
CONVERGENCE RATE OF THE GLIMM SCHEME

STEFANO MODENA AND STEFANO BIANCHINI

Abstract. In this paper we prove that there exists a random sequence θi for the Glimm scheme

such that the approximate solution uε(t) converges to the exact semigroup solution Stū of the strictly
hyperbolic system of conservation laws

ut + f(u)x = 0, u(t = 0) = ū

as follows: for all T ≥ 0 it holds

lim
ε→0

‖uε(T )− ST ū√
ε| log ε|

= 0.

This result is the extension of the analysis of [9] to the general case, when no assumptions on the flux

f are made besides strict hyperbolicity. As a corollary, we obtain a deterministic version of the Glimm
scheme for the general system case, extending the analysis of [15].

The analysis requires an extension of the quadratic interaction estimates obtained in [3] in order to

analyze interaction occurring during an interval of time.
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1. Introduction

A system of conservation laws in one space dimension (see [5]) is a system of PDEs of the form

(1.1) E_cons ut + f(u)x = 0,
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where u : [0,∞)×R→ Rn is the unknown and f : Ω ⊆ Rn → Rn is a given smooth (C3) map, called flux,
defined on a neighborhood Ω of a compact set K ⊆ Rn and satisfying the strict hyperbolicity condition,
i.e. the Jacobian Df(u) of f has n distinct eigenvalues

λ1(u) < · · · < λn(u)

in each point u ∈ Ω of its domain. Throughout this paper, we will assume w.l.o.g. that 0 ∈ K ⊆ Ω and

(1.2) E_bounds_on_lambda λk(u) ∈ [0, 1] for any k and for any u.

This can always be achieved by a change of variable in the (t, x)-plane. As it is customary, denote by
r1(u), . . . , rn(u) the right eigenvalues (normalized to 1) associated to λ1(u), . . . , λn(u) respectively:

Df(u)rk(u) = λk(u)rk(u), for any k = 1, . . . , n and for any u ∈ Ω.

Equation (1.1) is usually coupled with an initial datum

(1.3) E_init_datum u(t = 0) = ū,

where ū : R→ Rn is a given map, with sufficiently small total variation. W.l.o.g. we assume also that ū
has compact support.

It is well known that classical (smooth) solutions to the Cauchy problem (1.1), (1.3) are in general
not defined on the whole time interval [0,∞), even if the initial datum is smooth, because they develop
discontinuities in finite time. On the other side, the notion of distributional solution is too weak to
guarantee the uniqueness. For this reasons the notion of solution which is typically used is the following
one.

Definition 1.1. A map u : [0,∞)×R→ Rn belonging to L1
loc is said to be a weak solution of the Cauchy

problem (1.1), (1.3) if:

(1) u satisfies equation (1.1) in the sense of distributions;
(2) u is continuous as a map [0,∞)→ L1

loc(R;Rn);
(3) at time t = 0, u(0, x) = ū(x);
(4) u satisfies some additional admissibility criteria, which come from physical or stability consider-

ations and guarantee the uniqueness of the solution.

Many admissibility criteria have been proposed in the literature: just to name a few, the Lax-Liu condition
on shocks (see [11,13,14]), the entropy condition (see [12]), the vanishing viscosity criterion (see [2]). We
do not want to enter into details: the interested reader can refer to the cited literature.

〈Ss:intro_rp〉
1.1. The Riemann problem. The basic ingredient to solve the Cauchy problem (1.1), (1.3) is the
solution of the Riemann problem, i.e. the Cauchy problem when the initial datum has the simple form

(1.4) E_rp u(0, x) = ū(x) =

{
uL if x < 0,

uR if x ≥ 0.

The solution of the Riemann problem (1.1)-(1.4) was obtained first by P. Lax in 1957 [11], under the
assumption that each characteristic field is either genuinely non linear (GNL), i.e. ∇λk(u) · rk(u) 6= 0 for
any u or linearly degenerate (LD), i.e. ∇λk(u) · rk(u) = 0 for any u. In this case, if |uR − uL| � 1, using
Implicit Function Theorem, one can find intermediate states uL = ω0, ω1, . . . , ωn = uR such that each
pair of adjacent states (ωk−1, ωk) can be connected by either a shock or a rarefaction wave or a contact
discontinuity of the k-th family. The complete solution is now obtained by piecing together the solutions
of the n Riemann problems (ωk−1, ωk) on different sectors of the (t, x)-plane.

In the general case (here and in the rest of the paper, by general case we mean that no assumption
on f is made besides strict hyperbolicity) the solution to the Riemann problem (uL, uR) was obtained
by S. Bianchini and A. Bressan in [2]. They first construct, for any left state uL and for any family
k = 1, . . . , n, a curve s→ T ks u

L of admissible right states, defined for s ∈ R small enough, such that the
Riemann problem (uL, T ks u

L) can be solved by (countable many) admissible shocks (in the sense of limit
of viscosity approximations), contact discontinuities and rarefactions waves. Then, as in the GNL/LD
case, the global solution of (uL, uR) is obtained by piecing together the solutions of n Riemann problems,
one for each family: uR = Tnsn ◦ · · · ◦ T

1
s1u

L. In Section 2.1 we briefly recall the construction of the

admissible curves s 7→ T ks u
L.
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〈S_glimm_gnl〉 1.2. Glimm approximate solutions in the GNL/LD case. The first result about existence of so-
lutions to the Cauchy problem (1.1), (1.3) can be found in the celebrated paper by J. Glimm [10] in
1965, in which the existence of solutions is proved under the assumption that each characteristic field is
either GNL or LD. In [10], for any ε > 0 an approximate solution uε(t, x) is constructed by recursion
as follows. First of all, take any sampling sequence {ϑi}i∈N ⊆ [0, 1]. The algorithm starts choosing,
at time t = 0, an approximation ūε of the initial datum ū, such that ūε is compactly supported, right
continuous, piecewise constant with jumps located at point t = mε, m ∈ Z. We can thus separately solve
the Riemann problems located at (t, x) = (0,mε), m ∈ Z. Thanks to (1.2), the solution uε(t, x) can now
be prolonged up to time t = ε. At t = ε a restarting procedure is used. The value of uε at time ε is
redefined as

(1.5) E_rest_proc uε(ε+, x) := uε(ε−,mε+ ϑ1ε), if x ∈ [mε, (m+ 1)ε).

The solution u(ε, ·) is now again piecewise constant, with discontinuities on points of the form x = mε,
m ∈ Z. If the sizes of the jumps are sufficiently small, we can again solve the Riemann problem at each
point (t, x) = (ε,mε), m ∈ Z and thus prolong the solution up to time 2ε, where again the restarting
procedure (1.5) is used, with and ϑ2 instead of ϑ1. The above procedure can be repeated on any time
interval [iε, (i + 1)ε], i ∈ N, as far as the size of the jump at each point (iε,mε), i ∈ N,m ∈ Z, remains
small enough, or, in other words, as far as

(1.6) E_tv_small Tot.Var.(uε(t);R)� 1.

In order to prove (1.6), Glimm introduced a uniformly bounded decreasing functional t 7→ QGlimm(t) ≤
O(1)Tot.Var.(ū)2, such that at any time iε, i ∈ N,

(1.7) E_incr_tvTot.Var.(uε(iε+);R)− Tot.Var.(u(iε−);R) ≤ O(1)
(
QGlimm(iε−)−QGlimm(iε+)

)
.

Here and in the following O(1) denotes a constant which depends only on the flux f and on the sampling
sequence {ϑi}i. As an immediate consequence, we get Tot.Var.(uε(t);R) ≤ O(1)Tot.Var.(uε(0);R) � 1
and thus the solution uε(t, x) can be defined on the whole (t, x)-plane [0,∞) × R. The uniform bound
on the Tot.Var.(uε(t);R) yields a compactness on the family {uε}ε: we can thus extract a converging
subsequence, which turns out to be, for almost every sampling sequence {ϑi}i, a weak admissible solution
of the Cauchy problem (1.1), (1.3).

In 1977 T.-P. Liu [?] improved Glimm’s result, showing that if the sampling sequence is equidistributed,
that means that for any λ ∈ [0, 1],

lim
j→∞

]{i ∈ N | 1 ≤ i ≤ j and ϑi ∈ [0, λ]}
j

= λ,

then the subsequence extracted from {uε}ε converges to a weak admissible solution of (1.1), (1.3).
A different approach which relies on results about the stabilty of the solution of (1.1), (1.3) w.r.t the

initial datum ū led to the introduction of the notion of standard Riemann semigroup.

?〈D_srs〉?Definition 1.2. A standard Riemann semigroup for the system of conservation laws (1.1) is a map
S : D × [0,∞)→ D, defined on a domain D ⊆ L1(R;Rn) containing all functions with sufficiently small
total variation, with the following properties:

(1) for some Lipschitz constants L,L′,

(1.8) E_semigr_lip ‖Stū− Ssv̄‖1 ≤ L‖ū− v̄‖1 + L′|t− s|, for any ū, v̄ ∈ D, t, s ≥ 0;

(2) if ū ∈ D is piecewise constant, then for t > 0 sufficiently small Stū coincides with the solution
of (1.1), (1.3), which is obtained by piecing together the standard self-similar solutions of the
corresponding Riemann problems.

In the GNL/LD case it is proved (see, among others, [6], [17], [8]) that any system of conservation laws
admits a standard Riemann semigroup and that at any time t ≥ 0 the solution u(t) obtained as limit of
Glimm approximations uε(t), for the initial datum ū, coincides with the semigroup Stū. We will discuss
in the next section the general case.
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Relying on the existence of the standard Riemann semigroup for GNL/LD systems, in 1998 A. Bres-
san and A. Marson [9] further improved the Glimm sampling method, constructing an equidistributed
sequence {ϑi}, satisfying the additional assumption:

(1.9) E_discrep sup
λ∈[0,1]

∣∣∣∣∣λ− ]{i ∈ N | j1 ≤ i < j2 and ϑi ∈ [0, λ]}
j2 − j1

∣∣∣∣∣ ≤ C · 1 + log(j2 − j1)

j2 − j1
.

Using this sequence, they were able to prove that the rate of convergence of the Glimm approximate
solutions uε(t) to the exact weak admissible solution u(t) = Stū at any time t is given by

(1.10) E_rate_conv lim
ε→0

∥∥uε(t, ·)− Stū∥∥L1∣∣ log ε
∣∣√ε = 0.

〈S_glimm_general〉 1.3. Glimm approximate solutions in the general case. All the results in the previous section were
obtained under the assumption that each characteristic field is either GNL or LD. In this section we
consider now the general case, when this assumption is removed and the only property of f is its strict
hyperbolicity.

The problem of finding a suitable decreasing potential to bound the increase of t 7→ Tot.Var.(uε(t);R)
for a Glimm approximate solution uε (see (1.7)) was solved first by T.-P. Liu in [16] for fluxes with a
finite number of inflection points. Later, in [1], Bianchini solved the problem for general hyperbolic fluxes,
introducing the cubic functional

t 7→ Qcubic(t) :=

∫∫
|σ(t, s)− σ(t, s′)|dsds′ ≤ O(1)Tot.Var.(uε(t))3,

where s, s′ are two waves in the approximate solution at time t and σ(t, s), σ(t, s′) denote their speed (see
Section 2.4 for a precise definition). In [2] Bianchini and Bressan also proved that any strictly hyperbolic
f admits a standard Riemann semigroup {St |t ≥ 0} of vanishing viscosity solutions with small total
variation obtained as the (unique) limits of solutions to the viscous parabolic approximations

ut + f(u)x = µuxx,

when the viscosity µ→ 0. The semigroup S is defined on

D :=
{
u ∈ L1(R;Rn)

∣∣ Tot.Var.(u)� 1, lim
x→−∞

u(x) ∈ K
}

and satisfies the Lipschitz condition

(1.11) E:semigr:lip:gen‖Stū− Ssv̄‖1 ≤ L‖ū− v̄‖1 + L′|t− s|, for any ū, v̄ ∈ D, t, s ≥ 0;

Aim of this paper is to prove that the same rate of convergence (1.12) proved by Bressan and Marson
in the GNL/LD case holds also in the general case, when no assumption on f is made except its strictly
hyperbolicity. In particular we prove the following theorem.

〈T_rate_conv〉Theorem 1.3. Consider the Cauchy problem (1.1)-(1.3) and assume that the map f is strictly hyperbolic.
Let uε be a Glimm approximate solution with mesh size ε > 0 and denote by t 7→ Stū the semigroup of
vanishing viscosity solution. Then for any time T ∈ [0,+∞) the following limit holds:

(1.12) E_rate_conv lim
ε→0

∥∥uε(T, ·)− ST ū∥∥1√
ε| log ε|

= 0.

〈Ss:BM:technique〉 1.4. Bressan’s and Marson’s technique. We recall now the technique used by A. Bressan and A.
Marson in [9] to prove Theorem 1.3 in the GNL/LD case. In particular we wish to highlight which is the
point in Bressan’s and Marson’s proof which can not be easily extended to the general case, where no
assumption of f is made except its strict hyperbolicity, and whose detailed proof is given in this paper,
using the tools introduced by the authors in [3].

Bressan’s and Marson’s technique is as follows. Thanks to the Lipschitz property of the semigroup
(1.8), in order to estimate the distance ∥∥uε(T, ·)− ST ū∥∥L1 ,

we can partition the time interval [0, T ] in subintervals Ja := [ta, ta+1] and estimate the error

(1.13) E_error_interval ‖uε(ta+1)− Sta+1−tau
ε(ta)‖L1
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on each interval Ja. The error (1.13) on Jr comes from two different sources:

(1) first of all there is an error due to the algorithm itself: indeed, in a Glimm approximate solution,
roughly speaking, we give each wave either speed 0 or speed 1 (according to the sampling sequence
{ϑi}i), while in the exact solution it would have a speed in [0, 1], but not necessarily equal to 0
or 1;

(2) secondly, there is an error due to the fact that some waves can be created at times t > ta, some
waves can be canceled at times t < ta+1 and, above all, some waves, which are present both at
time ta and at time ta+1, can change their speeds, when they interact with other waves.

