uk and ué‘/f is solved by a wavefront of the k-th family with
strength s}, and the Riemann problem between u,iw and ukR is solved by a wavefront of the k-th family
with strength s}. Denote by ¥}, = (i}, 0}, 7},) the curve which solves the Riemann problem [uf, u!] and
by f} the associated reduced flux (see (2.4)).

Similarly, let 7 = (@}, },5}) be the curve solving the Riemann problem [u} uff] and let f be the
associated reduced flux. Clearly, ;, f. are defined on I(s;), while, since we are going to perform the
patching (1.21), (1.22)), we will assume as above that % and fi are defined on s, 4 I(sy) (instead of
I(s);)) and that f (sk) = Fi(sh)-

As in [3], define the following quantities, called amounts of interaction.

?(b_atrans)? Definition 2.1. The quantity
Atrans(uL’uM’uR) = Z |S;CHSZ
1<h<k<n
is called the transversal amount of interaction associated to the two Riemann problems (2.5).

For s;. > 0, we define cubic amount of interaction of the k-th family for the two Riemann problems

(ul,u™), (uM uf?) as follows:

(1) if s >0,

pgubic(y L M 4Ry .= /Os; [conv Ji(T) — (fr U flg)(T)}dT

[0,s] [0, §C+ sl

sitsk
[T om0 eoms, (L0
s, [5%-s%] (0,57, +s7]

(2) if —s}, <s{ <0

Stk
pcubic(y L oM Ry . / { conv fr(7) — conv ]dT
euble( ) | [o,s;€+sg]fk() e ]fk()

+/:’“ ) [[ conc  fi (1) — conv fi(r ):|d7’;

(s Llsprsi ) 0,54
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~ R L
1 u = U
L u{\/j 71 1 2

F1GURE 1. Elementary curves of two interacting Riemann problems before and after

transversal interactions.
rves_after_trans)

(3) if s} < —s},

bi L M Ry .
et ) = [
S;WLSk

0

1 1
conc T) — conc T)|dT
,{{[S;ﬁsg%]fk( )= cone i )

s,

—|—/ [ conc fi/(r) — conv f]/CI(T)}dT.
0 Llsptsisi] (0,57,

Similar definitions can be given if ;. < 0, interchanging convex envelopes with concave.

The amount of cancellation of the k-th family is defined by

Acanc(uL u]V[ uR) = 0 if S;CS;C/ Z O’
b T min{|s} |, |sy|} if s}s} < 0.

The amount of creation of the k-th family is defined by
+
AT (ul uM u®) = [|sk\ —|si, + 3%]

If 5,5 > 0, we define the quadratic amount of interaction of the k-family associated to the two Riemann
problems (2.5) by

f,ﬁ(s;) — CONV(p g/ 4] (f,’C U ~,’€’) (s,) if s, >0, s >0,
d re re ry .
Al M ) = concier 01 (fh U S (s3) = fh(sy) if sp, <0, s <0,
0 if 5.7 < 0.

Finally we define the total amount of interaction associated to the two Riemann problems (2.5) as

n
A(UL, UM, UR) = Atrans(uL’ UM, UR) + Z (Azuadr(uL’ UM, uR) +A%anC(UL, uZVI, UR) _’_Azubic(uL7 UM, UR)).
h=1
It is well known (see [1]) that
n n

> sk = (s, + s1)] < 0(1) [AtraHS(uL, uM ) ) At u, uR)] .

k=1 k=1
and thus N

Azr(uL’ UM, UR) < Atrans (UL, UM, UR) + Z Azubic (UL, ’U,M, uR).
h=1



CONVERGENCE RATE OF THE GLIMM SCHEME 11
The distance between incoming and outgoing Riemann problems can be estimated as follows (see [3],
Theorem 3.3).
?(T_general)? Theorem 2.2. For any k =1,.
o if si.s) >0, then
/ 1
||(uk U uk) - ukHLw (I(s),+s5 )NI(sk))
!/ /
||(Uk Uvy) — U’fHLOO(I (s, +s1)NI(s1))
H(Uk: U Uk) - UkHu(I(sHsg)m(sk))

d2fk // B d2fk
d7'2 d7'2 dr?

o if si.s7 <0, then

LY (I(s},+s})NI(st))

H(Uﬁc Auy) — “kHLoo(I(s +s)NI(s1))

H(’U;c A U;f) - ”kHLoo(I(s;ﬁsg)nI(sk))

||(U;c A UZ/) - UkHLl(I(s;C+s;“’)ﬁI(sk))

d2 f k ];/ d2 f k
d7'2 dr2 dr?

Remark 2.3. In the statement of Theorem 3.3 in [3] only the inequalities about u, o, % fzk are explicitly

proved while the ones about v are not. However it is not difficult to see that the proof used for u, o and
d f’“ can be adapted also to v.

LA (I(s',+s)NI(sk))

:lagr:repr:glimm) 9 3 Lagrangian representation for the Glimm approximate solution u°. In this section we recall
the notion, introduced in [3], of Lagrangian representation of an approximate solution u. obtained by
the Glimm scheme to the Cauchy problem (1.1)-(1.3), and we state the theorem about the existence of
a Lagrangian representation satisfying some useful additional properties. At the end of the section we
introduce some notions related to the Lagrangian representation; in particular, the notion of effective flux
£¢8(t) of the k-th family at time t.

Let us first introduce some notation related to the Glimm approximate solution u®. For any grid point
(ie,me), i >0, m € Z, set
i,m

ut™ = ug(ie, me),

and assume that the Riemann problem (u®™~1 4*™) is solved by

1 i,m—1
:T@,m 0"'0Ti,m,ul’m ]
Sn S

moreover denote by
o™ I(sp™) - R, k=1,....n
the speed function of the k-th wavefront solving the Riemann problem (u®™~1 u®™).
Let us introduce also the following notation for the transversal, cubic and quadratic amounts of interaction
and for the amounts of creation and cancellation related to the two Riemann problems (t; pm—1, %i—1,m—1),
(Wi—1,m—1, Ui,m) which interact at grid point (ie, (m — 1)e):
A (i, me) i= AT (U 1, Uim1,m—1, Uism )

and for k=1,...,n
ASUPIC (e me) i= AP (U 1, U1 1y Wiim )
AP (i, me) = AT (Ui m—1, UWim1,m—1,Ui,m ),
A (ie, me) = AT (Wim—1, Ui—1,m—1,Wi,m)

adr d
A (ie, me) i= A (Ui -1, Ui 1, m—1, Uim)-
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Let us begin now introduce the notion of Lagrangian representation. Given a piecewise constant
approximate solution wu. constructed by the Glimm scheme (see Section 1.2), for any time ¢ > 0 define
the quantities

i,m7+ — L i,m1— . . .
LE)=> [sy™]",  Lp)==>_[sy™], ifte[ie, (i +1)e).
meZ mEZ
It is easy to see that L} (¢)| + |L; ()] < O(1)Tot.Var.(uc(t)).
Definition 2.4. A Lagrangian representation for u. is a set W called the set of waves, together with

e the maps

family : W — {1,...,n} the family of the wave w € W,

S W — {1} the sign of the wave w € W,
t W — [0, +00) the creation time of the wave w € W,
£ W — (0, 400 the cancellation time of the wave w € W,

e a relation, which we will denote by <,
e the map, called position function,

x: {(t,w) € [0,00) x W | t%(w) <t <t (w)} = R,

which satisfy the conditions (1)-(4) below.
For the sake of convenience, set

Wk —{w€W|fam11y w) =k},
Wi(t) == {w € Wi | £ (w) <t <t%(w)},
WE(t) —{wEWk ) | S(w) = £1}.
The additional conditions to be satisfied by a Lagrangian representation are the following:

(1) for any family k, time ¢, sign %1, the relation < is a total order both on W' (t) and on W, (t); if
T C WiE(t) is an interval in the order set (Wi(t), <), we will say that Z is an interval of waves
(i.0.w.) at time t;

(2) the map x satisfies:

(a) for fixed time ¢, x(¢,-) : Wi (t) — R is increasing;

(b) for fixed w € W, the map x(-,w) : [t (w), t°*"°(w)) — R is Lipschitz;
(Point_2c_lagra)? (¢) for any point (¢, ) € [0,400) x R, all the waves in
Wi(t, 2) := x(£) 1 (Z) N W,
have the same sign;
rph_ordered_sets) (3) there exist maps @ (t) : Wi (t) — I(Lj, (t)) UL(L; (t)) such that ®(¢ |W+(t) W () = (L (t))
is an isomorphism of ordered sets, while @y (¢ )|W 0 Wi (1) = I(L; (t)) is an antisomorphism
‘ of ordered sets;
int_4_lagr_repr)? (4) there exist maps 45 (t) : Wi(t) = D CR™ x R x R, 43 (t) = (@x(t), 0x(t), 6%(t)), such that
(a) for any T € R, setting
ul = lim wu.(t,z), uf' == lim u.(t,z),
=T z—zt
the collection of curves
{BoMmen)sronfanoro)}
k=1,....,n
solves the Riemann problem (u”,u?);
(b) for any w € Wit (ie), if £#"°(w) > (i + 1)¢, then for any time t € [ic, (i + 1)) it holds

. 9> s
x(t w) = {x(ze,w) if 9541 > o1 (ie, w),

2.6) 7E_ode?
(2:6) 7 0de x(ie,w) 4+ (t —ie) if Y1 < % (ic, w).

The following theorem is exaclty [3, Theorem 4.1].
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?(T_lagrangian)? Theorem 2.5. There exists at least one Lagrangian representation for the approzimate solution u.

constructed by the Glimm scheme, which moreover satisfies the following conditions: for any grid point
(ie,me) € Ne x Ze,
?(Pt_iow_cons)? (a) the set Wy (i, me) N Wi ((i — 1)e) is an i.0.w. both at time (i — 1)e and at time ie, while the set
Wi (ie, me) \ Wi((i — 1)) is an i.o.w. at time ic;
?(Pt_affine)? (b) the map

By((i — 1)) (Wiliz, me) N Wi((i — 1)e)) TG0

18 an affine map with Lipschitz constant equal to 1.

Oy (ie) Wy (ie, me) N Wi ((i — 1)e))

{P:10%) Definition 2.6. Fix £ > 0. Let Z C Wy (f) be an interval of waves at time 7. Set I := ®(£)(Z). By
Property (3) of the Definition of Lagrangian representation, I is an interval in R (possibly made by a
single point). Let us define:

o the Rankine-Hugoniot speed given to the interval of waves T by a function g : R — R as

g(sup)—g(inf 1) .o 7 :
rh(g,I) . {sup[—inf[ if I is not a singleton,

g'(I) if I is a singleton;

o for any w € Z, the entropic speed given to the wave w by the Riemann problem I and the flux
function g as

d
— conv g Pp(t)(w)) if Sp(w) = +1,
ent(g,z w) dr I ( )

d
pr colncg(tbk(f)(w)) if Sgp(w) = —1.
-
If 0™(g,Z) = 0°"(g,Z,w) for any w € I, we will say that Z is entropic w.r.t. the function g.

We will also say that the Riemann problem T with flur function g divides w,w’ if o™ (g,Z,w) #
ent( I )
g,L,w

(D_effect_flux) Definition 2.7. For each family £ = 1,...n and for each time ¢ > 0 define the effective fluz of the k-th
family at time t as any C1! function
255, (L, L] — R
whose second derivative satisfies the following relation:
o*£3 (L, ) dA(3(t, w))
or? (7) =
for Ll-a.e. 7 € [L,,L}], where w = @ (t)~1(7).

(Ss:known.fen) 9 4 - Glimm-type functionals. We have already observed (see Sections 1.2, 1.3) that the main tool to
get a priori estimates on the Glimm approximate solutions is to find suitable decreasing functional. Here
we recall the definitions of some Glimm-type functional, which we will use throughout the paper.

Definition 2.8. Define the total variation along curves as

£) :ZZ \si’m\, for any t € [ie, (i + 1)e).

k=1meZ
Define the transversal interaction functional as
n k—1

QUrans (1) ZZ Z |s ||s l, for any t € [ig, (i + 1)e).

k=1h=1m>m’'

Define the cubic interaction functional as

QCUblC Z Z /(€7,m,) /I(Si,m/) o']lcm

k=1mm’'€Z

(1) — ai’m/ (7")|dr’dr.

The following statements hold: for the proofs, see [5], [1].
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? Proposition 2.9. There exists a constant C > 0, depending only of the fluz f, such that for any time
t>0

éTot.Var.(u(t)) < V(t) < CTot.Var.(u(t)).

? Theorem 2.10. The following hold:

(1) the functionals t = V (t), Qa2S(t), Q°"Pi¢(t) are constant on each interval [ic, (i + 1)e);
(2) they are bounded by powers of the Tot.Var.(u(t)) as follows:

V(t) < O(1)Tot.Var.(u(t)),
Q'™ (t) < O(1)Tot. Var.(u(t))?,
Q™ (t) < O(1)Tot. Var.(u(t))?;
(3) there exist constants ci,ca,c3 > 0, depending only on the flux f, such that for any i € N, defining
QRO (1) = ¢ V() + caQP™™ (£) + e5 Q< (1),

it holds
(2.7) AT (i, me) + ) (Azam(ie, me) + AP e, me))] < QO ((j — 1)e) — QKON (je).
mezZ - k=1

2.5. Analysis of waves collisions. This section corresponds to [3, Section 5]. Here however we intro-
duce a new definition of characteristic interval associated to a pair of waves (w,w’) and a new definition
of the partition of this interval. These new definitions provide the correct setting to define the new
quadratic interaction potential which we are going to introduce in Section 2.6 and which will be used in
Section 5 to prove estimate (1.15) and thus Theorem 1.3.

We first introduce the following equivalence relation ><: for any fixed time ¢ € [ig, (i + 1)¢) and for any
couple of waves w, w’ € W (t), we set w 1w’ if and only if

(2.8) [Eroquivirel £ (w) = £ (w') and x(t,w) = x(t,w') for any ¢ € [tcr(w), (i + 1)5).

and we denote the equivalence classes as
E(t,w) = {z € We(t) ’ t7(2) = £ (w) and x(¢, w) = x(t, 2) for any ¢ € [t (w), (i + 1)8)}.

?Definition 2.11. Let ¢ be a fixed time and let w,w’ € Wy(t). We say that

w,w’ interact at time € if x(¢,w) = x(¢, w');

w,w’ have already interacted at time t if there is ¢ < ¢ such that w,w’ interact at time ¢;

w,w’ have never interacted at time t if for any ¢t < ¢, they do not interact at time ¢.

w,w’ will interact after time t if there is ¢ > t such that w,w’ interact at time ¢.

w,w’ are joined in the real solution at time t if there is a right neighborhood of , say [, + (),
such that they interact at any time ¢ € [t + ();

o w,w are divided in the real solution at time t if they are not joined at time £.

"Remark 2.12. It £ # e for each i € N, then two waves are divided in the real solution if and only if
they have different position. If £ = ie, they are divided if there exists a time ¢ > ¢, arbitrarily close to ,
such that w,w’ have different positions at time ¢.

Definition 2.13. Fix a time ¢ and two k-waves w,w’ € Wi (f), w < w’. Assume that w,w’ are divided in
the real solution at time #. Define the time of last splitting t5P1* (¢, w, w’) (if w, w’ have already interacted
at time t) and the time of next interaction t™*(t,w,w") (if w,w’ will interact after time t) by the formulas

tSplit(f,ww’) 1= max {t <tl]zEtw) = X(taw/)}

(¢ w,w') = min {t > | x(t,w) = x(t,w')}



CONVERGENCE RATE OF THE GLIMM SCHEME 15

Given two k-waves w,w’ € W, and given a time t € [0, 00), we define the property

( N “either w, w’ € Wy(t) and they are divided at time ¢ in the real solution
plt,w,w’) :
or at least one between w,w’ does not belong to Wi (t)”.

Definition 2.14. Let ¢; < t3, be two times. Let w, w’ € Wy(t2) be two k-waves. Assume that they have
the same sign and that they satisfy p(¢1,w,w’). We define the characteristic interval Z(t1,t2, w,w’) of
w,w’ at time ty starting from time tq as follows. Assume first that t, = ic for some i € N.

(1) If at least one between w,w’ does not belong to Wi (t1) or w,w’ € W (t1), but they have never
interacted at time tq, then
(2.10) ?E_I_mai_int?
{z € Wi(t2) | S(2) = S(w) and z < E(ta,w')} UE(t,w’) if 7 (w) < £ (w'),
I(tl, tQ, w, w’) =
E(ta,w) U {z € Wi(t2) | S(z) = S(w) and z > E(tz,w)}  if £ (w) > £ (w');

(2) If w,w’ € Wi(t1) and they have already interacted at time t1, we have to distinguish two cases:
(a) if t; = £5Plit(¢;, w, w’), then argue by recursion:
nt_2a_def_inter)? o ifty =1t = tsplit(t17 w, ,w/)’ set

I(tr, t2,w,w') i= W(t1, x(t1, w)) = W(t1, x(t1,w));
1t_2b_def_inter)? o if ty = ic > (i — 1)e > t; = t%Plt(¢,w,w’), define Z(¢;,ts,w,w’) as the smallest
interval in (WiF (t2), <) which contains Z(ty, (i — 1), w, w') N Wi(t2), i.e.
T(ty, taw,w') = {2 € Wilt) | S(2) = S(w) = S(w')

and Jy, 1 € I(t1, (i — 1)e,w,w") N Wi(t2) such that y < 2 < y’}.

(b) if ¢ > Pt (¢, w, w'), set

T(ty, to, w,w') = T(t°PH(ty, w, w'), ta, w, w')

Finally set
I(ty, ta, w,w') :=I(ty, e, w,w") for ty € [ie, (1 + 1)e).

As in [3], we define now a partition P(t1,t2, w,w’) of the characteristic interval Z(ty,to, w,w"), with
the properties that each element of P(t1,t2, w,w’) is an interval of waves at time t,, entropic w.r.t. the
flux £$(¢5) of Definition 2.7.

Definition 2.15. As before, let t; < t5, be two times. Let w,w’ € Wi(t2) be two k-waves. Assume that
they have the same sign and that they satisfy p(¢1,w,w’). Assume first that to = ie,i € N.

(1) If at least one between w,w’ does not belong to Wy (t1) or w,w’ € Wi (t1), but they have never
interacted at time t1, then the equivalence classes of the partition P(¢1, ta, w,w’) are singletons.
(2) Assume now that w,w’ have already interacted at time ¢1; we distinguish two cases:
(a) if t; = t%P1 (¢, w, w'), argue by recursion:
o if ty =t = t%Plt (¢, w,w'), then P(t1,t,,w,w’) is given by the equivalence relation

z, 2" are not divided by the Riemann problem Wy (t1,x(t1,w))

/
zZ~Zz <~
{ with flux function £5% (¢, );

Point_2b_part_I)?
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o if ty = ic > (i — 1)e > t; = tPU(¢;, w,w'), then P(t1,ts, w,w') is given by the
equivalence relation

z, 2 belong to the same

equivalence class J € P(t1, (i — 1)e, w,w’)
and the Riemann problem J N W(t2)
2~ 7 = with flux £¢%(¢5, ) does not divide them

or

[t“(z) =1(z) =ty and z = z’].