The first error source is estimated by choosing the intervals Ja sufficiently large in order to use estimate
(1.9) with j2 − j1 � 1.
The second error source can be estimated (choosing the intervals Ja not too large) if we are able to
(uniformly) bound the change in speed of the waves present in the approximate solution. In the GNL/LD
case, this was achieved by Liu in [15], where he provided a wave tracing algorithm which splits each
wavefront in the approximate solution into a finite number of discrete waves, whose trajectories can be
traced and whose changes in speed at any interaction time are bounded by the corresponding decrease of
the functional QGlimm. In particular, using Liu’s wave tracing, Bressan and Marson prove that for any
i1, i2 ∈ N, on the time interval [t1, t2], t1 = i1ε, t2 = i2ε, it holds

(1.14) E:error_in_t1t2_gnl
∥∥uε(t2)− St2−t1uε(t1)

∥∥
1
≤ O(1)

[(
QGlimm(t2)−QGlimm(t1)

)
+

1 + log(i2 − i1)

i2 − i1
+ ε

]
(t2 − t1).

As ε→ 0, it is convenient to choose the asymptotic size of the intervals Ja in such a way that the errors
in (1) and (2) have approximately the same order of magnitude. In particular, the estimate (1.12) is
obtained by choosing |Ja| ≈

√
ε log | log ε|.

Estimate (1.14) is precisely the point in Bressan’s and Marson’s proof which can not be easily extended
to the general case, because the functionalQGlimm is not of help in this case. Improving the results recently
obtained by the authors in [3], in this paper a suitable functional

Υ : [0,+∞)→ [0,+∞), Υ(0) ≤ O(1)Tot.Var.(u0);

is constructed, such that for any i1, i2 ∈ N, i1 < i2,

(1.15) E_error_in_t1t2
∥∥uε(t2)− St2−t1uε(t1)

∥∥
1
≤ O(1)

[(
Υ(t2)−Υ(t1)

)
+

1 + log(i2 − i1)

i2 − i1

]
(t2 − t1).

In order to prove (1.15), one could be tempted to use the well know semigroup inequality

‖uε(t2)− St2−t1uε(t1)‖1 ≤ L
∫ t2

t1

lim sup
h→0

∥∥uε(t+ h)− Shuε(t)
∥∥

1

h
dt.

However, for a Glimm solution uε this estimate can not be directly applied, because it does not take
into account the error due to the restarting procedure. To go beyond this difficulty, in the same spirit as
in [9], we will introduce in Section 3 a “wavefront” map

ψ : [t1, t2]× R→ Rn

with the following properties:
〈E:psi_prop〉

(1.16a) E:psi_uguale_i2 ψ(t2, x) = uε(t2, x),

(1.16b) E:semigroup_on_psi
∥∥St2−t1ψ(t1)− ψ(t2)

∥∥
1
≤ O(1)

[(
Υ(t1)−Υ(t2)

)
+

1 + log(i2 − i1)

i2 − i1

]
(t2 − t1)

(1.16c) E:distance_psi_i1
∥∥ψ(t1)− uε(t1)

∥∥
1
≤ O(1)

(
Υ(t1)−Υ(t2)

)
(t2 − t1).

Clearly (1.15) is an immediate consequence of (1.16) and the Lipschitz continuity of the semigroup S.

Remark 1.4. Notice that all the functionals QGlimm, Qcubic,Υ are defined on the approximate solution
uε, or, in other words, they depend on ε, even if we do not write this dependence explicitly. What is
important, is that they are decreasing and uniformly (i.e. without any reference to ε) bounded at t = 0.
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1.5. Proof of Theorem 1.3. We conclude this Introduction proving Theorem 1.3 in the general case,
assuming that estimate (1.15) holds and using Bressan’s and Marson’s techniques. Fix T, ε > 0, say
T = īε + ε′ for some integer ī and some ε′ ∈ [0, ε). In connection with a constant δ ≥ ε (whose
precise value will be specified later), we construct a partition of the interval [0, īε] into finitely many
subintervals Ja = [ta, ta+1], inserting the points ta = iaε inductively as follows. Set i0 := 0. If the
integers i0 < i1 < · · · < ia < ī have already been defined, then

(i) if Υε(iaε)−Υε
(
(ia + 1)ε

)
≤ δ, let ia+1 be the largest integer ≤ ī such that (ia+1 − ia)ε ≤ δ and

Υε(iaε)−Υε(ia+1ε) ≤ δ;
(ii) if Υε(iaε)−Υa

(
(ia + 1)ε

)
> δ, define ia+1 := ia + 1.

Clearly iA = ī for some integer A ≤ ī. Call A′,A′′ respectively the set of indices a for which the alternative
(i), (ii) holds. Observe that the cardinalities of these sets can be bounded by

(1.17) E_bd_card_a ]A′, ]A′′ ≤ O(1)
T

δ
Tot.Var.(u0)2 ≤ O(1)

T

δ

On each subinterval Ja, a ∈ A′ we can apply (1.15), thus obtaining∥∥uε(ia+1ε)− S(ia+1−ia)εu
ε(iaε)

∥∥
1

≤ O(1)

[(
Υε(ia+1ε)−Υε(iaε)

)
+

1 + log(ia+1 − ia)

ia+1 − ia
+ ε

]
(ia+1 − ia)ε.

(1.18) E_a’

On the other hand, on each interval Ja with a ∈ A′′, the 1-Lipschitz continuity of uε : [0,∞)→ L1(R;Rn)
implies that

(1.19) E_a’’
∥∥uε(ia+1ε)− S(ia+1−ia)εu

ε(iaε)
∥∥

1
≤ (ia+1 − ia)ε = ε.

Using the Lipschitz property (1.11) of the semigroup we get∥∥uε(̄iε)− Sīεuε(0)
∥∥ ≤ A−1∑

a=0

∥∥∥S(̄i−ia+1)εu(ia+1ε)− S(̄i−ia)εu(iaε)
∥∥∥

1

≤ L
A−1∑
a=0

∥∥∥u(ia+1ε)− S(ia+1−ia)εu(iaε)
∥∥∥

1

(by (1.18)-(1.19)) ≤ O(1)

{ ∑
a∈A′

[(
Υε(ia+1ε)−Υε(iaε)

)
+

1 + log(ia+1 − ia)

ia+1 − ia
+ ε

]
(ia+1 − ia)ε

+
∑
a∈A′′

ε

}

(by Points (i), (ii) above) ≤ O(1)

{ ∑
a∈A′

(
δ2 + ε+ ε log

δ

ε
+ εδ

)
+
∑
a∈A′′

ε

}

(by (1.17)) ≤ O(1)T

(
δ +

ε

δ
+
ε

δ
log

δ

ε
+ ε

)
Hence ∥∥uε(T )− STu0

∥∥ ≤ ∥∥uε(T )− uε(̄iε)
∥∥+

∥∥uε(̄iε)− Sīεuε(0)
∥∥

+
∥∥Sīεuε(0)− Sīεu0

∥∥+
∥∥Sīεu0 − STu0

∥∥
≤ O(1) max{1, T}

(
δ +

ε

δ
+
ε

δ
log

δ

ε
+ ε

)
.

(1.20) E_final_est

Since (1.20) holds for any δ ≥ ε, choosing δ(ε) :=
√
ε log | log ε|, we finally obtain (1.12).

?〈Ss_notation〉? 1.6. Notations.

• For any s ∈ R, define

I(s) :=

{
(0, s] if s ≥ 0,

[s, 0) if s < 0.
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• Let X be any set and let f : I(s′)→ X, g : s′ + I(s′′)→ X;
– if s′s′′ ≥ 0 and f(s′) = g(s′), define

(1.21) E_f_cup_g f ∪ g : I(s′ + s′′)→ X,
(
f ∪ g

)
(x) :=

{
f(x) if x ∈ I(s′),

g(x) if x ∈ s′ + I(s′′);

– if s′s′′ < 0, define

(1.22) E_f_vartr_gf M g : I(s′ + s′′)→ X, (f M g)(x) :=

{
f(x) if |s′| ≥ |s′′|, x ∈ I(s′ + s′′),

g(x− s′) if |s′| < |s′′|, x ∈ I(s′ + s′′).

• For a continuous real valued function f , we denote its convex envelope in the interval [a, b] as
conv
[a,b]

f .

• Given a totally ordered set (A,�), we define a partial pre-ordering on 2A setting, for any I, J ⊆ A,

I ≺ J if and only if for any a ∈ I, b ∈ J it holds a ≺ b.

We will also write I � J if either I ≺ J or I = J , i.e. we add the diagonal to the relation, making
it a partial ordering.

• The L∞ norm of a map g : [a, b] → Rn will be denoted either by ‖g‖∞ or by ‖g‖L∞([a,b]), if we

want to stress the domain of g; similar notation for the L1-norm.
• Given a C1 map g : R→ R and an interval I ⊆ R, possibly made by a single point, let us define

the Rankine-Hugoniot speed

σrh(g, I) :=


g(sup I)− g(inf I)

sup I − inf I
, if I is not a singleton,

dg

du
(I), if I is a singleton.

2. Summary of the paper [3] with a modified version of the quadratic potential

In [3] an estimate on the change of the speeds of the infinitesimal waves present in a Glimm approximate
solution uε is provided. This estimate is achieved in two steps. First of all it is proved that at each grid
point (iε,mε), i ∈ N, m ∈ Z, the change in speed of the waves interacting at (iε,mε) is bounded by a
quantity A(iε,mε), called amount of interaction. Then it is shown that there exists an uniformly bounded,
decreasing functional t 7→ Υ(t) such that at each time iε∑

m∈Z
A(iε,mε) ≤ O(1)

(
Υ(iε−)−Υ(iε+)

)
.

The functional Υ(t) is defined as the sum of some already known decreasing functionals (see Section 2.4
below) and of a new quadratic functional t 7→ Q(t), whose definition requires a careful analysis of waves
collisions. Aim of this section is to summarize the main results present in the cited paper [3], providing
however in the meanwhile a stronger definition of the functional Q(t). This stronger definition is needed
to prove in Section 5 estimate (1.15) and thus Theorem 1.3.

〈Ss:rp〉 2.1. Entropic self similar solution to the Riemann problem. As we pointed out in Section 1.1,
the crucial point to solve the Riemann problem (1.1)-(1.4) is to find, for any left state uL, a curve
s 7→ T ks u

L of admissible right state, defined for |s| � 1, such that the Riemann problem (uL, T ks u
L)

can be solved by (countable many) admissible shocks (in the sense of limit of viscosity approximations),
contact discontinuities and rarefaction waves. In the GNL/LD case the admissible curve s 7→ T ks u

L

coincides with the rarefaction curve for s ≥ 0 and with the shock curve for s ≤ 0 (see [5]). In the general
case, however, the situation is much more difficult and the problem was completely solved by Bianchini
and Bressan in [2]. Here we describe just the main points of their construction, in order to recall the
notations we will need.

First of all, for any index k ∈ {1, . . . , n}, through a Center Manifold technique, one can find a neigh-
borhood of the point (0, 0, λk(0)) of the form

Dk :=
{

(u, vk, σk) ∈ Rn × R× R
∣∣ |u| ≤ ρ, |vk| ≤ ρ, |σk − λk(0)| ≤ ρ

}
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for some ρ > 0 (depending only on f) and a smooth vector field

r̃k : Dk → Rn, r̃k = r̃k(u, vk, σk),

satisfying

(2.1) E_generalized_eigenvectorr̃k(u, 0, σk) = rk(u),

∣∣∣∣ ∂r̃k∂σk
(u, vk, σk)

∣∣∣∣ ≤ O(1)
∣∣vk∣∣.

We will call r̃k the k-generalized eigenvector. The characterization of r̃k is that

Dk 3 (u, vk, σk) 7→
(
u, vkr̃k, σk

)
∈ Rn × Rn × R

is a parameterization of a center manifold near the equilibrium (0, 0, λk(0)) ∈ Dk for the ODE of traveling
waves (

A(u)− σI
)
ux = uxx ⇐⇒


ux = v

vx = (A(u)− σI)v
σx = 0

where A(u) = Df(u), the Jacobian matrix of the flux f , and I is the identity n× n matrix.

Associated to the generalized eigenvectors, we can define smooth functions λ̃k : Dk → R by

λ̃k(u, vk, σk) :=
〈
lk(u), A(u)r̃k(u, vk, σk)

〉
.

We will call λ̃k the k-generalized eigenvalue. By (2.1) and the definition of λ̃k, we can get

(2.2) E_delambdasudev λ̃k(u, 0, σk) = λk(u),

∣∣∣∣∂λ̃k∂σk
(u, vk, σk)

∣∣∣∣ ≤ O(1)|vk|.

For the construction of the generalized eigenvectors and eigenvalues and the proof of (2.1), (2.2), see
Section 4 of [2].

Then, by a fixed point technique one can now prove that there exist η > 0 (depending only on f),
such that for any

k ∈ {1, . . . , n}, uL ∈ B(0, ρ/2), 0 ≤ s < η,

there is a curve
γ : [0, s] → Dk

τ 7→ γ(τ) = (u(τ), vk(τ), σk(τ))

such that u, vk ∈ C1,1([0, s]), σk ∈ C0,1([0, s]) and this curve is the unique solution to the system

(2.3) E_fixed_pt



u(τ) = uL +

∫ τ

0

r̃k(γ(ς))dς

vk(τ) = fk(γ; τ)− conv
[0,s]

fk(γ; τ)

σk(τ) =
d

dτ
conv
[0,s]

fk(γ; τ)

where

(2.4) E_reduced_flux fk(γ; τ) :=

∫ τ

0

λ̃k(γ(ς))dς.

and conv[0,s] fk is the convex envelope of fk in the interval [0, s]:

conv
[a,b]

g(u) := sup

{
h(u)

∣∣∣ h : [a, b]→ R is convex and h ≤ g
}
.