It is not difficult to see that the previous definition is well posed, since J N W(ig) is
an interval of waves at time ic.

(b) if £ > Pt (¢, w, w'), set
Pty ta, w,w') = PP (4, w,w'), ta, w, w')
Finally extend the definition of P(t1,t2, w, w’) for any time to € [ie, (i + 1)e), setting
P(ty, ta, w,w') = P(ty,ie,w,w') for any t € [ie, (i + 1)e).

We collect now the main results about the characteristic interval and its partition. In this paper the
definitions of the characteristic interval Z(¢1,ts, w,w’) and of the associated partition P(ty,te, w,w’) are
different from the analog definitions given in [3]. However the results we present now can be proved with
the same techniques as in [3, Section 5. For this reason we just state the results, omitting the proofs.

The following proposition corresponds to [3, Proposition 5.12] and can be proved in an similar way.

ca_divise_realta) Proposition 2.16. Let t; < ty, be two times. Let w,w' € Wy(ta) be two k-waves. Assume that they
have the same sign and that they satisfy p(t1,w,w"). Let J € P(t1,ta, w,w’). Then x(to,-) is constant
on J and J is an entropic interval of waves at time to w.r.t. the flur function f%ﬁ(tz, .

Definition 2.17. Let A, B two sets, A C B. Let P be a partition of B. We say that P can be restricted
to A if for any C' € P, either C C A or C C B\ A. We also write

Pla:={CeP|CCA.

Clearly P can be restricted to A if and only if it can be restricted to B\ A.
The following proposition is the equivalent to [3, Proposition 5.14] and can be proved in an analogous
way.
_partition_restr) Proposition 2.18. Let t; < to, be two times. Let w,w', z,z2" € Wy(t2) be two k-waves, z < w < w' <
!/

z'. Assume that they have the same sign and that they satisfy both p(ti,w,w’) and p(ti,z,2'). Then
P(t1,t2,2,2") can be restricted both to L(t1,ta, 2,2 ) NL(t1,t2, w,w') and to I(t1,ta,z,2" )\ L(t1,t2, w, w').

The following proposition is the equivalent to [3, Proposition 5.15] and can be proved in an analogous
way.

(P_stessa_part) Proposition 2.19. Let ty < ta, be two times. Let w,w', z,2" € Wi (t2) be two k-waves, z < w < w' < 2.
Assume that they have the same sign and that they satisfy both p(t1,w,w") and p(t1,2,2’).
t_1_stessa_part)? (1) If w,w' € Wi(t1) and they have already interacted at time ty, if 2,2 € Z(t1,t2,,w,w’) and
if £97(2),t7(2") < 5P (¢ w,w'), then I(ty,ta,,2,2") = I(t1,te,, w,w') and P(t,ty,2,2') =
P(th t27 w, wl)'

t_2_stessa_part)? (2) If w,w’ € Wy (t1) and they have already interacted at time t1, but at least one wave between z, 2’
is created after t5P1 (), w,w'), then z, 2" have never interacted at time t.
t3_stessa_part)? (8) If either w,w’ € Wy(t1) and they have never interacted at time t1, or if at least one between w, w’

does not belong to Wy (t1),
o if t(w) < t(w') and 2’ € E(ta,w'), then z,z’ have never interacted at time t1;
o if t(w) >t (w') and z € E(t2,w), then z,2" have never interacted at time 1.
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(ss:new:q) 9 6. New quadratic potential. Let ¢ € [0,400) be a fixed time and let w,w’ € Wy (t) be two k-waves
having the same sign. In this section we introduce the weight qi (¢, w,w’) of the pair of waves w,w’ at
time ¢; as we have already pointed out, the definition we present here is different (and stronger) from the
one we gave in [3]. We proceed as follows.

First of all, fix three times t; < to < t3. Assume that w,w’ € Wy (t2) N Wi (t3). Assume also that
p(t1, w,w’) holds and that t3 € Ne. We set

gt te, t3, w,w')
2.11) ?E:q? k(ti,to, t3, w,w') == ,
(2.11)%E:q Ak ) di(t1,t2,t3, w, w')
where 7y (t1,t2, t3, w, w"), di(t1,t2,t3, w,w’) are defined as follows. Let
J,J € P(ti,ta,w,w'), such that w € J,w' € J’,

K,K' € P(ty,t3,w,w'), such that w € K,w’ € K’

(2. 12) ‘ E_element_of_part ‘

be the elements of the partition of Z(ty, to, w,w’) and Z(¢1,t3, w,w’) containing w, w’ respectively. Set
(2.13)[E_gg’] G:=Ku{zeJ|z>K}, ¢ =K'U{zeJ |z<K'Y,
and

B:=KU {z € Wi(ta) | S(2) = S(w) = S(w') and K < 2 < /c'} UK.

Using a version of [3, Lemma 5.11] adapted to our new definition of the characteristic intervals and
partitions, one can easily prove that G,G’ are i.o.w.s at time to. We can thus define

JF
(2.14) ?E_def_pi? Tr(t1, to, ta, w,w') == [orh(fzﬁ(tz), G) — o™ (£ (ts), g’)}
and
(215) ?E_def_d? dp (tl, to, t3, w, ’LU/) = ,Cl ((pk(tg)(B)) .

:pesi:unif:limit) Remark 2.20. It is easy to see that q(t1, %o, 3, w,w’) is uniformly bounded: in fact,

7Tk:<t17t27t37w7w/) 2 ceff
0 < qi(t1,ta,t N = < |D*£5" (¢t < O(1).
> CIk( 1,02, 3,11],’[1}) dk(t17t27t3,w,w/) = H k ( 2)”00 = ( )

Fix now two times ¢; < t3 such that w,w’ € Wg(t2) and p(t1,w,w’) holds. Define

(2.16) [E:q_senza_int| qr(t1, to, w,w') := sup  qx(t1, ta, t3, w,w').
ts3>t
t33€_N2€
w,w EW5(ts)

Finally, for any fixed time ¢ and for any w,w’ € Wy(t), define

qr(t, t,w,w’), if w,w’ are divided in the real solution at time tq,
0, otherwise.

(2.17)[E:q_sentp. (& ,w’) = {

Remark 2.21. Notice that the definition of the weight q(¢,w,w’) is different and stronger from the old
definition of the weight we gave in [3] and which we will denote by ¢°4(¢,w, w’). Indeed,

qr(t, 1,0 (t, w,w') — e, w,w’) if w,w’ are divided at time ¢,
a2 (1, w,w') = and will interact after time o,
0 otherwise.

Hence
(2.18)[E:qold_vs_qnev] qdd(t, w,w') < qp(t, w,w')
As in [3], we can finally define the functional Q(t) as

Qu(t) = Qf (1) + 5 (1),

where

L) L@
Qz(t) ::/0 dT/ dT/qk(t, @k(t)_l(T),<1>k(t)_1(T/))
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and

0 0
Q. (t) = /L(t) d’T/ dr'qi (t, @ (t) ('), @ (t) ' (1)).

Remark 2.22. Clearly Q(¢) is constant on the time intervals [ig, (i + 1)e) and it changes its value only
at times i, i € N.

This functional Qj, whose definition is different from the one in [3], still satisfies [3, Theorem 6.3]. We
state now this theorem and we give a brief sketch of how its proof in [3] can be adapted to the new
setting.

(T:variation fQ) Theorem 2.23. For anyi € N, i > 1, it holds

(2.19) [Emaia] 2k (18) — (i = D)) < - > A (i, me) + O(1)Tot. Var.(u(0); R) Y _ A(ie, me).

meZ meEZ

Sketch of the proof. The proof is analog to the proof of [3, Theorem 6.3]. We just sketch it, without
entering into details. Some notations, which will be used again later, are introduced here.

First of all observe that it is sufficient to prove inequality (2.19) separately for Qz and Q, . Let us thus
concentrate our attention of QX, since the analysis on £, is completely similar. For any m € Z, set

JE = ®y((i — 1)e) <{w e W (i — 1)e) ] x((i — e, w) = (m — 1)e, x(ie,w) = me}),
JR = ®((i — 1)e) ({w eEW((i —1)e) ’ x((i — 1)e,w) = me, x(ie,w) = me}),
. 7L, IR

(2.20) [E_raeToizy ) m U I

Ky = By (ie) (Wk(ia me) N W,j(z's)),

Sm 1= @x((i = 1)) (W(iz,me) N W((i = 1)e) )

T, := &y (ic) (Wk(ie,me) A We((i — 1)5)).
Observe that if 7,7" € JE (or 7,7 € J), then w := &, '((i — 1)e)(7) and w’ := &, ' ((i — 1)e)(7') are
not divided in the real solution at time (¢ — 1)e and thus qx((i — 1)e, w,w’) = 0.
Similarly, if 7,7/ € Ky, 7 < 7/, setting again w := ®; ' (i)(7), w’ := &, '(ic)(7’) then either w,w’ are
not divided at time i, and thus qx(ie, w,w’) = 0, or they are divided at time ie, i.e. they have different

positions at times ¢ € (ie, (i + 1)¢). In this second case, by definition t5P!it(ie, w,w’) = ie; for any fixed
j €N, j>i, with w,w’ € Wg(je), with notations similar to (2.12)-(2.13), denote by

J,J' € Pl(ie,ie,w,w’), such that w € J,w' € J’,
K,K' € Plie, je,w,w’), such that w € K,w’" € K.
the element of the partition containing w,w’ at time ic and at time je respectively, and set
G=Ku{zeJ|z>K}, ¢ =K'Uu{zeJ |z<K'}.

Using the monotonicity properties of the derivative of the convex envelope and the fact that the element
of the partition P(ie,ic,w,w’) are entropic w.r.t. the function £$(ic), we obtain

0> o™ (£ (ie), J) — o™ (£ (ie), T') > o™ (£ (i), G) — 0™ (£ (i€), G').

Thus 7y (i€, ig, je,w,w') = 0 = q (i€, ie, je,w,w’), for any j > ¢ such that w,w’ € Wy (je). Hence, by
(2.16) and (2.17),

Jj>i
w,w’ €W (je)
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We can thus perform the following computation:

Q;f (ie) — Qf ((i — 1)e)
[ / / (i, ®ulie) ™ (). Bulie) ™ (') ) dra’
T ><T !

+ / / ak (i, Dy(i2) (1), Di(iz) (7)) drdr’
(K XKy )\ (T XT,,,1)

m/

- //s ‘s, q’“(“ — 1)e, @ ((i — 1)e) (1), Pu((i — 1)5)1(7/)>de¢/]
_ Z //JLXJR (¢ —1e, (I)k((l — 1)) Hr), ®p((i — 1)5)71(7/))d7d7’.

MEZL

m<m/

Now the tree terms in the r.h.s. of the last inequality are estimated separately as follows.

1. The integral over pairs of waves such that at least one of them is created at time ic is estimated
exactly in the same way as is [3, Section 6.3]:

(2.21) [Eone_credved] / / Qi (ie)drdr’ < O(1)Tot.Var.(u(0)) Y  A(ic, me).
m<m’ XKm’/)\(Tm XTm/) meZ

2. The variation of the integral over pairs of waves which exist both at time (i — 1)e and at time ic
and which do not interact at time ie

(2.22) [E_Doth _-ojirved qx (ie)drdr’ —// qr((i — 1)e)drdr’"| < O(1)Tot.Var.( ZA ie,re)
mem' L7 Tm me, S XS0 el

is estimated in the following way:
a) first one adapts the proof of [3, Lemma 6.6] to show that for any ¢; < (i — 1)e < ie < t3,
for any pair of waves w,w’ € Wy (ie) N Wi (t3), if p(t1,w,w’) holds, setting me := x(ie, w) <
x(ie,w') =: m’e, we have

M=

‘dk (t1,ie, t3, w,w') — dy (t1, (i — 1)e, t3,w, w’)‘ <0(1) A(ig, re),

%
I
3

Mz

T (t1, e, tg, w,w') — (b1, (0 — Ve, tg, w,w") < O(1) A(ig,re),
r=m
and thus
1 o
2.23) [E: aifif{fq;dendmias]w’) — qi(t1, (i — 1)e, t3, w, w’) < O(1 . A(ie, re).
(2.23) [E: amsd juf) = anlts, (= Desta, w,0) < OW g5 o O Aliere)

b) then one observes that t5Pt(je, w, w') = P ((i — 1)e, w,w’), since x(ie, w) # x(ie, w');
¢) finally one uses the new definition of q, (2.16)-(2.17) to prove that

1
aulie. ') = an((6 = Devw,w') £ O s Z

3. Finally the estimate on the pairs of waves which are divided at time (z — 1)e and are interacting

at time ie:
(221)
— qr((i — 1)e)drdr’ < — Z ALY (e me) + O(1) Tot. Var. (u(0)) Z A(ig, me).
mez” 7 ThEXTR mezZ mezZ

S(Wy (ie,me))=1

is a immediate consequence of the analogous estimate [3, Inequality 6.9] and of the fact that the
new definition of qi is “stronger” than the old one, inequality (2.18).



20 STEFANO MODENA AND STEFANO BIANCHINI

It is easy to see that inequality (2.19) in the statement of Theorem 2.23 follows from (2.21), (2.22),
(2.24). O

As an immediate consequence of the previous theorem and of estimate (2.7), we get the following
corollary.

rease:of :upsilon) Corollary 2.24. There exists a constant C = C(f) > 0, depending only on f such that the functional
ts Y(t) := Q(t) + CQ ™ (t)
is uniformly bounded at t = 0:
T(0) < O(1)Tot.Var.(a),

it is decreasing and at each time step ic, i € N, it decreases at least of

(2.25) [E:decr upsilon] % > A(ie,me) < T((i — 1)e) — Y (ie).

mEZ
3. THE WAVEFRONT MAP 1

(8:psi) e have seen in Section 1.4 that a key point to prove Theorem 1.3 on the rate of convergence of the
Glimm scheme is to construct, for any i1,i € N, a map

'l/) : [i1€,i25] xR — R"

which satisfies the Properties in (1.16). In this section first of all we explicitly define the map v, which
trivially satisfies Property (1.16a), and we construct a Lagrangian representation for the map ; then
we state Theorem 3.3, on the variation in time of the speed of the waves in ¥, whose proof will be the
subject of Sections 4 and 5; finally, using Theorem 3.3, we prove that ¢ satisfies also Properties (1.16b)
and (1.16¢).

(Ss:def_psi) 3 1. Definition of 1. We start with the explicit definition of ¢. This map 1 is constructed more or

less as in [9], with some slight modification. Set for simplicity ¢; := i1e and t5 := ige. The definition of
1 is given backward in time, starting from time ¢, and going backward to time ¢;. First of all we set
P(te,x) = u®(te,x) for any = € R, so that Property (1.16a) is trivially satisfied. Then we define two
Riemann solvers, a starting RS and a transversal RS: both act backward in time and produce a self-similar
wavefront solution, with a finite number of wavefronts. The starting RS is used at time t5 = ise to define
¥ on a left neighborhood [f,t5] of t5. Then, anytime two wavefronts collide at some time € (t1,ts),
assuming that 1 is defined on the time interval [t,t5], we use the transversal RS to prolong ¢ on a left
neighborhood of ¢.

The starting Riemann Solver. This is the Riemann Solver used at time ¢t = ¢5. It is defined as
follows. For any m,r € Z, m=r,m —1,...,r — (ia — i1), set

T o= S(Wk(ils, me) N W (iae, rs))ﬁl <<I>k(i15) (Wk(ila me) N W (iae, TE)))
(3.1)
= S(Wk (i1€,me) N Wi (ize, rs))ﬁl (@k(igs) (Wk(ils, me) N W (ize, r&))).

Notice that, by the monotonicity of the map w — x(t, w), if &7, 57" £ 0 and r < r', then k < k'.
y y p k k

Fix now r € Z and for any m = r — (ig — i1),...,7 set
r—(ig—i1)~7 ._ m 1 ig,r—1 m~sr .__ qm . 1 m—1~sr
¢ = Ts,‘_(i2_7’,1)wr O0--+0 Tsr—(z‘z—il)wr (U )7 ¢ T Ts;{“"’r ° 0 TS{an (w )
n 1

The (backward) solution to the Riemann problem (u'2"~1 u®") is now defined as follows: for any

m =1 — (ig —i1),...,r there is a physical wavefront traveling with speed
jmer ,_ 7€ ME
igE — i1€

which connects the left state 1™ 1" with the right state 1™ "; moreover, there is one more non-physical
wavefront, traveling with speed equal to A := —1 connecting ¥"" to u'2".

The transversal Riemann solver. This RS is used every time two (or more) wavefronts collide
at a time in (¢1,%2). We assume w.l.o.g. that every collision involves exactly two wavefronts. This is a
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)

A (z)

t—1=1i¢

FIGURE 2. The wavefronts of the function ¢: the pink region A°(z) is used in the proof
of Proposition (3.6).

standard assumption, which can be achieved slightly modifying the wavefront speeds. Assume thus that
at point (£,), t € (t1,1t2) two wavefronts collide. We have to distinguish two cases.

Case 1: both the colliding wavefronts are physical. Assume that before the collision the first wavefront
is traveling with speed A\’ and it is connecting the states

M =17 o~-~oTsllle,

while the second wavefront is traveling with speed A < A" and it is connecting the states
R 1M
Yt =Tg oo Tyip™.

Notice that, by the monotonicity of the map w + x(t,w), there exists k € {1,...,n} such that s/, ..., sp =
0 and s} ,...,s, = 0. Hence the interaction at (t,7) is purely transversal. The (backward) Riemann

problem (1%, 9%) at point (%,Z) is now solved as follows. Define the intermediate states

M. 1 L TR._ 1L
w i g{o.'.ong+lw7 w '_T%O"'OTs’l/(ba
The solution for times ¢t < # around the point (¢,Z) is made by a physical wavefront traveling with
speed A\ connecting * and M : a physical wavefront traveling with speed A\ connecting M and YT a
non-physical wavefront traveling with speed A\ = —1 connecting 1 and %.

Case 2: one of the two colliding wavefronts is non-physical. Assume that the non-physical wavefront
is connecting ¥ with ¥, while the physical wavefront is traveling with speed A and it is connecting

¢R:T;L°"'OT5111/JM'

Define the intermediate state

1/;M =T o---oTslle.
The solution around (%,Z) for times ¢ < t is now made by a physical wavefront traveling with speed A
connecting ¢ with ¢ and by a non-physical wavefront traveling with speed A = —1 and connecting
M with T

It is not difficult to see that the definition of 1 is well posed.
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3.2. Lagrangian representation for 1. In the same spirit as in Section 2.3 we introduce now a sort of

Lagrangian representation for the wavefront solution 1. We are not interested here in defining a general

notion of Lagrangian representation, since the map ¢ is a map ad hoc constructed to get estimate (1.14).
First of all, let us analyze the physical waves. For any &k = 1,...,n the set of the physical waves of

the k-th family in v is the set Wy (t1) N Wi (t2).