In the case s < 0 a completely similar result holds, replacing the convex envelope with the concave one.
If we want to stress the dependence of the curve γ on uL and s we will use the notation

γ(uL, s)(τ) =
(
u(uL, s)(τ), vk(uL, s)(τ), σk(uL, s)(τ)

)
.

Finally the curve of admissible right states (−η, η) 3 s 7→ T ks u
L is defined as T ks u

L := u(uL, s)(s).
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〈Ss:elem_estim〉 2.2. Elementary estimates on two merging Riemann problems. Consider two contiguous Rie-
mann problem

(2.5) E_two_riemann_1 uM = Tns′n ◦ · · · ◦ T
1
s′1
uL, uR = Tns′′n ◦ · · · ◦ T

1
s′′1
uM ,

and the Riemann problem obtained joining them,

uR = Tnsn ◦ · · · ◦ T
1
s1u

L.

In particular the incoming curves are

γ′1 = (u′1, v
′
1, σ
′
1) := γ1(uL, s′1), γ′k = (u′k, v

′
k, σ
′
k) := γk

(
u′k−1(s′k−1), s′k

)
for k = 2, . . . , n,

γ′′1 = (u′′1 , v
′′
1 , σ

′′
1 ) := γ1(uM , s′′1), γ′′k = (u′′k , v

′′
k , σ

′′
k ) := γk

(
u′′k−1(s′′k−1), s′′k

)
for k = 2, . . . , n,

while the outcoming ones are

γ1 = (u1, v1, σ1) := γ1(uL, s1), γk = (uk, vk, σk) := γk
(
uk−1(sk−1), sk

)
for k = 2, . . . , n.

We will denote by f ′k, f
′′
k , fk the reduced fluxes associated by (2.4) to γ′k, γ

′′
k , γk respectively; for simplicity,

we will assume that γ′′k and f ′′k are defined on s′k + I(s′′k), instead of I(s′′k) and f ′′k (s′k) = f ′k(s′k): indeed,

it is clear that adding a constant to f̃k does not vary system (2.3).
Fix an index k ∈ {1, . . . n} and consider the points (Figure 1)

uL1 := uL, uLk := T k−1
s′′k−1
◦ T k−1

s′k−1
◦ · · · ◦ T 1

s′′1
◦ T 1

s′1
uL, k ≥ 2

uMk := T ks′k
uLk , uRk := T ks′′k

uMk , k = 1, . . . , n.

By definition, the Riemann problem between uLk and uMk is solved by a wavefront of the k-th family with
strength s′k and the Riemann problem between uMk and uRk is solved by a wavefront of the k-th family
with strength s′′k . Denote by γ̃′k = (ũ′k, ṽ

′
k, σ̃
′
k) the curve which solves the Riemann problem [uLk , u

M
k ] and

by f̃ ′k the associated reduced flux (see (2.4)).

Similarly, let γ̃′′k = (ũ′′k , ṽ
′′
k , σ̃

′′
k ) be the curve solving the Riemann problem [uMk , u

R
k ] and let f̃ ′′k be the

associated reduced flux. Clearly, γ̃′k, f̃ ′k are defined on I(sk), while, since we are going to perform the

patching (1.21), (1.22)), we will assume as above that γ̃′′k and f̃ ′′k are defined on s′k + I(s′′k) (instead of

I(s′′k)) and that f̃ ′′k (s′k) = f̃ ′k(s′k)..
As in [3], define the following quantities, called amounts of interaction.

?〈D_atrans〉?Definition 2.1. The quantity

Atrans(uL, uM , uR) :=
∑

1≤h<k≤n

|s′k||s′′h|

is called the transversal amount of interaction associated to the two Riemann problems (2.5).

For s′k > 0, we define cubic amount of interaction of the k-th family for the two Riemann problems
(uL, uM ), (uM , uR) as follows:

(1) if s′′k ≥ 0,

Acubic
k (uL, uM , uR) :=

∫ s′k

0

[
conv
[0,s′k]

f ′k(τ)− conv
[0,s′k+s′′k ]

(
f ′k ∪ f ′′k

)
(τ)
]
dτ

+

∫ s′k+s′′k

s′k

[
conv
[s′k,s

′′
k ]
f ′′k (τ)− conv

[0,s′k+s′′k ]

(
f ′k ∪ f ′′k

)
(τ)
]
dτ ;

(2) if −s′k ≤ s′′k < 0

Acubic
k (uL, uM , uR) :=

∫ s′k+s′′k

0

[
conv

[0,s′k+s′′k ]
f ′k(τ)− conv

[0,s′k]
f ′k(τ)

]
dτ

+

∫ s′k

s′k+s′′k

[
conc

[s′k+s′′k ,s
′
k]
f ′k(τ)− conv

[0,s′k]
f ′k(τ)

]
dτ ;
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γ′1 = γ̃′1

uM1

γ′2

γ′3

γ′′1
γ′′2

γ′′3

γ̃′′1

γ̃′2

uR1 = uL2

γ̃′′2

uM2

γ̃′3

uR2 = uL3

γ̃′′3uM3

uR3

uL1 = uL

uM

uR

Figure 1. Elementary curves of two interacting Riemann problems before and after
transversal interactions.

〈F_el_curves_after_trans〉

(3) if s′′k < −s′k,

Acubic
k (uL, uM , uR) :=

∫ 0

s′k+s′′k

[
conc

[s′k+s′′k ,s
′
k]
f ′′k (τ)− conc

[s′k+s′′k ,0]
f ′′k (τ)

]
dτ

+

∫ s′k

0

[
conc

[s′k+s′′k ,s
′
k]
f ′′k (τ)− conv

[0,s′k]
f ′′k (τ)

]
dτ.

Similar definitions can be given if s′k < 0, interchanging convex envelopes with concave.

The amount of cancellation of the k-th family is defined by

Acanc
k (uL, uM , uR) :=

{
0 if s′ks

′′
k ≥ 0,

min{|s′k|, |s′′k |} if s′ks
′′
k < 0.

The amount of creation of the k-th family is defined by

Acr
k (uL, uM , uR) :=

[
|sk| − |s′k + s′′k |

]+
.

If s′ks
′′
k ≥ 0, we define the quadratic amount of interaction of the k-family associated to the two Riemann

problems (2.5) by

A
quadr
k (uL, uM , uR) :=


f̃ ′k(s′k)− conv[0,s′k+s′′k ]

(
f̃ ′k ∪ f̃ ′′k

)
(s′k) if s′k > 0, s′′k > 0,

conc[s′k+s′′k ,0]

(
f̃ ′k ∪ f̃ ′′k

)
(s′k)− f̃ ′k(s′k) if s′k < 0, s′′k < 0,

0 if s′ks
′′
k ≤ 0.

Finally we define the total amount of interaction associated to the two Riemann problems (2.5) as

A(uL, uM , uR) := Atrans(uL, uM , uR) +

n∑
h=1

(
A

quadr
h (uL, uM , uR) +Acanc

h (uL, uM , uR) +Acubic
h (uL, uM , uR)

)
.

It is well known (see [1]) that
n∑
k=1

∣∣sk − (s′k + s′′k)
∣∣ ≤ O(1)

[
Atrans(uL, uM , uR) +

n∑
k=1

Acubic
k (uL, uM , uR)

]
.

and thus

Acr
k (uL, uM , uR) ≤ Atrans(uL, uM , uR) +

n∑
h=1

Acubic
h (uL, uM , uR).
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The distance between incoming and outgoing Riemann problems can be estimated as follows (see [3],
Theorem 3.3).

?〈T_general〉?Theorem 2.2. For any k = 1, . . . , n,

• if s′ks
′′
k ≥ 0, then∥∥(u′k ∪ u′′k)− uk

∥∥
L∞(I(s′k+s′′k )∩I(sk))∥∥(v′k ∪ v′′k )− vk
∥∥
L∞(I(s′k+s′′k )∩I(sk))∥∥(σ′k ∪ σ′′k )− σk
∥∥
L1(I(s′k+s′′k )∩I(sk))∥∥∥∥(d2f ′k

dτ2
∪ d

2f ′′k
dτ2

)
− d2fk

dτ2

∥∥∥∥
L1(I(s′k+s′′k )∩I(sk))


≤ O(1)A(uL, uM , uR);

• if s′ks
′′
k < 0, then∥∥(u′k M u

′′
k)− uk

∥∥
L∞(I(s′k+s′′k )∩I(sk))∥∥(v′k M v

′′
k )− vk

∥∥
L∞(I(s′k+s′′k )∩I(sk))∥∥(σ′k M σ

′′
k )− σk

∥∥
L1(I(s′k+s′′k )∩I(sk))∥∥∥∥(d2f ′k

dτ2
M
d2f ′′k
dτ2

)
− d2fk

dτ2

∥∥∥∥
L1(I(s′k+s′′k )∩I(sk))


≤ O(1)A(uL, uM , uR);

Remark 2.3. In the statement of Theorem 3.3 in [3] only the inequalities about u, σ, d
2fk
dτ2 are explicitly

proved, while the ones about v are not. However it is not difficult to see that the proof used for u, σ and
d2fk
dτ2 can be adapted also to v.

〈Ss:lagr:repr:glimm〉 2.3. Lagrangian representation for the Glimm approximate solution uε. In this section we recall
the notion, introduced in [3], of Lagrangian representation of an approximate solution uε obtained by
the Glimm scheme to the Cauchy problem (1.1)-(1.3), and we state the theorem about the existence of
a Lagrangian representation satisfying some useful additional properties. At the end of the section we
introduce some notions related to the Lagrangian representation; in particular, the notion of effective flux
feff
k (t) of the k-th family at time t.

Let us first introduce some notation related to the Glimm approximate solution uε. For any grid point
(iε,mε), i ≥ 0, m ∈ Z, set

ui,m := uε(iε,mε),

and assume that the Riemann problem (ui,m−1, ui,m) is solved by

ui,m = Tn
si,mn
◦ · · · ◦ T 1

si,m1

ui,m−1.

moreover denote by

σi,mk : I(si,mk )→ R, k = 1, . . . , n,

the speed function of the k-th wavefront solving the Riemann problem (ui,m−1, ui,m).
Let us introduce also the following notation for the transversal, cubic and quadratic amounts of interaction
and for the amounts of creation and cancellation related to the two Riemann problems (ui,m−1, ui−1,m−1),
(ui−1,m−1, ui,m) which interact at grid point (iε, (m− 1)ε):

Atrans(iε,mε) := Atrans(ui,m−1, ui−1,m−1, ui,m),

and for k = 1, . . . , n,

Acubic
k (iε,mε) := Acubic

k (ui,m−1, ui−1,m−1, ui,m),

Acanc
k (iε,mε) := Acanc

k (ui,m−1, ui−1,m−1, ui,m),

Acr
k (iε,mε) := Acr

k (ui,m−1, ui−1,m−1, ui,m)

A
quadr
k (iε,mε) := A

quadr
k (ui,m−1, ui−1,m−1, ui,m).
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Let us begin now introduce the notion of Lagrangian representation. Given a piecewise constant
approximate solution uε constructed by the Glimm scheme (see Section 1.2), for any time t ≥ 0 define
the quantities

L+
k (t) :=

∑
m∈Z

[
si,mk

]+
, L−k (t) := −

∑
m∈Z

[
si,mk

]−
, if t ∈ [iε, (i+ 1)ε).

It is easy to see that |L+
k (t)|+ |L−k (t)| ≤ O(1)Tot.Var.(uε(t)).

Definition 2.4. A Lagrangian representation for uε is a set W called the set of waves, together with

• the maps

family :W → {1, . . . , n} the family of the wave w ∈ W,

S :W → {±1} the sign of the wave w ∈ W,

tcr :W → [0,+∞) the creation time of the wave w ∈ W,

tcanc :W → (0,+∞] the cancellation time of the wave w ∈ W,

• a relation, which we will denote by ≤,
• the map, called position function,

x :
{

(t, w) ∈ [0,∞)×W
∣∣ tcr(w) ≤ t < tcanc(w)

}
→ R,

which satisfy the conditions (1)-(4) below.
For the sake of convenience, set

Wk :=
{
w ∈ W

∣∣ family(w) = k
}
,

Wk(t) :=
{
w ∈ Wk

∣∣ tcr(w) ≤ t < tcanc(w)
}
,

W±k (t) :=
{
w ∈ Wk(t)

∣∣ S(w) = ±1
}
.

The additional conditions to be satisfied by a Lagrangian representation are the following:

(1) for any family k, time t, sign ±1, the relation ≤ is a total order both on W+
k (t) and on W−k (t); if

I ⊆ W±k (t) is an interval in the order set (W±k (t),≤), we will say that I is an interval of waves
(i.o.w.) at time t;

(2) the map x satisfies:
(a) for fixed time t, x(t, ·) :Wk(t)→ R is increasing;
(b) for fixed w ∈ W, the map x(·, w) : [tcr(w), tcanc(w))→ R is Lipschitz;

?〈Point_2c_lagra〉? (c) for any point (t̄, x̄) ∈ [0,+∞)× R, all the waves in

Wk(t̄, x̄) := x(t̄)−1(x̄) ∩Wk

have the same sign;
〈Pt_isomorph_ordered_sets〉 (3) there exist maps Φk(t) :Wk(t)→ I

(
L−k (t)

)
∪I
(
L+
k (t)

)
such that Φk(t)|W+

k (t) :W+
k (t)→ I

(
L+
k (t)

)
is an isomorphism of ordered sets, while Φk(t)|W−k (t) : W−k (t) → I

(
L−k (t)

)
is an antisomorphism

of ordered sets;
?〈Point_4_lagr_repr〉? (4) there exist maps γ̂k(t) :Wk(t)→ Dk ⊆ Rm × R× R, γ̂k(t) =

(
ûk(t), v̂k(t), σ̂k(t)

)
, such that

(a) for any x̄ ∈ R, setting

uL := lim
x→x̄−

uε(t, x), uR := lim
x→x̄+

uε(t, x),

the collection of curves{
Φk(t)

(
Wk(t, x̄)

)
3 τ 7→ γ̂k

(
t,Φk(t)−1(τ)

)}
k=1,...,n

,

solves the Riemann problem (uL, uR);
(b) for any w ∈ W±k (iε), if tcanc(w) ≥ (i+ 1)ε, then for any time t ∈ [iε, (i+ 1)ε) it holds

(2.6) ?E_ode? x(t, w) =

{
x(iε, w) if ϑi+1 ≥ σ̂k(iε, w),

x(iε, w) + (t− iε) if ϑi+1 < σ̂k(iε, w).

The following theorem is exaclty [3, Theorem 4.1].
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?〈T_lagrangian〉?Theorem 2.5. There exists at least one Lagrangian representation for the approximate solution uε
constructed by the Glimm scheme, which moreover satisfies the following conditions: for any grid point
(iε,mε) ∈ Nε× Zε,

?〈Pt_iow_cons〉? (a) the set Wk(iε,mε) ∩Wk((i− 1)ε) is an i.o.w. both at time (i− 1)ε and at time iε, while the set
Wk(iε,mε) \Wk((i− 1)ε) is an i.o.w. at time iε;

?〈Pt_affine〉? (b) the map

Φk((i− 1)ε)(Wk(iε,mε) ∩Wk((i− 1)ε))
Φk(iε)◦Φk((i−1)ε)−1

−→ Φk(iε)(Wk(iε,mε) ∩Wk((i− 1)ε))

is an affine map with Lipschitz constant equal to 1.

〈D:iow〉Definition 2.6. Fix t̄ ≥ 0. Let I ⊆ Wk(t̄) be an interval of waves at time t̄. Set I := Φk(t̄)(I). By
Property (3) of the Definition of Lagrangian representation, I is an interval in R (possibly made by a
single point). Let us define:

• the Rankine-Hugoniot speed given to the interval of waves I by a function g : R→ R as

σrh(g, I) :=

{
g(sup I)−g(inf I)

sup I−inf I if I is not a singleton,

g′(I) if I is a singleton;

• for any w ∈ I, the entropic speed given to the wave w by the Riemann problem I and the flux
function g as

σent(g, I, w) :=


d

dτ
conv
I

g
(

Φk(t̄)(w)
)

if Sk(w) = +1,

d

dτ
conc
I

g
(

Φk(t̄)(w)
)

if Sk(w) = −1.

If σrh(g, I) = σent(g, I, w) for any w ∈ I, we will say that I is entropic w.r.t. the function g.
We will also say that the Riemann problem I with flux function g divides w,w′ if σent(g, I, w) 6=

σent(g, I, w′).
〈D_effect_flux〉Definition 2.7. For each family k = 1, . . . n and for each time t ≥ 0 define the effective flux of the k-th

family at time t as any C1,1 function

feff
k (t, ·) : [L−k , L

+
k ]→ R

whose second derivative satisfies the following relation:

∂2feff
k (t, ·)
∂τ2

(τ) :=
dλ̃(γ̂(t, w))

dτ
,

for L1-a.e. τ ∈ [L−k , L
+
k ], where w = Φk(t)−1(τ).

〈Ss:known.fcn〉 2.4. Glimm-type functionals. We have already observed (see Sections 1.2, 1.3) that the main tool to
get a priori estimates on the Glimm approximate solutions is to find suitable decreasing functional. Here
we recall the definitions of some Glimm-type functional, which we will use throughout the paper.

Definition 2.8. Define the total variation along curves as

V (t) :=

n∑
k=1

∑
m∈Z
|si,mk |, for any t ∈ [iε, (i+ 1)ε).

Define the transversal interaction functional as

Qtrans(t) :=

n∑
k=1

k−1∑
h=1

∑
m>m′

|si,m
′

k ||si,mh |, for any t ∈ [iε, (i+ 1)ε).

Define the cubic interaction functional as

Qcubic(t) :=

n∑
k=1

∑
m,m′∈Z

∫
I(si,mk )

∫
I(si,m

′
k )

∣∣σi,mk (τ)− σi,m
′

k (τ ′)
∣∣dτ ′dτ.

The following statements hold: for the proofs, see [5], [1].
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?〈P_V_equiv_TV〉?Proposition 2.9. There exists a constant C > 0, depending only of the flux f , such that for any time
t ≥ 0

1

C
Tot.Var.(u(t)) ≤ V (t) ≤ CTot.Var.(u(t)).

?〈T_cubic_potential〉?Theorem 2.10. The following hold:

(1) the functionals t 7→ V (t), Qtrans(t), Qcubic(t) are constant on each interval [iε, (i+ 1)ε);
(2) they are bounded by powers of the Tot.Var.(u(t)) as follows:

V (t) ≤ O(1)Tot.Var.(u(t)),

Qtrans(t) ≤ O(1)Tot.Var.(u(t))2,

Qcubic(t) ≤ O(1)Tot.Var.(u(t))3;

(3) there exist constants c1, c2, c3 > 0, depending only on the flux f , such that for any i ∈ N, defining

Qknown(t) := c1V (t) + c2Q
trans(t) + c3Q

cubic(t),

it holds

(2.7) E:qknown

∑
m∈Z

[
Atrans(iε,mε) +

n∑
k=1

(
Acanc
k (iε,mε) + Acubic

k (iε,mε)
)]
≤ Qknown((i− 1)ε)−Qknown(iε).

2.5. Analysis of waves collisions. This section corresponds to [3, Section 5]. Here however we intro-
duce a new definition of characteristic interval associated to a pair of waves (w,w′) and a new definition
of the partition of this interval. These new definitions provide the correct setting to define the new
quadratic interaction potential which we are going to introduce in Section 2.6 and which will be used in
Section 5 to prove estimate (1.15) and thus Theorem 1.3.

We first introduce the following equivalence relation ./: for any fixed time t̄ ∈ [iε, (i+ 1)ε) and for any
couple of waves w,w′ ∈ Wk(t), we set w ./ w′ if and only if

(2.8) E:equiv:rel tcr(w) = tcr(w′) and x(t, w) = x(t, w′) for any t ∈
[
tcr(w), (i+ 1)ε

)
.

and we denote the equivalence classes as

E(t̄, w) :=
{
z ∈ Wk(t̄)

∣∣∣ tcr(z) = tcr(w) and x(t, w) = x(t, z) for any t ∈
[
tcr(w), (i+ 1)ε

)}
.

?〈D_interagite_non_interagite〉?Definition 2.11. Let t̄ be a fixed time and let w,w′ ∈ Wk(t̄). We say that

• w,w′ interact at time t̄ if x(t̄, w) = x(t̄, w′);
• w,w′ have already interacted at time t̄ if there is t ≤ t̄ such that w,w′ interact at time t;
• w,w′ have never interacted at time t̄ if for any t ≤ t̄, they do not interact at time t.
• w,w′ will interact after time t̄ if there is t > t̄ such that w,w′ interact at time t.
• w,w′ are joined in the real solution at time t̄ if there is a right neighborhood of t̄, say [t̄, t̄ + ζ),

such that they interact at any time t ∈ [t̄, t̄+ ζ);
• w,w′ are divided in the real solution at time t̄ if they are not joined at time t̄.

?〈R_divise_solo_in_cancellazioni〉?Remark 2.12. It t̄ 6= iε for each i ∈ N, then two waves are divided in the real solution if and only if
they have different position. If t̄ = iε, they are divided if there exists a time t > t̄, arbitrarily close to t̄,
such that w,w′ have different positions at time t.

Definition 2.13. Fix a time t̄ and two k-waves w,w′ ∈ Wk(t̄), w < w′. Assume that w,w′ are divided in
the real solution at time t̄. Define the time of last splitting tsplit(t̄, w, w′) (if w,w′ have already interacted
at time t̄) and the time of next interaction tint(t̄, w, w′) (if w,w′ will interact after time t̄) by the formulas

tsplit(t̄, w, w′) := max
{
t < t̄ | x(t, w) = x(t, w′)

}
tint(t̄, w, w′) := min

{
t > t̄ | x(t, w) = x(t, w′)

}
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Given two k-waves w,w′ ∈ Wk and given a time t ∈ [0,∞), we define the property

p(t, w,w′) :
“either w,w′ ∈ Wk(t) and they are divided at time t in the real solution

or at least one between w,w′ does not belong to Wk(t)”.

Definition 2.14. Let t1 ≤ t2, be two times. Let w,w′ ∈ Wk(t2) be two k-waves. Assume that they have
the same sign and that they satisfy p(t1, w, w

′). We define the characteristic interval I(t1, t2, w, w
′) of

w,w′ at time t2 starting from time t1 as follows. Assume first that t2 = iε for some i ∈ N.

(1) If at least one between w,w′ does not belong to Wk(t1) or w,w′ ∈ Wk(t1), but they have never
interacted at time t1, then

(2.10) ?E_I_mai_int?

I(t1, t2, w, w
′) =


{
z ∈ Wk(t2)

∣∣ S(z) = S(w) and z < E(t2, w
′)
}
∪ E(t2, w

′) if tcr(w) ≤ tcr(w′),

E(t2, w) ∪
{
z ∈ Wk(t2)

∣∣ S(z) = S(w) and z > E(t2, w)
}

if tcr(w) > tcr(w′);

(2) If w,w′ ∈ Wk(t1) and they have already interacted at time t1, we have to distinguish two cases:
(a) if t1 = tsplit(t1, w, w

′), then argue by recursion:
?〈Point_2a_def_inter〉? • if t2 = t1 = tsplit(t1, w, w

′), set

I(t1, t2, w, w
′) :=W(t1, x(t1, w)) =W(t1, x(t1, w

′));

?〈Point_2b_def_inter〉? • if t2 = iε > (i − 1)ε ≥ t1 = tsplit(t1, w, w
′), define I(t1, t2, w, w

′) as the smallest
interval in (W±k (t2),≤) which contains I(t1, (i− 1)ε, w,w′) ∩Wk(t2), i.e.

I(t1, t2,w, w
′) :=

{
z ∈ Wk(t2)

∣∣∣ S(z) = S(w) = S(w′)

and ∃ y, y′ ∈ I(t1, (i− 1)ε, w,w′) ∩Wk(t2) such that y ≤ z ≤ y′
}
.

(b) if t1 > tsplit(t1, w, w
′), set

I(t1, t2, w, w
′) = I(tsplit(t1, w, w

′), t2, w, w
′)

.

Finally set

I(t1, t2, w, w
′) := I(t1, iε, w,w

′) for t2 ∈ [iε, (i+ 1)ε).

As in [3], we define now a partition P(t1, t2, w, w
′) of the characteristic interval I(t1, t2, w, w

′), with
the properties that each element of P(t1, t2, w, w

′) is an interval of waves at time t2, entropic w.r.t. the
flux feff

k (t2) of Definition 2.7.

Definition 2.15. As before, let t1 ≤ t2, be two times. Let w,w′ ∈ Wk(t2) be two k-waves. Assume that
they have the same sign and that they satisfy p(t1, w, w

′). Assume first that t2 = iε, i ∈ N.

(1) If at least one between w,w′ does not belong to Wk(t1) or w,w′ ∈ Wk(t1), but they have never
interacted at time t1, then the equivalence classes of the partition P(t1, t2, w, w

′) are singletons.
(2) Assume now that w,w′ have already interacted at time t1; we distinguish two cases:

(a) if t1 = tsplit(t1, w, w
′), argue by recursion:

• if t2 = t1 = tsplit(t1, w, w
′), then P(t1, t2, , w, w

′) is given by the equivalence relation

z ∼ z′ ⇐⇒
{
z, z′ are not divided by the Riemann problem Wk(t1, x(t1, w))

with flux function feff
k (t1, ·);

?〈Point_2b_part_I〉?
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• if t2 = iε > (i − 1)ε ≥ t1 = tsplit(t1, w, w
′), then P(t1, t2, w, w

′) is given by the
equivalence relation

z ∼ z′ ⇐⇒




z, z′ belong to the same

equivalence class J ∈ P(t1, (i− 1)ε, w,w′)

and the Riemann problem J ∩Wk(t2)

with flux feff
k (t2, ·) does not divide them


or[
tcr(z) = tcr(z′) = t2 and z = z′

]
.

It is not difficult to see that the previous definition is well posed, since J ∩W(iε) is
an interval of waves at time iε.

(b) if t1 > tsplit(t1, w, w
′), set

P(t1, t2, w, w
′) = P(tsplit(t1, w, w

′), t2, w, w
′)

Finally extend the definition of P(t1, t2, w, w
′) for any time t2 ∈ [iε, (i+ 1)ε), setting

P(t1, t2, w, w
′) = P(t1, iε, w,w

′) for any t̄ ∈ [iε, (i+ 1)ε).

We collect now the main results about the characteristic interval and its partition. In this paper the
definitions of the characteristic interval I(t1, t2, w, w

′) and of the associated partition P(t1, t2, w, w
′) are

different from the analog definitions given in [3]. However the results we present now can be proved with
the same techniques as in [3, Section 5]. For this reason we just state the results, omitting the proofs.

The following proposition corresponds to [3, Proposition 5.12] and can be proved in an similar way.

〈P_divise_partizione_implica_divise_realta〉Proposition 2.16. Let t1 ≤ t2, be two times. Let w,w′ ∈ Wk(t2) be two k-waves. Assume that they
have the same sign and that they satisfy p(t1, w, w

′). Let J ∈ P(t1, t2, w, w
′). Then x(t2, ·) is constant

on J and J is an entropic interval of waves at time t2 w.r.t. the flux function feff
k (t2, ·).

Definition 2.17. Let A,B two sets, A ⊆ B. Let P be a partition of B. We say that P can be restricted
to A if for any C ∈ P, either C ⊆ A or C ⊆ B \A. We also write

P|A :=
{
C ∈ P

∣∣ C ⊆ A}.
Clearly P can be restricted to A if and only if it can be restricted to B \A.