First of all set, for any k =1,...,n,

iF = (cpk(zzg) (W,;'E (ire) N WE (igs))) _yy <<I>k(i15) (w,;t(ilg) N W,;t(z'zs)))
Define also the position map for the physical waves in ¢ and follows:

X(tQ, ’U}) — X(tl, ’U))
to — 11

[t ta] % U Wi(t) " Wi(t2)) = R, y(t,w) := x(t2, w) — (ty —t)

Notice that y takes values in the discontinuity points of v, it is increasing in w and affine in t.
The analogous of the collection of the maps {®(t)}+cj0,00) for ¢ is the map

[ Wk(tl) n Wk(tg) — [— L;,O) N (0,+LZ_]
defined by

Uy (w) = S(w)L! (@k(tl)({w’ € Wi(t1) N1 Wi(t2) | S(w') = S(w) and w’ < w}))
— S(w)L! (@k(tg)({w’ € W(tr) N Wil(ta) | S(w') = S(w) and w’ < w})>.

The restriction ¥ : W' (t1) N Wi (t2) — I(L+) is an isomorphism of ordered sets, while the restriction
VW, (t) N W, (t2) — I(L},) is an anti-isomorphism of ordered sets.

Notice that while the maps ®(t) for u® depends on the time, the map ¥y, for ¢ does not, since the total
amount of physical waves in v is constant in time.

We define also the maps x(t,) := (Ux(t,-), 0 (t,-), 51 (t,-)) and the effective flux £5%(¢,-) at any time
t € [t1,t2) as follows. Fix a time ¢; assume first that no wavefront collision takes place at time ¢. Fix any
point & € R. Assume that

u(t,z) =TI o---o T} u(t,z—);

denote by {vx}x, % = (ug, v, o) : I(sx) — R™*2 the collection of curves which solve the Riemann
problem (u(t,z—),u(t,z+)) and by fi : I(sx) — R the associated reduced flux. Since

qlk'y(t)*l(x)ﬁwk : y(t)_l(x) "W, —a—+ I(Sk)
is an (anti)isomorphism of ordered sets for some a € R, we can define
Yt ) y@®) "N @) N Wy, — Dy SR T (t,w) = v (T (w) — a).

Since, for fixed time ¢, the position map y takes values in the discontinuity points of ¥, 4 (¢, w) is defined
for any k-wave w.
We also define

as any C"! map such that
P (1)
dr2 () = dr ’

Now, if ¢ = t5 or if ¢ is a time when a collision between two wavefronts takes place, we extend the
definitions of 4 (t) and £¢(¢) in order to have left-continuous in time maps.

with 7 = Uy (w).

Remark 3.1. We usually want our maps to be right-continuous in time. In this case, however, we
are using backward-in-time Riemann solvers, and thus it is quite natural to require that ¢ — ~x(t) is
left-continuous in time.
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Finally, we define the wavefront speed of a wave w € Wy (t1) N Wi(t2) as

AMw) = X(ma,;ﬂ) :}.i(ue,w) _ Y(zze,@) :y(zle,w)
26 — 11€ ioe — iy

As for the Glimm approximate solution u®, we say that a set Z C W,jt (t1) N W,;t(tz) is an interval of
waves for ¢ if T is an interval in the ordered set (Wi (t1) N Wit (t2), < ). The following definition is the
analog of Definition 2.6.

Definition 3.2. Fix ¢ € [t1,t2]. Let Z C Wi (t1) N Wi (t2) be an interval of waves for ¢. Set I := Uy (Z).
Since the restriction of ¥y to positive (resp. negative) waves is a isomorphism (resp. anti-isomorphism)
of ordered sets, I is an interval in R (possibly made by a single point). Let us define:

e the Rankine-Hugoniot speed given to the interval of waves T by a function g : R — R as

sup [—inf I

o™(g,T) := {g(up”g(“m if T is not a singleton,

g (I) if I is a singleton;

o for any w € Z, the entropic speed given to the wave w by the Riemann problem I and the flux
function g as

di convg(‘lfk(w)) if Sp(w) = +1,
ent T I
o9, L, w) :=

di colncg<\I/k(w)) if Sp(w) = —1.

T

If 0'%(g,Z) = 0°™(g,Z,w) for any w € Z, we will say that Z is entropic w.r.t. the function g. We will
also say that the Riemann problem T with flux function g divides w,w’ if o®*(g,Z,w) # o®(g,Z,w").

Let us now analyze the non-physical waves. The set of non-physical wavefront is defined as
Wo == {(t,2) | in (t,2) a non-physical wavefront is generated}.

We are labeling each non-physical wavefront with the point in the (¢, ) plane in which it is generated.
Since the speed of the non-physical wavefronts is strictly less than the speed of any physical wave, we
will refer to the set of non-physical wavefronts also as the set of waves of the 0-th family.

Clearly W, is a finite set. For any non-physical wavefronts a = (£, ) € W), we define its creation time
t%(a) := t and its position y(¢,«a) = Z — (¢t — ). Moreover, if ¢ is any time when no collision between
wavefronts takes place, we define the strength of the non-physical wavefront « as

s(t0) = [b(t,y(La) +) = vty a) - )|

)

then, as usual, we extend the definition to all times in (¢1,ts] is order to have a left-continuous in time
map. Finally define

Wo(t) = {Oé e Wy | tcr(Oé) > t}

We will call Wy(t2) the set of primary non-physical wavefronts and Wy \ Wy(t2) the set of secondary
non-physical wavefronts.

3.3. The main theorem on . In this section we state the main theorem about physical and non-
physical waves in 1, which will be proved in Sections 4 and 5, and, using this theorem, we prove estimates
(1.16b) and (1.16c).

in_thn_waves_psi) Theorem 3.3. With the same notations as before,
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(1) the following bounds on physical waves hold:

/L; {Tot.Var. (ﬂk(~, vH(n)); (tl,t2)> + | (@ (tz, ) — tk(tz, ) o \Ijkl(T)‘}dT

L
/ {Tot.Var. (17].3(~,\IJ_1(7’));(7§1,7§2)) + [(Vr(ta, ) — D (t2,-)) o\y,gl(r)‘}dr <0(1) T(tl)—T(tg)};

Ly
/ {Tot.Var. (6k (~, \1171(7)); (t1, tz)) + (6k(t2, ) — Ok (ta, )) o \11;1(7')‘}(1’7'
(2) the following bound on non-physical waves holds:

> [Tot'Var'(sm a); (t1,£7()) ) + s(£ (@), a)} < O()[Y(t) = T(t2)-

aeEWy

As an immediate consequence, we get the following corollary. For any & = 1,...,n, for any physical wave
w € Wy (t1) N Wy (t2) and for any t € (¢1,to], set

P (t,w) = 7 (ak(t, w), Tk (t, w), 5k (t, w)), Pty w) = 7 (ﬁk(t, w), ok (t, w), G4 (t, w))

in_cor_waves_psi) Corollary 3.4. It holds

/Lz {Tot.Var.(fk(‘v‘Ifl(T))Q (t1,t2)> + ’(fk(t% ) — Tr(ta, )) © \Plzl(T)’}dT <o) [T(tl) - T(tQ)]

As we have already said, the proof of Theorem 3.3 is the subject of Sections 4 and 5. We now use
Theorem 3.3 and Corollary 3.4 to prove estimates (1.16b)-(1.16¢) and thus complete the proof of Theorem
1.3.

Proposition 3.5 (Estimate (1.16b)). It holds

1 + log(iz — 1)

[|Sta—erto(t1) — ¥(ta)]|, < O(1) [(T(h) - T(tQ)) + F— (ta —t1).
Proof. We want to use the semigroup estimate
2 P(t+h) — Spp(t)
(3.2)‘E:semigroup_in_ﬂifb@t‘z) — St27t1w<tl)||1 < L/ hI}ILng_p H - Hldt.
ty —

Since the map 1 is piecewise constant at any fixed time ¢, it is not hard to see that the integrand on the
r.h.s. can be estimated as

t+h) — Spu(t i .
lim sup e+ h) = Sui )Hl < Z/ ')\<\Il1(7')> —6’(t,\I’71(7‘)) dr + Z s(t, a).
h—0 h 1w (Wit Wi (t2)) aeVa(®)
For the term concerning the non-physical waves, we easily obtain
Z s(t,a) < Z |s(t,a) — s(t7(a),a)| + 5(t (@), a)
a€Wp (t) a€Wq(t)
< Z |:T0t.VaI‘.<S(',Oz); (tl,tcr(a))) + s(tcr(a),a)}
aEWy

(by Theorem 3.3) < O(1) [T(tl) — T(tg):|.
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For the term concerning the physical waves, we argue as follows. Fix any 7 € Wy (W(tl) N W(tz)) and
set w = U1(7).

(3.3) [E:lambda-sigmahat|

1 ip—1 1 ig—1

A(w) — & (t,w)| < ‘)\(w) S Z &(ia,w)‘ 3l ey Z 6 (ie, w) — &(igs,w)‘ + |6 (ige, w) — &(t, w)
1=11 1=11
. 1= €
< - 5 (1 . . (- N —
< |A(w) P Z 0(25711/)’ + Tot. Var (O’( ,W); (thtg + 2))
1=11

+ |6(t2, w) — 6(t2,w)‘ + Tot.Var. ((7(-, w); (tl,t2)>.

To estimate the first term of the last summation we use the same technique as in [?]. Define first the
map

wi[0,1]x[0,1] >R,  w(o,d):= {_" ifo<v
1l—0o ifo>9.
Set
o™= min  &(ie,w), oM = max &(ie,w),
1=11,...,00—1 1=11,...,00—1
and
T ={i€[ir,ip—1] | ™™ < 9; < o™"}, K= {i € [ir, iz — 1] | ¥; < 6(ire,w)}.
We thus have
) =
AMw) — P— Z; U(ZE,U))‘
=,
== ; w(6 (i, w), ¥;)
=
= - . Z [w(ff(is,w),ﬁi) — w(c}(ils,w),ﬁi)} +w(fr(z‘15,w),19i)
I
1
e Z (6(2’15,10) — 6(i5,w)) + Z (&(ils,w) — o (ie,w) + ai)
i¢J ieJ
+y ( —6(ise, w)) +3 (1 - &(z‘la,w)) ‘
gk ik
(3.4) [E-Tambaaci] (Here a; is a number in {—1,0,1})
1 s s Al .
=T ;7 (a(zls,w) — a(ze,w)) + ;7 (a(zls,w) —o(ie,w) + ai>

— 6’(i16,10)(i2 — Zl) -+ WC

ig—1
<z 12.1 ( ; ‘c}(ile,w) - c}(ie,w)‘ 4T+ ‘a/c — &(ire, w)(is — il)D
S <2 6_max _ &min + : ﬁj _ (&max _é_min) 4 |- ﬁlc —5’(215,’[0)’)
12 — 11 12 — 11

(using (1.9))

<o)

1+ log(io — 14
Tot.Var. (6-(’11})7 (t17t2 + ;)) + W] .
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Using (3.3), (3.4), Corollary 2.24 and Theorem 3.3 we thus get

dr

M) = ot e n)
= o /m (Wa(t2)nWi(22)) {lec;g(—lzh_“) o <6(" ) (1t Z))
+ ‘5(752» U HT)) = 5 (t2, Wy N (7)) ’ + Tot.Var. ((7(~, T () (4, tz)) }dq—

< (9(1){1+10g(i2m +T(ty) — T(t2)}

19 — 11

/pk (Wi (t)nWi(t2))

Therefore, using (3.2), integrating over all times ¢ € [i1¢, i2€] we get the conclusion. O

(P_3.6) Proposition 3.6 (Estimate (1.16¢)). It holds

[9(t2) = w @), < OM) (T (t2) = T(t2) ) (b2 — ).

Proof. Fix any x € R. Consider the segment on the (¢,x)-plane joining (t1,z) and (to, 2 — (t2 — t1)).
Assume that = ¢ Ze and that no non-physical wavefront travels on this segment (this holds for all but
countable many x € R). Define the set of k-waves which cross this segment in «® and in 1 respectively:

WS (uf, @) := {w € Wy, | there exists t =: 7% (u®, x,w) € (t1,t2) such that x(t,w) =z — (t — t1)},
WSS (i, ) := {w € Wi (t1) N We(ts) | there exists t =: t°% (1, z,w) € (t1,t2) such that y(t,w) =2 — (t — t1)}.

Since, for any wave w € Wy(t1) N Wi (t2), x(t1,w) = y(t1,w) and x(t2, w) = y(t2,w),
WSS (1, @) = W™ (u®, ) N Wi (t1) N Wi (t2).
Moreover, if a k-wave w € W5 (1, x), then its position at time ¢; must be
x(t1,w) =y(ti,w) € [z —2(t2 — t1), 2],
while if w € Wgross(u®, x) \ Wi (1, x), then either it is created at some grid point in the triangle
A (x) = [(tl,x = 2(ty — t1)), (t2, @ — (t2 — t1)), (t1, x)]
or it is canceled at some grid point in the triangle

Acanc($> = {(tz,l‘ - (tg - tl)), (tl,x), (tg,l‘ + (tg - tl))].
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Since ¥(t2) = u®(t2), we can now write

|b(t1, ) — s (t1, )]
_ H¢(t1,x) —4(tg, 2 — (t2 ftl))] _ {ug(tl,z) —uf (ty, — (ta tl))]‘

n

kZ:l ka(wﬁ.@ss(w)) {T’“ (tcmss (¢, 2,9, (7)), ‘I’EI(T)) — (t”"ss (u, 2, U1 (7)), \11_1(7)) }dT
+O(1){ Z A% (ie, me) + Z ACanC(iE’mE)}

(i,m)ENXZ (i,m)ENXZ
(ie,me) €A (x) (ie,me) €A ()

< ;é[% (W,g"OSS(zp,z)) { Tk (tCross (W"T"Ij;l(T)), \1’;1(7)) i (t2,\11;1(7))’

i (tQ, \I/_l(T)) — (tz,\lf,gl(f))’ +

_|_

7L (tz, \I/_l(T)) — Ty (tcmss (u®, =, \I/_l(T)),\I’_l(T)> ‘ }dT
+ (9(1){ Z A% (ie,me) + Z Acanc(is,me)}

(i,m)ENXZ (i,m)ENXZ
(ie,me) €A (x) (ie,me) €A™ (x)

= ,; [pk (== (le—2(ta—t1).a)) {
i (b2, 07N (T)) = (t”‘l’kl(T))’ i

Tot.Var. (fk (~7 \Illzl (7')); (t1, t2))

+

Tot. Var. (fk(., U(n); (t, tg)) ‘ }d’r
+ (’)(1){ Z A% (ie, me) + Z AR (e, ma)}

(i,m)ENXZ (i,m)ENXZ
(ie,me)EAT (x) (ie,me) A (z)

Hence, integrating over all x € R, we get

+oo
/ lw(tl,x) —us(tl,x)|dx

oo e
= /m { ; Lk(x—lqwz(tztl%w]))
Pk (tg, \1/*1(7-)) — Tk (t2’qj’;1(T)>’ *

Tot.Var. (fk (o, W;l(T)); (t1, tz))

_|_

Tot.Var. (fk (, \11,21(7')); (t1, t2)> H dr

+ 0(1){ > A%(ie,me) + > IR me)} }dw

(i,m)ENXZ (i,m)ENXZ
(ie,me)€A"" (x) (ie,me) €A (x)

(using Fubini’s Theorem and Corollaries 2.24 and 3.4 )
< O()[X(tr) = T(ta)] (t2 = 1),

which is what we wanted to get. U

4. ANALYSIS OF THE INTERACTIONS IN P

interactions:psi)  gogtituire stima in norma L su u con stima in norma L': quella in norma infinito non e’ vera a causa

delle interazioni trasversali!! ma a noi basta la stima in norma L'
In this and next section we prove Theorem 3.3. We will follow the same technique we used in [3]. In
particular this section is devoted to study the local part of the theorem: we introduce a suitable notion
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of amount of interaction and we prove that at any interaction the variation of g, Uy, 0 is bounded by
such amount of interaction.

In the next section, we will prove the global part of the theorem, i.e. that the sum of all the amounts
of interactions is bounded by the decrease of T in the time interval [¢y, t3].

The crucial point is that the new definition of the functional  we gave in Section 2.6 is the one we
need to prove Theorem 3.3, as we will see in the next section. Fhe-definitionof Q givenin [3] isnot
strong-enough-to prove Theorem 3.3,

4.1. Amounts of interaction at the final time ¢5. Instead of defining immediately the amounts of
interactions at any point (ize,re), © € Z, it is more convenient (to avoid too heavy notations) to consider
first a more abstract situation, and then apply it to our analysis.

Fix a left state u”, a right state u and a collection of A vectors

s*=(s{,...,sp) €R™, a=0,1,..., A

(Ss:amounts:t2)

The Riemann problem (u”, ') is solved by the collection of curves {’yk} he1 . Where

Y1 L(sp) = D SR, = (ug, vk, 0n),
and denote by fi : I(sx) — R the associated reduced fluxes.
Assume that for any fixed k =1,...,n
o all the s§, a € {1,..., A}, and s have the same sign;
A
Za:l S% —
Observe that our assumptions describe precisely the collisions taking place at any point (ise, me), m € Z.
Set I := >, _,s0 + I(sf). Let O : I(Zf:1 s¢) — I(sy) be any increasing map such that for each

a=0,1,... A, ®k|15 is an affine map with slope equal to 1. Denote by @,Zl its pseudo-inverse, which
turns out to be a continuous map. Set Jg := {r € I(s;,) | 0, '(r) e I}
Set u? :=u” and for any a = 1,..., A,

=Tk o0 Tsl,l,,uafl.
n

Assume that the Riemann problem (u®~! ,u%) is solved by the collection of curves {v&}r—1, n, with
v = (ug, vy, of). Assume moreover that, for any k and a, 7§ is defined on I§.
We can now define:

e the transversal amount of interaction as
n k—1

B (ul sy, ... 54, ul? Z Z SN lsillshl;

a=0b=a+1k=1h=1

e the quadratic amount of interaction of the k-th family as

d A d .
HE CODVI(Sk) fk‘ - Ua:O ar COHVJE. kal if Sk > O7

e the amount of creation of the k-th family as

Bquadr( L

Ry ._
U, S1, ..., 84, U) 1=

d A d . .
75 coneys, ) fr — Uy g7 conere ka1 if s, < 0;

A
L Ry ._ .
By (u”,81,...,84,u") 1= - E skl
a=1
e the global amount of interaction as
L R
B('LL yS1y---,84,U )
n
._ ptrans(, L R quadr I R L R
=B (u” 81, ...,84,u") + g [Bk (u® sy, ... s4,u®) + B (ul)s1, ... s4,uf)].