The following proposition is the equivalent to [3, Proposition 5.14] and can be proved in an analogous
way.

〈P_partition_restr〉Proposition 2.18. Let t1 ≤ t2, be two times. Let w,w′, z, z′ ∈ Wk(t2) be two k-waves, z ≤ w < w′ ≤
z′. Assume that they have the same sign and that they satisfy both p(t1, w, w

′) and p(t1, z, z
′). Then

P(t1, t2, z, z
′) can be restricted both to I(t1, t2, z, z

′)∩I(t1, t2, w, w
′) and to I(t1, t2, z, z

′)\I(t1, t2, w, w
′).

The following proposition is the equivalent to [3, Proposition 5.15] and can be proved in an analogous
way.

〈P_stessa_part〉Proposition 2.19. Let t1 ≤ t2, be two times. Let w,w′, z, z′ ∈ Wk(t2) be two k-waves, z ≤ w < w′ ≤ z′.
Assume that they have the same sign and that they satisfy both p(t1, w, w

′) and p(t1, z, z
′).

?〈Point_1_stessa_part〉? (1) If w,w′ ∈ Wk(t1) and they have already interacted at time t1, if z, z′ ∈ I(t1, t2, , w, w
′) and

if tcr(z), tcr(z′) ≤ tsplit(t1, w, w
′), then I(t1, t2, , z, z

′) = I(t1, t2, , w, w
′) and P(t1, t2, z, z

′) =
P(t1, t2, w, w

′).
?〈Point_2_stessa_part〉? (2) If w,w′ ∈ Wk(t1) and they have already interacted at time t1, but at least one wave between z, z′

is created after tsplit(t1, w, w
′), then z, z′ have never interacted at time t1.

?〈Point_3_stessa_part〉? (3) If either w,w′ ∈ Wk(t1) and they have never interacted at time t1, or if at least one between w,w′

does not belong to Wk(t1),
• if tcr(w) ≤ tcr(w′) and z′ ∈ E(t2, w

′), then z, z′ have never interacted at time t1;
• if tcr(w) > tcr(w′) and z ∈ E(t2, w), then z, z′ have never interacted at time t1.
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〈Ss:new:q〉 2.6. New quadratic potential. Let t ∈ [0,+∞) be a fixed time and let w,w′ ∈ Wk(t) be two k-waves
having the same sign. In this section we introduce the weight qk(t, w,w′) of the pair of waves w,w′ at
time t; as we have already pointed out, the definition we present here is different (and stronger) from the
one we gave in [3]. We proceed as follows.
First of all, fix three times t1 ≤ t2 ≤ t3. Assume that w,w′ ∈ Wk(t2) ∩ Wk(t3). Assume also that
p(t1, w, w

′) holds and that t3 ∈ Nε. We set

(2.11) ?E:q? qk(t1, t2, t3, w, w
′) :=

πk(t1, t2, t3, w, w
′)

dk(t1, t2, t3, w, w′)
,

where πk(t1, t2, t3, w, w
′), dk(t1, t2, t3, w, w

′) are defined as follows. Let

J ,J ′ ∈ P(t1, t2, w, w
′), such that w ∈ J , w′ ∈ J ′,

K,K′ ∈ P(t1, t3, w, w
′), such that w ∈ K, w′ ∈ K′

(2.12) E_element_of_part

be the elements of the partition of I(t1, t2, w, w
′) and I(t1, t3, w, w

′) containing w,w′ respectively. Set

(2.13) E_gg’ G := K ∪
{
z ∈ J

∣∣ z > K}, G′ := K′ ∪
{
z ∈ J ′

∣∣ z < K′},
and

B := K ∪
{
z ∈ Wk(t2)

∣∣ S(z) = S(w) = S(w′) and K < z < K′
}
∪ K′.

Using a version of [3, Lemma 5.11] adapted to our new definition of the characteristic intervals and
partitions, one can easily prove that G,G′ are i.o.w.s at time t2. We can thus define

(2.14) ?E_def_pi? πk(t1, t2, t3, w, w
′) :=

[
σrh(feff

k (t2),G)− σrh(feff
k (t2),G′)

]+
and

(2.15) ?E_def_d? dk(t1, t2, t3, w, w
′) := L1

(
Φk(t2)(B)

)
.

〈R:pesi:unif:limit〉Remark 2.20. It is easy to see that qk(t1, t2, t3, w, w
′) is uniformly bounded: in fact,

0 ≤ qk(t1, t2, t3, w, w
′) =

πk(t1, t2, t3, w, w
′)

dk(t1, t2, t3, w, w′)
≤ ‖D2feff

k (t2)‖∞ ≤ O(1).

Fix now two times t1 ≤ t2 such that w,w′ ∈ Wk(t2) and p(t1, w, w
′) holds. Define

(2.16) E:q_senza_int qk(t1, t2, w, w
′) := sup

t3≥t2
t3∈Nε

w,w′∈Wk(t3)

qk(t1, t2, t3, w, w
′).

Finally, for any fixed time t and for any w,w′ ∈ Wk(t), define

(2.17) E:q_senza_spqk(t, w,w′) :=

{
qk(t, t, w, w′), if w,w′ are divided in the real solution at time t2,

0, otherwise.

Remark 2.21. Notice that the definition of the weight q(t, w,w′) is different and stronger from the old
definition of the weight we gave in [3] and which we will denote by qold(t, w,w′). Indeed,

qold
k (t, w,w′) =


qk(t, t, tint(t, w,w′)− ε, w,w′) if w,w′ are divided at time t2

and will interact after time t2,

0 otherwise.

Hence

(2.18) E:qold_vs_qnew qold
k (t, w,w′) ≤ qk(t, w,w′)

As in [3], we can finally define the functional Qk(t) as

Qk(t) := Q+
k (t) + Q−k (t),

where

Q+
k (t) :=

∫ L+
k (t)

0

dτ

∫ L+
k (t)

τ

dτ ′qk
(
t,Φk(t)−1(τ),Φk(t)−1(τ ′)

)
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and

Q−k (t) :=

∫ 0

L−k (t)

dτ

∫ 0

τ

dτ ′qk
(
t,Φk(t)−1(τ ′),Φk(t)−1(τ)

)
.

Remark 2.22. Clearly Qk(t) is constant on the time intervals [iε, (i+ 1)ε) and it changes its value only
at times iε, i ∈ N.

This functional Qk, whose definition is different from the one in [3], still satisfies [3, Theorem 6.3]. We
state now this theorem and we give a brief sketch of how its proof in [3] can be adapted to the new
setting.

〈T:variation_fQ〉Theorem 2.23. For any i ∈ N, i ≥ 1, it holds

Qk(iε)−Qk((i− 1)ε) ≤ −
∑
m∈Z

A
quadr
k (iε,mε) +O(1)Tot.Var.(u(0);R)

∑
m∈Z

A(iε,mε).(2.19) E_main

Sketch of the proof. The proof is analog to the proof of [3, Theorem 6.3]. We just sketch it, without
entering into details. Some notations, which will be used again later, are introduced here.
First of all observe that it is sufficient to prove inequality (2.19) separately for Q+

k and Q−k . Let us thus

concentrate our attention of Q+
k , since the analysis on Q−k is completely similar. For any m ∈ Z, set

JLm := Φk((i− 1)ε)

({
w ∈ W+

k ((i− 1)ε)
∣∣∣ x((i− 1)ε, w) = (m− 1)ε, x(iε, w) = mε

})
,

JRm := Φk((i− 1)ε)

({
w ∈ W+

k ((i− 1)ε)
∣∣∣ x((i− 1)ε, w) = mε, x(iε, w) = mε

})
,

Jm := JLm ∪ JRm,

Km := Φk(iε)
(
Wk(iε,mε) ∩W+

k (iε)
)
,

Sm := Φk((i− 1)ε)
(
Wk(iε,mε) ∩Wk((i− 1)ε)

)
,

Tm := Φk(iε)
(
Wk(iε,mε) ∩Wk((i− 1)ε)

)
.

(2.20) E_trans_surv

Observe that if τ, τ ′ ∈ JLm (or τ, τ ′ ∈ JRm), then w := Φ−1
k ((i − 1)ε)(τ) and w′ := Φ−1

k ((i − 1)ε)(τ ′) are
not divided in the real solution at time (i− 1)ε and thus qk((i− 1)ε, w,w′) = 0.
Similarly, if τ, τ ′ ∈ Km, τ < τ ′, setting again w := Φ−1

k (iε)(τ), w′ := Φ−1
k (iε)(τ ′) then either w,w′ are

not divided at time iε, and thus qk(iε, w,w′) = 0, or they are divided at time iε, i.e. they have different
positions at times t ∈ (iε, (i + 1)ε). In this second case, by definition tsplit(iε, w,w′) = iε; for any fixed
j ∈ N, j ≥ i, with w,w′ ∈ Wk(jε), with notations similar to (2.12)-(2.13), denote by

J ,J ′ ∈ P(iε, iε, w,w′), such that w ∈ J , w′ ∈ J ′,
K,K′ ∈ P(iε, jε, w,w′), such that w ∈ K, w′ ∈ K′.

the element of the partition containing w,w′ at time iε and at time jε respectively, and set

G := K ∪
{
z ∈ J

∣∣ z > K}, G′ := K′ ∪
{
z ∈ J ′

∣∣ z < K′}.
Using the monotonicity properties of the derivative of the convex envelope and the fact that the element
of the partition P(iε, iε, w,w′) are entropic w.r.t. the function feff

k (iε), we obtain

0 ≥ σrh(feff
k (iε),J )− σrh(feff

k (iε),J ′) ≥ σrh(feff
k (iε),G)− σrh(feff

k (iε),G′).

Thus πk(iε, iε, jε, w,w′) = 0 = qk(iε, iε, jε, w,w′), for any j ≥ i such that w,w′ ∈ Wk(jε). Hence, by
(2.16) and (2.17),

qk(iε, w,w′) = qk(iε, iε, w,w′) = sup
j≥i

w,w′∈Wk(jε)

qk(iε, iε, jε, w,w′) = 0.
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We can thus perform the following computation:

Q+
k (iε)−Q+

k ((i− 1)ε)

≤
∑
m<m′

[∫∫
Tm×Tm′

qk

(
iε,Φk(iε)−1(τ),Φk(iε)−1(τ ′)

)
dτdτ ′

+

∫∫
(Km×Km′ )\(Tm×Tm′ )

qk

(
iε,Φk(iε)−1(τ),Φk(iε)−1(τ ′)

)
dτdτ ′

−
∫∫

Sm×Sm′
qk

(
(i− 1)ε,Φk((i− 1)ε)−1(τ),Φk((i− 1)ε)−1(τ ′)

)
dτdτ ′

]

−
∑
m∈Z

∫∫
JLm×JRm

qk((i− 1)ε,Φk

(
(i− 1)ε)−1(τ),Φk((i− 1)ε)−1(τ ′)

)
dτdτ ′.

Now the tree terms in the r.h.s. of the last inequality are estimated separately as follows.

1. The integral over pairs of waves such that at least one of them is created at time iε is estimated
exactly in the same way as is [3, Section 6.3]:

(2.21) E_one_created

∑
m<m′

∫∫
(Km×Km′ )\(Tm×Tm′ )

qk(iε)dτdτ ′ ≤ O(1)Tot.Var.(u(0))
∑
m∈Z

A(iε,mε).

2. The variation of the integral over pairs of waves which exist both at time (i− 1)ε and at time iε
and which do not interact at time iε

(2.22) E_both_conserved

∑
m<m′

[∫∫
Tm×Tm′

qk(iε)dτdτ ′−
∫∫

Sm×Sm′
qk((i− 1)ε)dτdτ ′

]
≤ O(1)Tot.Var.(u(0))

∑
r∈Z

A(iε, rε).

is estimated in the following way:
a) first one adapts the proof of [3, Lemma 6.6] to show that for any t1 ≤ (i − 1)ε < iε ≤ t3,

for any pair of waves w,w′ ∈ Wk(iε)∩Wk(t3), if p(t1, w, w
′) holds, setting mε := x(iε, w) ≤

x(iε, w′) =: m′ε, we have∣∣∣dk(t1, iε, t3, w, w′)− dk(t1, (i− 1)ε, t3, w, w
′)∣∣∣ ≤ O(1)

m′∑
r=m

A(iε, rε),

πk
(
t1, iε, t3, w, w

′)− πk(t1, (i− 1)ε, t3, w, w
′) ≤ O(1)

m′∑
r=m

A(iε, rε),

and thus

(2.23) E:diff:q:genericoqk(t1, iε, t3, w, w
′)− qk(t1, (i− 1)ε, t3, w, w

′) ≤ O(1)
1∣∣Φk(iε)(w′)− Φk(iε)(w)

∣∣ m′∑
r=m

A(iε, rε).

b) then one observes that tsplit(iε, w,w′) = tsplit((i− 1)ε, w,w′), since x(iε, w) 6= x(iε, w′);
c) finally one uses the new definition of qk, (2.16)-(2.17) to prove that

qk(iε, w,w′)− qk((i− 1)ε, w,w′) ≤ O(1)
1∣∣Φk(iε)(w′)− Φk(iε)(w)

∣∣ m′∑
r=m

A(iε, rε).

3. Finally the estimate on the pairs of waves which are divided at time (i− 1)ε and are interacting
at time iε:

(2.24) E_interacting

−
∑
m∈Z

∫∫
JLm×JRm

qk((i− 1)ε)dτdτ ′ ≤ −
∑
m∈Z

S(Wk(iε,mε))=1

A
quadr
k (iε,mε) +O(1)Tot.Var.(u(0))

∑
m∈Z

A(iε,mε).

is a immediate consequence of the analogous estimate [3, Inequality 6.9] and of the fact that the
new definition of qk is “stronger” than the old one, inequality (2.18).
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It is easy to see that inequality (2.19) in the statement of Theorem 2.23 follows from (2.21), (2.22),
(2.24). �

As an immediate consequence of the previous theorem and of estimate (2.7), we get the following
corollary.

〈C:decrease:of:upsilon〉Corollary 2.24. There exists a constant C = C(f) > 0, depending only on f such that the functional

t 7→ Υ(t) := Q(t) + CQknown(t)

is uniformly bounded at t = 0:
Υ(0) ≤ O(1)Tot.Var.(ū),

it is decreasing and at each time step iε, i ∈ N, it decreases at least of

(2.25) E:decr:upsilon
1

2

∑
m∈Z

A(iε,mε) ≤ Υ((i− 1)ε)−Υ(iε).

3. The wavefront map ψ

〈S:psi〉 We have seen in Section 1.4 that a key point to prove Theorem 1.3 on the rate of convergence of the
Glimm scheme is to construct, for any i1, i2 ∈ N, a map

ψ : [i1ε, i2ε]× R→ Rn

which satisfies the Properties in (1.16). In this section first of all we explicitly define the map ψ, which
trivially satisfies Property (1.16a), and we construct a Lagrangian representation for the map ψ; then
we state Theorem 3.3, on the variation in time of the speed of the waves in ψ, whose proof will be the
subject of Sections 4 and 5; finally, using Theorem 3.3, we prove that ψ satisfies also Properties (1.16b)
and (1.16c).

〈Ss:def_psi〉 3.1. Definition of ψ. We start with the explicit definition of ψ. This map ψ is constructed more or
less as in [9], with some slight modification. Set for simplicity t1 := i1ε and t2 := i2ε. The definition of
ψ is given backward in time, starting from time t2 and going backward to time t1. First of all we set
ψ(t2, x) := uε(t2, x) for any x ∈ R, so that Property (1.16a) is trivially satisfied. Then we define two
Riemann solvers, a starting RS and a transversal RS: both act backward in time and produce a self-similar
wavefront solution, with a finite number of wavefronts. The starting RS is used at time t2 = i2ε to define
ψ on a left neighborhood [t̃, t2] of t2. Then, anytime two wavefronts collide at some time t̄ ∈ (t1, t2),
assuming that ψ is defined on the time interval [t̄, t2], we use the transversal RS to prolong ψ on a left
neighborhood of t̄.

The starting Riemann Solver. This is the Riemann Solver used at time t = t2. It is defined as
follows. For any m, r ∈ Z, m = r,m− 1, . . . , r − (i2 − i1), set

šm rk := S
(
Wk(i1ε,mε) ∩Wk(i2ε, rε)

)
L1

(
Φk(i1ε)

(
Wk(i1ε,mε) ∩Wk(i2ε, rε)

))
= S

(
Wk(i1ε,mε) ∩Wk(i2ε, rε)

)
L1

(
Φk(i2ε)

(
Wk(i1ε,mε) ∩Wk(i2ε, rε)

))
.

(3.1) E:checks

Notice that, by the monotonicity of the map w → x(t, w), if šm rk , šm r
′

k′ 6= 0 and r < r′, then k ≤ k′.
Fix now r ∈ Z and for any m = r − (i2 − i1), . . . , r set

ψr−(i2−i1) r := Tn
s
r−(i2−i1) r
n

◦ · · · ◦ T 1

s
r−(i2−i1) r
1

(
ui2,r−1

)
, ψm r := Tnsm rn

◦ · · · ◦ T 1
sm r1

(
ψm−1 r.

)
The (backward) solution to the Riemann problem (ui2,r−1, ui2,r) is now defined as follows: for any
m = r − (i2 − i1), . . . , r there is a physical wavefront traveling with speed

λ̌m r :=
rε−mε
i2ε− i1ε

which connects the left state ψm−1 r with the right state ψm r; moreover, there is one more non-physical
wavefront, traveling with speed equal to λ̌ := −1 connecting ψr r to ui2,r.

The transversal Riemann solver. This RS is used every time two (or more) wavefronts collide
at a time in (t1, t2). We assume w.l.o.g. that every collision involves exactly two wavefronts. This is a
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r

t− 1 = i1ε

t2 = i2ε

t

m r + (i2 − i1)

{šm rk }k

x

∆cr(x)

Figure 2. The wavefronts of the function ψ: the pink region ∆cr(x) is used in the proof
of Proposition (3.6).

standard assumption, which can be achieved slightly modifying the wavefront speeds. Assume thus that
at point (t̄, x̄), t̄ ∈ (t1, t2) two wavefronts collide. We have to distinguish two cases.

Case 1: both the colliding wavefronts are physical. Assume that before the collision the first wavefront
is traveling with speed λ′ and it is connecting the states

ψM = Tns′n ◦ · · · ◦ T
1
s′1
ψL,

while the second wavefront is traveling with speed λ′ < λ′′ and it is connecting the states

ψR = Tns′′n ◦ · · · ◦ T
1
s′′1
ψM .

Notice that, by the monotonicity of the map w 7→ x(t, w), there exists k̄ ∈ {1, . . . , n} such that s′′1 , . . . , s
′′
k̄

=
0 and s′

k̄+1
, . . . , s′n = 0. Hence the interaction at (t̄, x̄) is purely transversal. The (backward) Riemann

problem (ψL, ψR) at point (t̄, x̄) is now solved as follows. Define the intermediate states

ψ̃M := Tns′′n ◦ · · · ◦ T
1
s′′
k̄+1

ψL, ψ̃R := Tns′
k̄
◦ · · · ◦ T 1

s′1
ψL,

The solution for times t ≤ t̄ around the point (t̄, x̄) is made by a physical wavefront traveling with

speed λ′′ connecting ψL and ψ̃M ; a physical wavefront traveling with speed λ′ connecting ψ̃M and ψ̃R; a
non-physical wavefront traveling with speed λ̌ = −1 connecting ψ̃R and ψR.

Case 2: one of the two colliding wavefronts is non-physical. Assume that the non-physical wavefront
is connecting ψL with ψM , while the physical wavefront is traveling with speed λ and it is connecting

ψR = Tnsn ◦ · · · ◦ T
1
s1ψ

M .

Define the intermediate state

ψ̃M := Tnsn ◦ · · · ◦ T
1
s1ψ

L.

The solution around (t̄, x̄) for times t ≤ t̄ is now made by a physical wavefront traveling with speed λ

connecting ψL with ψ̃M and by a non-physical wavefront traveling with speed λ̌ = −1 and connecting
ψ̃M with ψR.

It is not difficult to see that the definition of ψ is well posed.
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3.2. Lagrangian representation for ψ. In the same spirit as in Section 2.3 we introduce now a sort of
Lagrangian representation for the wavefront solution ψ. We are not interested here in defining a general
notion of Lagrangian representation, since the map ψ is a map ad hoc constructed to get estimate (1.14).

First of all, let us analyze the physical waves. For any k = 1, . . . , n the set of the physical waves of
the k-th family in ψ is the set Wk(t1) ∩Wk(t2).
First of all set, for any k = 1, . . . , n,

Ľ±k := L1

(
Φk(i2ε)

(
W±k (i1ε) ∩W±k (i2ε)

))
= L1

(
Φk(i1ε)

(
W±k (i1ε) ∩W±k (i2ε)

))
.

Define also the position map for the physical waves in ψ and follows:

y : [t1, t2]×
n⋃
k=1

(
Wk(t1) ∩Wk(t2)

)
→ R, y(t, w) := x(t2, w)− x(t2, w)− x(t1, w)

t2 − t1
(t2 − t)

Notice that y takes values in the discontinuity points of ψ, it is increasing in w and affine in t.
The analogous of the collection of the maps {Φk(t)}t∈[0,∞) for ψ is the map

Ψk :Wk(t1) ∩Wk(t2)→
[
− Ľ−k , 0

)
∩
(
0,+Ľ+

k

]
defined by

Ψk(w) := S(w)L1

(
Φk(t1)

({
w′ ∈ Wk(t1) ∩Wk(t2)

∣∣ S(w′) = S(w) and w′ ≤ w
}))

= S(w)L1

(
Φk(t2)

({
w′ ∈ Wk(t1) ∩Wk(t2)

∣∣ S(w′) = S(w) and w′ ≤ w
}))

.

The restriction Ψ : W+
k (t1) ∩ W+

k (t2) → I(Ľ+
k ) is an isomorphism of ordered sets, while the restriction

Ψ :W−k (t1) ∩W−k (t2)→ I(Ľ−k ) is an anti-isomorphism of ordered sets.
Notice that while the maps Φk(t) for uε depends on the time, the map Ψk for ψ does not, since the total
amount of physical waves in ψ is constant in time.
We define also the maps γ̌k(t, ·) := (ǔk(t, ·), v̌k(t, ·), σ̌k(t, ·)) and the effective flux f̌eff

k (t, ·) at any time
t ∈ [t1, t2) as follows. Fix a time t; assume first that no wavefront collision takes place at time t. Fix any
point x ∈ R. Assume that

u(t, x) = Tnsn ◦ · · · ◦ T
1
s1u(t, x−);

denote by {γk}k, γk = (uk, vk, σk) : I(sk) → Rn+2 the collection of curves which solve the Riemann
problem (u(t, x−), u(t, x+)) and by fk : I(sk)→ R the associated reduced flux. Since

Ψk|y(t)−1(x)∩Wk
: y(t)−1(x) ∩Wk → a+ I(sk)

is an (anti)isomorphism of ordered sets for some a ∈ R, we can define

γ̌k(t, ·) : y(t)−1(x̄) ∩Wk → Dk ⊆ Rn+2, γ̌k(t, w) := γk(Ψk(w)− a).

Since, for fixed time t, the position map y takes values in the discontinuity points of ψ, γ̌k(t, w) is defined
for any k-wave w.
We also define

f̌eff
k : [−Ľ−k , Ľ

+
k ]→ R

as any C1,1 map such that

d2f̌eff
k (t)

dτ2
(τ) =

dλ̃
(
γ̌(t, w)

)
dτ

, with τ = Ψk(w).

Now, if t = t2 or if t is a time when a collision between two wavefronts takes place, we extend the
definitions of γ̌k(t) and f̌eff

k (t) in order to have left-continuous in time maps.

Remark 3.1. We usually want our maps to be right-continuous in time. In this case, however, we
are using backward-in-time Riemann solvers, and thus it is quite natural to require that t 7→ γk(t) is
left-continuous in time.
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Finally, we define the wavefront speed of a wave w ∈ Wk(t1) ∩Wk(t2) as

λ̌(w) :=
x(i2ε, w)− x(i1ε, w)

i2ε− i1ε
=

y(i2ε, w)− y(i1ε, w)

i2ε− i1ε
.

As for the Glimm approximate solution uε, we say that a set I ⊆ W±k (t1) ∩W±k (t2) is an interval of

waves for ψ if I is an interval in the ordered set
(
W±k (t1) ∩W±k (t2),≤

)
. The following definition is the

analog of Definition 2.6.

Definition 3.2. Fix t̄ ∈ [t1, t2]. Let I ⊆ Wk(t1)∩Wk(t2) be an interval of waves for ψ. Set I := Ψk(I).
Since the restriction of Ψk to positive (resp. negative) waves is a isomorphism (resp. anti-isomorphism)
of ordered sets, I is an interval in R (possibly made by a single point). Let us define:

• the Rankine-Hugoniot speed given to the interval of waves I by a function g : R→ R as

σrh(g, I) :=

{
g(sup I)−g(inf I)

sup I−inf I if I is not a singleton,

g′(I) if I is a singleton;

• for any w ∈ I, the entropic speed given to the wave w by the Riemann problem I and the flux
function g as

σent(g, I, w) :=


d

dτ
conv
I

g
(

Ψk(w)
)

if Sk(w) = +1,

d

dτ
conc
I

g
(

Ψk(w)
)

if Sk(w) = −1.

If σrh(g, I) = σent(g, I, w) for any w ∈ I, we will say that I is entropic w.r.t. the function g. We will
also say that the Riemann problem I with flux function g divides w,w′ if σent(g, I, w) 6= σent(g, I, w′).

Let us now analyze the non-physical waves. The set of non-physical wavefront is defined as

W0 :=
{

(t, x)
∣∣ in (t, x) a non-physical wavefront is generated

}
.

We are labeling each non-physical wavefront with the point in the (t, x) plane in which it is generated.
Since the speed of the non-physical wavefronts is strictly less than the speed of any physical wave, we
will refer to the set of non-physical wavefronts also as the set of waves of the 0-th family.

ClearlyW0 is a finite set. For any non-physical wavefronts α = (t̄, x̄) ∈ W0, we define its creation time
tcr(α) := t̄ and its position y(t, α) = x̄ − (t − t̄). Moreover, if t is any time when no collision between
wavefronts takes place, we define the strength of the non-physical wavefront α as

s(t, α) :=
∣∣∣ψ(t, y(t, α) +

)
− ψ

(
t, y(t, α)−

)∣∣∣;
then, as usual, we extend the definition to all times in (t1, t2] is order to have a left-continuous in time
map. Finally define

W0(t) :=
{
α ∈ W0

∣∣ tcr(α) ≥ t
}

We will call W0(t2) the set of primary non-physical wavefronts and W0 \ W0(t2) the set of secondary
non-physical wavefronts.

?〈Ss:main_thm_psi〉? 3.3. The main theorem on ψ. In this section we state the main theorem about physical and non-
physical waves in ψ, which will be proved in Sections 4 and 5, and, using this theorem, we prove estimates
(1.16b) and (1.16c).

〈T:main_thm_waves_psi〉Theorem 3.3. With the same notations as before,
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(1) the following bounds on physical waves hold:∫ Ľ+
k

−Ľ−k

{
Tot.Var.

(
ǔk
(
·,Ψ−1(τ)

)
; (t1, t2)

)
+
∣∣∣(ǔk(t2, ·)− ûk(t2, ·)

)
◦Ψ−1

k (τ)
∣∣∣}dτ

∫ Ľ+
k

−Ľ−k

{
Tot.Var.