We have used the letter B instead of A to distinguish these amounts of interaction from the amounts of
interactions concerning two merging Riemann problems, already introduced in Section 2.2.
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Proposition 4.1. For any k =1,...,n, the following inequalities hold sistemare il punto di partenza

C:>

ZukOGk‘
oo

a=1

A

Uv,‘;—vko(%k < O)B(ul,s1,...,54,ul).
a=1 S

C»

op — 0 0Oy

1

?
Il
-

The proof can be achieved using the same techniques as in [3, Section 3] and for this reason it is omitted
here.
Recall now the definition of 5" in (3.1) and define the vector

ST = (57 8T

Applying the previous definitions to the collisions taking place at time to = ise, we can define, for any
T €L,

Btramb(l26 7’6) Btranb( 127r—17 sr—(iz—il)wr’ o 7ér->r7 uiz,r)7
Bzuadr(ma re) == Bquadr( izr—l gr=(iz—i)wr g iy k=1 n
B (ige, re) = B (w21, g —llemi)r g yiary k1,
B(ige, re) := B(ui> "1 g7~ (2mi)=r g g iary,

Applying Proposition 4.1, we obtain the following corollary.

Corollary 4.2. It holds sistemare il punto di partenza

H (i (ta—, ) — in(ta, ) o \P;ZlHLOO(FL;’LI])

@t etz ‘I’Elum(m;,m) <O(1) ) _B(iaz, 2).
rez
H(ﬁk(tg—, ) = bu(t, ) 0 \1,21‘

L ([-L; L))

4.2. Amounts of interaction at times t € (t1,t2). Let t € (¢1,%2) and let (¢,2) be a point where two
wavefronts collide. As in Section 3.1, we have to distinguish to two cases.

Case 1: both the colliding wavefronts are physical. Assume that before the collision the first wavefront
is traveling with speed A\’ and it is connecting the states

M 1L
¢ :T‘%O"'OTsllllﬁ,

while the second wavefront is traveling with speed A < A’ and it is connecting the states
R 1M
WP =Th oo Thyt.

We have already observed that the interaction at (%, z) is purely transversal. Define thus the (transversal)
amount of interaction at (t,x) as

k n
B ,) =3 3 Ikl

k=1 h=k+1

Case 2: one of the two colliding wavefronts is non-physical. Assume that the non-physical wavefront
« is connecting ¥ with 1™, while the physical wavefront is traveling with speed A and it is connecting

’l/JR:T;LO~~~OT5111/}M.
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Also in this case the interaction is purely transversal. Define thus the amount of interaction at (t,x) as

n n
B(t,x) := B"(t, z) := s(t+, ) Z sk | = [M — L] Z [sk]-
k=1 k=1
The following proposition covers both the case of a collision between physical wavefronts and the case
of a collision between a physical and a non-physical wavefront.
Proposition 4.3. The following hold.
(1) For any k = 1,...,n, for the k-physical waves y(t)~1(z) N Wy located at (t,z) in the wavefront
map 1, we have sistemare il punto di partenza

| @i, ) = =) o w5

H(ok(t+, ) — O(t—,-)) o Uy

’ £ (W (y(6) =1 (2)nWy)

(2) If both wavefronts interacting at (t,x) are physical, denoting by « the non-physical wavefront
generated at (t,x), its initial strength can be estimated by

|5(t" (), @) | < O(1)B"™5(¢, ).

(8) If one of the two wavefronts interacting at (t,x) is a non-physical wavefront a, the variation of
the strength of v can be estimated by

|s(t+, a) — s(t—, a)| < O(1)B™"*™S(¢t, x).

1
HLm (w3 (®) 1 (@)nW))

< trans .
HLoo(wm(t)*l(x)mwm)) < O™ (E, )

(o(t+,) = r(t—)) 0 0|

The proof of this proposition can again be obtained with the same techniques as in [3, Section 3], and
thus it is omitted here.

5. ESTIMATES ON THE AMOUNTS OF INTERACTION IN

nates:on:amounts) Ty thig section we prove the following theorem, which is the global part of the proof of Theorem 3.3.

The proof of this theorem is the last step in order to complete the proof of the convergence rate of the
Glimm scheme, Theorem 1.3.

Theorem 5.1. The sum of all amounts of interaction in the time interval (t1,ts] is bounded by the
decrease of the functional Y in the same time interval, i.e.

> Blise,re) + Y BU(t,2) < O(1)(Y(t) — Y(t2)).
reZ (t,z) int. pt.
te(t1,t2)

The proof is a direct consequence of the following three propositions.

(P:global:trans)? pronogition 5.2 (Transversal amounts of interactions). It holds

ZBtrans(i2€’ ’I“E) 4 Z Btrans(t7x) < 0(1)(T<t1) - T(t2))

r€Z (t,x) int. pt.
te(t1,t2)

Proof. Since for any wave w € Wy (t1) N Wi(t2),
x(t1, w) = Y(tla w)? X<t27 w) = Y(tQ’ w),

and thus the waves which have to cross in ¥ also cross in ¢, it is not difficult to see that

i2
ZBtranS(iQé‘,Té‘)—F Z Btrans(t7x) < Z ZAtranS(iS,m€)

reZ (t,x) int. pt. i=i1+1meZ
te(t1,t2)

(by (2.25)) < O(1)(Y(ize) — T(t1)),

which is what we wanted to prove. O
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(P:global:cr) pronosition 5.3 (Amounts of creation). It holds

D B (ige, re) < O(1)(Y(t1) — Y(t2)).
reZ

Proof. 1t is fairly easy to see that

ZB?(ige,ra)g i ZAcr(iga,ma),

reZ i=i1+1 meZ

and thus, again using (2.25), we get the conclusion. O

(P:global:quadr) proposition 5.4 (Quadratic amounts of interaction). It holds
(5.1) > B (ige, re) < O(1)(Y(t1) — Y(t2)).
rEL

The proof of this proposition is much more difficult than the previous two. However, the technique we
will use is the same we used in [3] to prove estimate (2.24) on the decreasing part of the functional Q(t).
Here, however, the new definition of the functional Q(t) we presented in Section 2.6 plays a crucial role,
since, with the old definition (the one in [3]), the decrease of 9 in the time interval [t1,¢5] is not big
enough to prove (5.1).

Proof. Introduce first the following sets:

& = {(w,w/) € Wh(ise, re) X Wh(ize, 7€) ’ w<w, x(t,w) < x(t;,w), }, r ez,

(5.2)[Ezerir]
F = {(w,w’) € Wy (isg, 7€) X Wi (ise, 7€) ’ w < w', max {t%(w),t" (')} > tl}, rez,

(5.3) [Ezef] =& rF=U 7.
TEL TEZ
&= {(w,w') €& ’ (¢, w,w') = ie}, i=i1+1,...,09.
We need now the following four lemmas, which conclude the proof of the proposition.

Lemma 5.5. For any r € Z,
BI (jye, re) < O(1) // ax (1, t2, 12, W (7), 01 (7) ) drr
(\I/kX\I/k)(ETU]:r)

Proof. We assume for the sake of simplicity that the k-waves interacting at (ize,re) are positive, the
negative case being completely similar. We divide the proof in several steps.
Step 1. Set ul = w271 uf := " and

s = 527(i27i1)+a

for any a =0,1,...,i3 — i1 =: A. As in Section 4.1, let
a

s = (sf,...,80),

let {vito=1,.n, v I(sx) = D C R™*2 be the collection of curves which solve the Riemann problem
(u?,u®) and let fi be the associated reduced flux. Define also

— —1
Ok := Py (t2) 0 ¥y, |\I/k(Wk(iga,ra)ﬂWk(t1))'

It is not difficult to see that there exists two real numbers ¢, (' € R such that

Uy (Wk (ine,re) N Wy (ire, (r — (i2 —i1) + a)a)) =(+ Kza shHI(s8) = I¢,

(I)k(tg)(wk(igei, 7‘5)) = C/ + I(sk),
and

A
Okt CHI(D_si) = ¢ +1(sy)

a=1
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is an increasing map and for each a = 0,1, ..., A the restriction ©|re is an affine map with slope equal to
1. We are thus exaclty in the situation described in Section 4.1 and therefore we can define the intervals
JE={r e +1(s) | O, (1) € I¢}. Notice, moreover, that the effective flux £ (¢,) at time ¢, and
the flux f;, associated to the Riemann problem (u”,u?) coincide up to affine functions, i.e.

d2 2

d
i £t (1 ) (¢! = — 1 .
7 Sy T = g gy A et

Hence, by the properties of the convex envelope, we can compute the quadratic amount of interaction
BAuadr (52 re) using the effective flux £¢7(¢5) instead of fy:
A

d d
el feff to) — el feff t
a2 0 = U et

By triangular inequality, it is enough to prove that for any b=1,..., A,

B (ige, e) = ‘

1

a=0

d d d
— conv £ (4y) — (— convEST (5) U — conv £ (¢ )
. Yl,‘; k (t2) dr UZ;‘%Z e (t2) dr JEV k (t2)

1

= // qk(tl,tz,tz,\lf,gl(f),\I/,;l(T’))deT'.
(UaZo J)xJp

The technique we use to prove (5.4) is the same as in [3, Proposition 6.9].