(
v̌k
(
·,Ψ−1(τ)

)
; (t1, t2)

)
+
∣∣∣(v̌k(t2, ·)− v̂k(t2, ·)

)
◦Ψ−1

k (τ)
∣∣∣}dτ

∫ Ľ+
k

−Ľ−k

{
Tot.Var.

(
σ̌k
(
·,Ψ−1(τ)

)
; (t1, t2)

)
+
∣∣∣(σ̌k(t2, ·)− σ̂k(t2, ·)

)
◦Ψ−1

k (τ)
∣∣∣}dτ


≤ O(1)

[
Υ(t1)−Υ(t2)

]
;

(2) the following bound on non-physical waves holds:∑
α∈W0

[
Tot.Var.

(
s(·, α);

(
t1, t

cr(α)
))

+ s
(
tcr(α), α

)]
≤ O(1)

[
Υ(t1)−Υ(t2)

]
.

As an immediate consequence, we get the following corollary. For any k = 1, . . . , n, for any physical wave
w ∈ Wk(t1) ∩Wk(t2) and for any t ∈ (t1, t2], set

řk(t, w) := r̃k

(
ǔk(t, w), v̌k(t, w), σ̌k(t, w)

)
, r̂k(t, w) := r̃k

(
ûk(t, w), v̂k(t, w), σ̂k(t, w)

)
〈C:main_cor_waves_psi〉Corollary 3.4. It holds∫ Ľ+

k

−Ľ−k

{
Tot.Var.

(
řk
(
·,Ψ−1(τ)

)
; (t1, t2)

)
+
∣∣∣(řk(t2, ·)− r̂k(t2, ·)

)
◦Ψ−1

k (τ)
∣∣∣}dτ ≤ O(1)

[
Υ(t1)−Υ(t2)

]
.

As we have already said, the proof of Theorem 3.3 is the subject of Sections 4 and 5. We now use
Theorem 3.3 and Corollary 3.4 to prove estimates (1.16b)-(1.16c) and thus complete the proof of Theorem
1.3.

Proposition 3.5 (Estimate (1.16b)). It holds

∥∥St2−t1ψ(t1)− ψ(t2)
∥∥

1
≤ O(1)

[(
Υ(t1)−Υ(t2)

)
+

1 + log(i2 − i1)

i2 − i1

]
(t2 − t1).

Proof. We want to use the semigroup estimate

(3.2) E:semigroup_in_prop‖ψ(t2)− St2−t1ψ(t1)‖1 ≤ L
∫ t2

t1

lim sup
h→0

∥∥ψ(t+ h)− Shψ(t)
∥∥

1

h
dt.

Since the map ψ is piecewise constant at any fixed time t, it is not hard to see that the integrand on the
r.h.s. can be estimated as

lim sup
h→0

∥∥ψ(t+ h)− Shψ(t)
∥∥

1

h
≤

n∑
k=1

∫
Ψk

(
Wk(t1)∩Wk(t2)

) ∣∣∣∣λ̌(Ψ−1(τ)
)
− σ̌

(
t,Ψ−1(τ)

)∣∣∣∣dτ +
∑

α∈W0(t)

s(t, α).

For the term concerning the non-physical waves, we easily obtain∑
α∈W0(t)

s(t, α) ≤
∑

α∈W0(t)

∣∣s(t, α)− s
(
tcr(α), α

)∣∣+ s
(
tcr(α), α

)
≤
∑
α∈W0

[
Tot.Var.

(
s(·, α);

(
t1, t

cr(α)
))

+ s
(
tcr(α), α

)]
(by Theorem 3.3) ≤ O(1)

[
Υ(t1)−Υ(t2)

]
.
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For the term concerning the physical waves, we argue as follows. Fix any τ ∈ Ψk

(
W(t1) ∩ W(t2)

)
and

set w := Ψ−1(τ).

∣∣λ̌(w)− σ̌(t, w)
∣∣ ≤ ∣∣∣∣λ̌(w)− 1

i2 − i1

i2−1∑
i=i1

σ̂(iε, w)

∣∣∣∣+

∣∣∣∣ 1

i2 − i1

i2−1∑
i=i1

σ̂(iε, w)− σ̂(i2ε, w)

∣∣∣∣+

∣∣∣∣σ̂(i2ε, w)− σ̌(t, w)

∣∣∣∣
≤
∣∣∣∣λ̌(w)− 1

i2 − i1

i2−1∑
i=i1

σ̂(iε, w)

∣∣∣∣+ Tot.Var.

(
σ̂(·, w);

(
t1, t2 +

ε

2

))
+
∣∣σ̂(t2, w)− σ̌(t2, w)

∣∣+ Tot.Var.
(
σ̌(·, w);

(
t1, t2

))
.

(3.3) E:lambda-sigmahat

To estimate the first term of the last summation we use the same technique as in [?]. Define first the
map

ω : [0, 1]× [0, 1]→ R, ω(σ, ϑ) :=

{
−σ if σ ≤ ϑ
1− σ if σ > ϑ.

Set
σmin := min

i=i1,...,i2−1
σ̂(iε, w), σmax := max

i=i1,...,i2−1
σ̂(iε, w),

and
J :=

{
i ∈ [i1, i2 − 1]

∣∣ σmax ≤ ϑi ≤ σmin
}
, K :=

{
i ∈ [i1, i2 − 1]

∣∣ ϑi < σ̂(i1ε, w)
}
.

We thus have

∣∣∣∣λ̌(w)− 1

i2 − i1

i2−1∑
i=i1

σ̂(iε, w)

∣∣∣∣
=

∣∣∣∣ 1

i2 − i1

i2−1∑
i=i1

ω
(
σ̂(iε, w), ϑi

)∣∣∣∣
=

1

i2 − i1

∣∣∣∣ i2−1∑
i=i1

[
ω
(
σ̂(iε, w), ϑi

)
− ω

(
σ̂(i1ε, w), ϑi

)]
+ ω

(
σ̂(i1ε, w), ϑi

)∣∣∣∣
=

1

i2 − i1

∣∣∣∣∣∑
i/∈J

(
σ̂(i1ε, w)− σ̂(iε, w)

)
+
∑
i∈J

(
σ̂(i1ε, w)− σ̂(iε, w) + ai

)

+
∑
i/∈K

(
− σ̂(i1ε, w)

)
+
∑
i∈K

(
1− σ̂(i1ε, w)

)∣∣∣∣∣
(Here ai is a number in {−1, 0, 1})

=
1

i2 − i1

∣∣∣∣∣∑
i/∈J

(
σ̂(i1ε, w)− σ̂(iε, w)

)
+
∑
i∈J

(
σ̂(i1ε, w)− σ̂(iε, w) + ai

)

− σ̂(i1ε, w)(i2 − i1) + ]K

∣∣∣∣∣
≤ 1

i2 − i1

(
i2−1∑
i=i1

∣∣∣σ̂(i1ε, w)− σ̂(iε, w)
∣∣∣+ ]J +

∣∣∣]K − σ̂(i1ε, w)(i2 − i1)
∣∣∣)

≤

(
2
∣∣∣σ̂max − σ̂min

∣∣∣+

∣∣∣∣ ]J
i2 − i1

−
(
σ̂max − σ̂min

)∣∣∣∣+

∣∣∣∣ ]K
i2 − i1

− σ̂(i1ε, w)

∣∣∣∣
)

(using (1.9))

≤ O(1)

[
Tot.Var.

(
σ̂(·, w);

(
t1, t2 +

ε

2

))
+

1 + log(i2 − i1)

i2 − i1

]
.

(3.4) E:lambda01
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Using (3.3), (3.4), Corollary 2.24 and Theorem 3.3 we thus get

∫
Ψk

(
Wk(t1)∩Wk(t2)

)∣∣∣∣λ̌(Ψ−1(τ)
)
− σ̌

(
t,Ψ−1(τ)

)∣∣∣∣dτ
≤ O(1)

∫
Ψk

(
Wk(t1)∩Wk(t2)

) {1 + log(i2 − i1)

i2 − i1
+ Tot.Var.

(
σ̂
(
·,Ψ−1

k (τ)
)
;
(
t1, t2 +

ε

2

))

+
∣∣∣σ̂(t2,Ψ−1

k (τ)
)
− σ̌

(
t2,Ψ

−1
k (τ)

)∣∣∣+ Tot.Var.
(
σ̌(·,Ψ−1

k (τ));
(
t1, t2

))}
dτ

≤ O(1)

{
1 + log(i2 − i1)

i2 − i1
+ Υ(t1)−Υ(t2)

}

Therefore, using (3.2), integrating over all times t ∈ [i1ε, i2ε] we get the conclusion. �

〈P_3.6〉Proposition 3.6 (Estimate (1.16c)). It holds

∥∥ψ(t1)− uε(t1)
∥∥

1
≤ O(1)

(
Υ(t1)−Υ(t2)

)
(t2 − t1).

Proof. Fix any x ∈ R. Consider the segment on the (t, x)-plane joining (t1, x) and (t2, x − (t2 − t1)).
Assume that x /∈ Zε and that no non-physical wavefront travels on this segment (this holds for all but
countable many x ∈ R). Define the set of k-waves which cross this segment in uε and in ψ respectively:

Wcross
k (uε, x) :=

{
w ∈ Wk

∣∣ there exists t =: tcross(uε, x, w) ∈ (t1, t2) such that x(t, w) = x− (t− t1)
}
,

Wcross
k (ψ, x) :=

{
w ∈ Wk(t1) ∩Wk(t2)

∣∣ there exists t =: tcross(ψ, x,w) ∈ (t1, t2) such that y(t, w) = x− (t− t1)
}
.

Since, for any wave w ∈ Wk(t1) ∩Wk(t2), x(t1, w) = y(t1, w) and x(t2, w) = y(t2, w),

Wcross
k (ψ, x) =Wcross

k (uε, x) ∩Wk(t1) ∩Wk(t2).

Moreover, if a k-wave w ∈ Wcross
k (ψ, x), then its position at time t1 must be

x(t1, w) = y(t1, w) ∈
[
x− 2(t2 − t1), x

]
,

while if w ∈ Wcross
k (uε, x) \Wcross

k (ψ, x), then either it is created at some grid point in the triangle

∆cr(x) :=
[(
t1, x− 2(t2 − t1)

)
,
(
t2, x− (t2 − t1)

)
,
(
t1, x

)]

or it is canceled at some grid point in the triangle

∆canc(x) :=
[(
t2, x− (t2 − t1)

)
,
(
t1, x

)
,
(
t2, x+ (t2 − t1)

)]
.
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Since ψ(t2) = uε(t2), we can now write∣∣ψ(t1, x)− uε(t1, x)
∣∣

=

∣∣∣∣[ψ(t1, x)− ψ(t2, x− (t2 − t1)
)]
−
[
uε
(
t1, x

)
− uε

(
t2, x− (t2 − t1)

)]∣∣∣∣
=

∣∣∣∣ n∑
k=1

∫
Ψk

(
Wcross
k (ψ,x)

) {řk(tcross
(
ψ, x,Ψ−1

k (τ)
)
,Ψ−1

k (τ)
)
− r̂k

(
tcross

(
uε, x,Ψ−1(τ)

)
,Ψ−1(τ)

)}
dτ

∣∣∣∣
+O(1)

{ ∑
(i,m)∈N×Z

(iε,mε)∈∆cr(x)

Acr(iε,mε) +
∑

(i,m)∈N×Z
(iε,mε)∈∆canc(x)

Acanc(iε,mε)

}

≤
n∑
k=1

∫
Ψk

(
Wcross
k (ψ,x)

) {∣∣∣∣řk(tcross
(
ψ, x,Ψ−1

k (τ)
)
,Ψ−1

k (τ)
)
− řk

(
t2,Ψ

−1
k (τ)

)∣∣∣∣
+

∣∣∣∣řk(t2,Ψ−1(τ)
)
− r̂k

(
t2,Ψ

−1
k (τ)

)∣∣∣∣+

∣∣∣∣r̂k(t2,Ψ−1(τ)
)
− r̂k

(
tcross

(
uε, x,Ψ−1(τ)

)
,Ψ−1(τ)

)∣∣∣∣
}
dτ

+O(1)

{ ∑
(i,m)∈N×Z

(iε,mε)∈∆cr(x)

Acr(iε,mε) +
∑

(i,m)∈N×Z
(iε,mε)∈∆canc(x)

Acanc(iε,mε)

}

≤
n∑
k=1

∫
Ψk

(
x−1([x−2(t2−t1),x])

) {∣∣∣∣Tot.Var.
(
řk
(
·,Ψ−1

k (τ)
)
; (t1, t2)

)
+

∣∣∣∣řk(t2,Ψ−1(τ)
)
− r̂k

(
t2,Ψ

−1
k (τ)

)∣∣∣∣+

∣∣∣∣Tot.Var.
(
r̂k
(
·,Ψ−1

k (τ)
)
; (t1, t2)

)∣∣∣∣
}
dτ

+O(1)

{ ∑
(i,m)∈N×Z

(iε,mε)∈∆cr(x)

Acr(iε,mε) +
∑

(i,m)∈N×Z
(iε,mε)∈∆canc(x)

Acanc(iε,mε)

}

Hence, integrating over all x ∈ R, we get∫ +∞

−∞

∣∣ψ(t1, x)− uε(t1, x)
∣∣dx

≤
∫ +∞

−∞

{
n∑
k=1

∫
Ψk

(
x−1([x−2(t2−t1),x])

) [∣∣∣∣Tot.Var.
(
řk
(
·,Ψ−1

k (τ)
)
; (t1, t2)

)
+

∣∣∣∣řk(t2,Ψ−1(τ)
)
− r̂k

(
t2,Ψ

−1
k (τ)

)∣∣∣∣+

∣∣∣∣Tot.Var.
(
r̂k
(
·,Ψ−1

k (τ)
)
; (t1, t2)

)∣∣∣∣
]
dτ

+O(1)

{ ∑
(i,m)∈N×Z

(iε,mε)∈∆cr(x)

Acr(iε,mε) +
∑

(i,m)∈N×Z
(iε,mε)∈∆canc(x)

Acanc(iε,mε)

}}
dx

(using Fubini’s Theorem and Corollaries 2.24 and 3.4 )

≤ O(1)
[
Υ(t1)−Υ(t2)

]
(t2 − t1),

which is what we wanted to get. �

4. Analysis of the interactions in ψ

〈S:analysis:interactions:psi〉 sostituire stima in norma L∞ su u con stima in norma L1: quella in norma infinito non e’ vera a causa
delle interazioni trasversali!! ma a noi basta la stima in norma L1

In this and next section we prove Theorem 3.3. We will follow the same technique we used in [3]. In
particular this section is devoted to study the local part of the theorem: we introduce a suitable notion
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of amount of interaction and we prove that at any interaction the variation of ûk, v̂k, σ̂k is bounded by
such amount of interaction.