Step 2. Set
b—1
TAp 1= sup U J¢ = inf JP,
a=0
and
b—1
i ff
TL = maX{T € U J ‘ cbglllvafz (to)(1) = U(;on\}l g (tg)(T)},
a=0 a=0 Yk a=0 Yk

cony 55 (45) (1) = conv fzﬁ(tg)(’r)}.

a
k a=0 Jk

TR = min {T eJp

W.l.o.g. we assume that 77, < 73y < Tg, otherwise there is nothing to prove.
It is quite easy to see that

B (ig, re) = P i - [arh (£57 (t2), (11, Tia]) — o™ (£5 (22), (TM,TR])]L2((TL, ™| X (T, TR)),

and thus it is sufficient to prove that

TR — T
(5.5) [E-quadr st |

Observe that, by Proposition 2.16,
d(t1,ta,ta, U (1), U N (7)) < TR — 715
hence (5.5) will follow if we prove that
[Urh(fiﬁ(tz), (12, 7ar)) =™ (£ (22), (TMvTR])}EZ((TLaTM] X (T, TR])

(5.0) [E-deteaceigms e
S/ / ﬂk(tl,tg,tg,\I/lzl(7'>,\1/;1<7'/))d7d7'/.
TL TMm

[0 (35 (t2), (72 ma]) — o™ (€55 (t2). (s, 7)) | £2 (s 7] X (7aa, 7))

TM TR
< / / dk (t17t27t27‘I/,ZI(T),‘I’,Zl(T’))deT'.
TL T™

Step 3. Let

L= W,;l((TL, TM]), R = \I/,;1 ((TM,TR]).
We will identify waves through the equivalence relation <, already introduced in (2.8): for any couple of
waves w,w’ € LUR, set w < w’ if and only if

t¥(w) =t (w') and x(t,w) = x(t,w’) for any t € {tcr(w),ie).
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)

L

FIGURE 3. Partition of C := Ec X ﬁc.
(F_partition_lxr)

The sets R R
E::L:/lxl, R::R/N
are finite and totally ordered by the order < of Wi (t2). Moreover for any & € E, ¢ e 7%, let w € ¢,
w' € & and set
I(t17t27£a§/) = I(t17t27waw/)v P(t17t27£a§/) = P(t17t27w7w/)7
and R
I(t17t27€7§/) = I(tl,t27£,§/) /N .
It is not hard to see that the above deﬁmtlons are well posed and that 7 C LUR.

Now we partition the rectangle L x R in sub- rectangles, as follows. For any non empty rectangle
C:=LecxRe CL xR, define (see Figure 3)

HO((?) = [Ec ﬂI(tl,tQ,maxﬁc,minﬁc) X { ﬂI tl,tg,maxﬁc,mch

f tl,tg,maxﬁamch } X

{ c \I tl,tg,maxﬁc,mlch }
I ( 5 [Z \I tl,tg,maxﬁc mlch X [Rc \I tl,tg,maxﬁc,mlch }

= [Ec \I tl,tg,maxfc,minﬁc)} X [RC ﬁI(tl,tg,maxEc,mich

Clearly {HO (5), Hl((?), I, (5), I3 (f)} is a disjoint partition of C.
For any set A, denote by A<N the set of all finite sequences taking values in A. We assume that
) € A<N| called the empty sequence. There is a natural ordering <l on A<N: given o, 3 € A<,

a<dp <= [ is obtained from « by adding a finite sequence.

A subset D C A<V is called a tree if for any o, 3 € AN o<, if B € D, then a € D.
Define a map W : {0,1,2,3}<N — ZEXR by setting

(I\J _ LXR, ifa:@,
" \IL, 0---oIL,(LxR), ifa=(z,...,21) € {0,1,2,3}<N\ {0}.

(e
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ﬂ22 i ﬁ21 1o i 1144
f[23 3 f[20 I3 3 I R
31
fffffffffffffffffff 1,
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FIGURE 4. Partition of £ x R using the tree D.
(F_tree)

For a € {0,1,2,3}<N, let Ea, R4 be defined by the relation U, = Lo xRy. Define atree D in {0,1,2,3}<N
setting

D= {@}U{a(zl,...,zL)G{O,1,2,3}<N LeN, I, # 0, zlyéOforll,...,Ll}.

See Figure 4.
Since IIy(ITH(C)) = Io(C) for any C C L x R, this implies, together with the fact that £ x R is a finite
set, that D is a finite tree.

For any o € D, set
Lo:=J & Ra:=J ¢,
(el ¢'eRa

L@ = \I/k([:a), Ra = \I/k(Ra)
The idea of the proof is to show that, for each o € D, on the rectangle L, x R, it holds
(5.7)[E_fund [med£7 (t2), La) — 0" (£ (t2), Ra)] L3 (La X Ra) < / T (t1, ta, 7, 7 )drdr’.

Lo XRg,

The conclusion will follow just considering that () € D and Ly = (71, 7], Ry = (7ar, TR)-

Step 4. Using Propositions 2.16, 2.18, 2.19, it is possible to prove that 5.7 holds for each a = (z1,...21) €
D such that z;, = 0. This is a major part of the proof, in which the partitions P(t1,te, w,w’) are
widely used, but we don’t prove this step explicitly, since its proof can be obtained adapting the proofs
of [3, Lemmas 6.10-6.11].

Step 5. We prove now that (5.7) holds for any o € D by (inverse) induction on the tree. If a is a leaf
of the tree, then, by definition, the last component of « is equal to zero, and thus (5.7) has already been
proved in Step 4. If « is not a leaf, then

Vo= Voo UWay UTpo UTasg
and thus
Lo % Ry = (Lao X Rao) U (Lal x Ral) U <La2 x R(ﬁ) U (La3 x Ra3).
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The estimate (5.7) holds on Lyg X Rao by Step 4, while it holds on Ly, X Raa, a = 1,2, 3, by inductive
assumption. Hence we can write

r e T e 2 _ dfCH(t2) dfCH(t2)
[O’ h(fkﬁ(tQ)aLa) -0 h(fkff(tQ))Ra)]E (La X Ra) - //L < F. l:kT(T) - kdiT

—Z (5 (12). Loa) = ™ (57 (12). Raa)] £*(Laa X Ra)

< Z// . gt ta, Oy 1(7’),‘11121(7"))de7'/
:// ﬂk(tl,tg,\llgl(T),\Illzl(T’))deT'.
LoaXRaa

(r')] drdr’

As already observed, for a = (), we get inequality (5.6), thus concluding the proof of the lemma. O

Lemma 5.6. It holds

// qk(tl,tz,tz,w;l(f),@k (r ))d’]’d’]’ <0(1 Z > a5 (ie, me)

(P X W) (F) i=i1+1meZ

Proof. The proof is an easy consequence of the definition (5.2)-(5.3) of the sets F,., F and the fact that
the weights q are uniformly bounded, Remark 2.20. 0

Lemma 5.7. It holds
// qk(tl,t%tg,\I/,;l(T), \1/,;1(7’)) - qk(ti“t (tr, U5 (7), U (7)) — s,q/,;l(T),qf,;l(T'))deT’
(WX ¥2)(8)

Z Z A(ie, me).

i=11+1meZ

Proof. Fix (w,w’) € £. Observe that for any i = 41, ..., 12,

(5.8) [E-phi mage poi] ‘fbk(is) "y — @y (i) (w \ ‘\pk i) (w') — W (ie) (w)],

since ¥ takes into account only the waves which are in Wy (i1€) N W (ize). Then notice that

q( 1 (ty, w, w') — s,w,w’) q(ti“t(tl, w,w') — e, ¢ (t, w,w') — e, w, w’)

q (tl, (¢, w,w') — €, w, w’)

Y

q (tla tint(tla w, wl) — &, t27 w, U)/) .
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Hence
Aqp(w,w') = q(tl,tg,tg,w,w’> ( (¢, w, w') — €,w,w’>
< q(tl,tg,tg,w,w/> —q(tl, (t1, w,w') — 6,t2,w,w’)
i2
< Z [q(tl,ie,tg,w,w') —q(tl,(i—l)s,t27w,w’>]
i=tint (¢, w,w’) /e
(by (2.23))
i
<0(1) Z - Z ie, me)
i=tint (¢, w,w’) /e |‘bk(28)( ) (bk ZE |
(by (5.8))
<0(1) Z Z (ie, me)
[ Wy (w
i=i1+1meZ
Therefore

// k(1 t2, 62, 0 (1) 01 ()) = ai (67 (10, W5 (1), 01 (7)) — 2, 0 (), 0 (7))

drdr’
DY Y A me // L

i=i1+1mEZ (W xWi)(
(9(1)£2((\11k x\Ilk)(E)) Z 3 Aie, me)
i=i1+1meEL
) 122 ZA(iams).
i=i1+1mEZ

Lemma 5.8. It holds

//(llkawk)( : qx (tint <t1’ v, (r), \I/;l(T’)) —&, U (1), \Ilkl(T’)) drdr’ < O(1)(Y(t1) — Y(t2)).
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Proof. 1t holds

/] a (tim (v (). () —e. \y,;l(r),w,;l(f'))dmf
(U xWL)(E)
> // qk<(i —1)e, ¥ (1), q/kl(T/)>deT'

(T xT)(EY)

i=i1+1
//@ (e (-19) e A ((z’ —1)e, By ((i — 1) (r), Bp((i — 1)5)—1(7/)) drdr’

i=i1+1
(see (2.20))

< Z Z//J#XJRq((i—l)E)deT'

i=i1+1meZ
(using (2.21)-(2.22) and the fact that for waves w,w’ interacting at time ie, q(ie,w,w’) = 0)
i2 7;2
< Y (=12 - (=) + O Tot.Var.(@) > 3" Aliz, me)

i=11+1 i=i1+1meZ

(since QX" is decreasing in time)

S (2~ 1))~ Q0i)) + (@ (i~ 1)2) — Q" (ie))

i=i1+1

+ O(1)Tot.Var.(u) i ZA(ia,mE)

i=i1+1mez
(by the definition of T and Corollary 2.24)
i2
<o) Y (T((i —1)e) — T(z’s))
i=i+1
= 0(1) (T<t1) - T(tg)). O
The conclusion of the proof of Proposition 5.4 is an immediate consequence of the previous four lemmas,
Corollary 2.24 and Proposition 5.3. O
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