In the next section, we will prove the global part of the theorem, i.e. that the sum of all the amounts
of interactions is bounded by the decrease of Υ in the time interval [t1, t2].

The crucial point is that the new definition of the functional Q we gave in Section 2.6 is the one we
need to prove Theorem 3.3, as we will see in the next section. The definition of Q given in [3] is not
strong enough to prove Theorem 3.3.

〈Ss:amounts:t2〉 4.1. Amounts of interaction at the final time t2. Instead of defining immediately the amounts of
interactions at any point (i2ε, rε), r ∈ Z, it is more convenient (to avoid too heavy notations) to consider
first a more abstract situation, and then apply it to our analysis.

Fix a left state uL, a right state uR and a collection of A vectors

sa = (sa1 , . . . , s
a
n) ∈ Rn, a = 0, 1, . . . , A.

The Riemann problem (uL, uR) is solved by the collection of curves
{
γk
}
k=1,...,n

, where

γk : I(sk)→ D ⊆ Rn+2, γk = (uk, vk, σk),

and denote by fk : I(sk)→ R the associated reduced fluxes.
Assume that for any fixed k = 1, . . . , n,

• all the sak, a ∈ {1, . . . , A}, and sk have the same sign;

•
∣∣∣∑A

a=1 s
a
k

∣∣∣ ≤ |sk|.
Observe that our assumptions describe precisely the collisions taking place at any point (i2ε,mε), m ∈ Z.

Set Iak :=
∑
b<a s

b
k + I(sak). Let Θk : I

(∑A
a=1 s

a
k

)
→ I(sk) be any increasing map such that for each

a = 0, 1, . . . , A, Θk|Iak is an affine map with slope equal to 1. Denote by Θ−1
k its pseudo-inverse, which

turns out to be a continuous map. Set Jak :=
{
τ ∈ I(sk)

∣∣ Θ−1
k (τ) ∈ Iak

}
.

Set u0 := uL and for any a = 1, . . . , A,

ua := Tnsan ◦ · · · ◦ T
1
sa1
ua−1.

Assume that the Riemann problem (ua−1, ua) is solved by the collection of curves {γak}k=1,...,n, with
γak = (uak, v

a
k , σ

a
k). Assume moreover that, for any k and a, γak is defined on Iak .

We can now define:

• the transversal amount of interaction as

Btrans(uL, s1, . . . , sA, u
R) :=

A∑
a=0

A∑
b=a+1

n∑
k=1

k−1∑
h=1

|sak||sbh|;

• the quadratic amount of interaction of the k-th family as

B
quadr
k (uL, s1, . . . , sA, u

R) :=


∥∥∥ d
dτ convI(sk) fk −

⋃A
a=0

d
dτ convJak fk

∥∥∥
1

if sk ≥ 0,∥∥∥ d
dτ concI(sk) fk −

⋃A
a=0

d
dτ concIak fk

∥∥∥
1

if sk < 0;

• the amount of creation of the k-th family as

Bcr
k (uL, s1, . . . , sA, u

R) :=

∣∣∣∣sk − A∑
a=1

sak

∣∣∣∣;
• the global amount of interaction as

B(uL, s1, . . . , sA, u
R)

:= Btrans(uL, s1, . . . , sA, u
R) +

n∑
k=1

[
B

quadr
k (uL, s1, . . . , sA, u

R) + Bcr
k (uL, s1, . . . , sA, u

R)
]
.

We have used the letter B instead of A to distinguish these amounts of interaction from the amounts of
interactions concerning two merging Riemann problems, already introduced in Section 2.2.
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〈P:collisions_at_t2〉Proposition 4.1. For any k = 1, . . . , n, the following inequalities hold sistemare il punto di partenza∥∥∥∥ A⋃
a=1

uak − uk ◦Θk

∥∥∥∥
∞∥∥∥∥ A⋃

a=1

vak − vk ◦Θk

∥∥∥∥
∞∥∥∥∥ A⋃

a=1

σak − σk ◦Θk

∥∥∥∥
1


≤ O(1)B(uL, s1, . . . , sA, u

R).

The proof can be achieved using the same techniques as in [3, Section 3] and for this reason it is omitted
here.

Recall now the definition of šm rk in (3.1) and define the vector

šm r :=
(
šm r1 , . . . , šm rn

)
.

Applying the previous definitions to the collisions taking place at time t2 = i2ε, we can define, for any
r ∈ Z,

Btrans(i2ε, rε) := Btrans(ui2,r−1, šr−(i2−i1) r, . . . , šr r, ui2,r),

B
quadr
k (i2ε, rε) := B

quadr
k (ui2,r−1, šr−(i2−i1) r, . . . , šr r, ui2,r), k = 1, . . . , n

Bcr(i2ε, rε) := Bcr
k (ui2,r−1, šr−(i2−i1) r, . . . , šr r, ui2,r), k = 1, . . . , n,

B(i2ε, rε) := B(ui2,r−1, šr−(i2−i1) r, . . . , šr r, ui2,r).

Applying Proposition 4.1, we obtain the following corollary.

Corollary 4.2. It holds sistemare il punto di partenza∥∥∥(ǔk(t2−, ·)− ûk(t2, ·)
)
◦Ψ−1

k

∥∥∥
L∞
(

[−Ľ−k ,Ľ
+
k ]
)∥∥∥(v̌k(t2−, ·)− v̂k(t2, ·)

)
◦Ψ−1

k

∥∥∥
L∞
(

[−Ľ−k ,Ľ
+
k ]
)∥∥∥(σ̌k(t2−, ·)− σ̂k(t2, ·)

)
◦Ψ−1

k

∥∥∥
L1
(

[−Ľ−k ,Ľ
+
k ]
)


≤ O(1)

∑
r∈Z

B(i2ε, rε).

4.2. Amounts of interaction at times t ∈ (t1, t2). Let t ∈ (t1, t2) and let (t, x) be a point where two
wavefronts collide. As in Section 3.1, we have to distinguish to two cases.

Case 1: both the colliding wavefronts are physical. Assume that before the collision the first wavefront
is traveling with speed λ′ and it is connecting the states

ψM = Tns′
k̄
◦ · · · ◦ T 1

s′1
ψL,

while the second wavefront is traveling with speed λ′ < λ′′ and it is connecting the states

ψR = Tns′′n ◦ · · · ◦ T
1
s′′
k̄
ψM .

We have already observed that the interaction at (t̄, x̄) is purely transversal. Define thus the (transversal)
amount of interaction at (t, x) as

Btrans(t, x) :=

k̄∑
k=1

n∑
h=k̄+1

|s′k||s′′h|.

Case 2: one of the two colliding wavefronts is non-physical. Assume that the non-physical wavefront
α is connecting ψL with ψM , while the physical wavefront is traveling with speed λ and it is connecting

ψR = Tnsn ◦ · · · ◦ T
1
s1ψ

M .
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Also in this case the interaction is purely transversal. Define thus the amount of interaction at (t, x) as

B(t, x) := Btrans(t, x) := s(t+, α)

n∑
k=1

|sk| = |ψM − ψL|
n∑
k=1

|sk|.

The following proposition covers both the case of a collision between physical wavefronts and the case
of a collision between a physical and a non-physical wavefront.

Proposition 4.3. The following hold.

(1) For any k = 1, . . . , n, for the k-physical waves y(t)−1(x) ∩Wk located at (t, x) in the wavefront
map ψ, we have sistemare il punto di partenza∥∥∥(ǔk(t+, ·)− ǔk(t−, ·)

)
◦Ψ−1

k

∥∥∥
L∞
(

Ψk(y(t)−1(x)∩Wk)
)∥∥∥(v̌k(t+, ·)− v̌k(t−, ·)

)
◦Ψ−1

k

∥∥∥
L∞
(

Ψk(y(t)−1(x)∩Wk)
))∥∥∥(σ̌k(t+, ·)− σ̌k(t−, ·)

)
◦Ψ−1

k

∥∥∥
L1
(

Ψk(y(t)−1(x)∩Wk)
)


≤ O(1)Btrans(t, x).

(2) If both wavefronts interacting at (t, x) are physical, denoting by α the non-physical wavefront
generated at (t, x), its initial strength can be estimated by∣∣s(tcr(α), α

)∣∣ ≤ O(1)Btrans(t, x).

(3) If one of the two wavefronts interacting at (t, x) is a non-physical wavefront α, the variation of
the strength of α can be estimated by

|s(t+, α)− s(t−, α)| ≤ O(1)Btrans(t, x).

The proof of this proposition can again be obtained with the same techniques as in [3, Section 3], and
thus it is omitted here.

5. Estimates on the amounts of interaction in ψ

〈S:estimates:on:amounts〉 In this section we prove the following theorem, which is the global part of the proof of Theorem 3.3.
The proof of this theorem is the last step in order to complete the proof of the convergence rate of the
Glimm scheme, Theorem 1.3.

Theorem 5.1. The sum of all amounts of interaction in the time interval (t1, t2] is bounded by the
decrease of the functional Υ in the same time interval, i.e.∑

r∈Z
B(i2ε, rε) +

∑
(t,x) int. pt.
t∈(t1,t2)

Btrans(t, x) ≤ O(1)
(
Υ(t1)−Υ(t2)

)
.

The proof is a direct consequence of the following three propositions.

?〈P:global:trans〉?Proposition 5.2 (Transversal amounts of interactions). It holds∑
r∈Z

Btrans(i2ε, rε) +
∑

(t,x) int. pt.
t∈(t1,t2)

Btrans(t, x) ≤ O(1)
(
Υ(t1)−Υ(t2)

)
.

Proof. Since for any wave w ∈ Wk(t1) ∩Wk(t2),

x(t1, w) = y(t1, w), x(t2, w) = y(t2, w),

and thus the waves which have to cross in ψ also cross in uε, it is not difficult to see that∑
r∈Z

Btrans(i2ε, rε) +
∑

(t,x) int. pt.
t∈(t1,t2)

Btrans(t, x) ≤
i2∑

i=i1+1

∑
m∈Z

Atrans(iε,mε)

(by (2.25)) ≤ O(1)
(
Υ(i2ε)−Υ(t1)

)
,

which is what we wanted to prove. �
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〈P:global:cr〉Proposition 5.3 (Amounts of creation). It holds∑
r∈Z

Bcr
k (i2ε, rε) ≤ O(1)

(
Υ(t1)−Υ(t2)

)
.

Proof. It is fairly easy to see that∑
r∈Z

Bcr
k (i2ε, rε) ≤

i2∑
i=i1+1

∑
m∈Z

Acr(i2ε,mε),

and thus, again using (2.25), we get the conclusion. �

〈P:global:quadr〉Proposition 5.4 (Quadratic amounts of interaction). It holds

(5.1) E:Bquadr

∑
r∈Z

B
quadr
k (i2ε, rε) ≤ O(1)

(
Υ(t1)−Υ(t2)

)
.

The proof of this proposition is much more difficult than the previous two. However, the technique we
will use is the same we used in [3] to prove estimate (2.24) on the decreasing part of the functional Q(t).
Here, however, the new definition of the functional Q(t) we presented in Section 2.6 plays a crucial role,
since, with the old definition (the one in [3]), the decrease of Q in the time interval [t1, t2] is not big
enough to prove (5.1).

Proof. Introduce first the following sets:

Er :=
{

(w,w′) ∈ Wk(i2ε, rε)×Wk(i2ε, rε)
∣∣∣ w < w′, x(t1, w) < x(t1, w

′),
}
, r ∈ Z,

Fr :=
{

(w,w′) ∈ Wk(i2ε, rε)×Wk(i2ε, rε)
∣∣∣ w < w′, max

{
tcr(w), tcr(w′)

}
> t1

}
, r ∈ Z,

(5.2) E:erfr

(5.3) E:ef E :=
⋃
r∈Z
Er, F :=

⋃
r∈Z
Fr,

E i :=
{

(w,w′) ∈ E
∣∣∣ tint(t1, w, w

′) = iε
}
, i = i1 + 1, . . . , i2.

We need now the following four lemmas, which conclude the proof of the proposition.

Lemma 5.5. For any r ∈ Z,

B
quadr
k (i2ε, rε) ≤ O(1)

∫∫
(Ψk×Ψk)(Er∪Fr)

qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′.

Proof. We assume for the sake of simplicity that the k-waves interacting at (i2ε, rε) are positive, the
negative case being completely similar. We divide the proof in several steps.

Step 1. Set uL := ui2,r−1, uR := ui2,r and

sak := s
r−(i2−i1)+a
k

for any a = 0, 1, . . . , i2 − i1 =: A. As in Section 4.1, let

sa := (sa1 , . . . , s
a
n),

let {γk}k=1,...,n, γk : I(sk) → D ⊆ Rn+2 be the collection of curves which solve the Riemann problem
(uL, uR) and let fk be the associated reduced flux. Define also

Θk := Φk(t2) ◦Ψ−1
k |Ψk

(
Wk(i2ε,rε)∩Wk(t1)

).
It is not difficult to see that there exists two real numbers ζ, ζ ′ ∈ R such that

Ψk

(
Wk

(
i2ε, rε

)
∩Wk

(
i1ε, (r − (i2 − i1) + a)ε

))
= ζ +

∑
b<a

sbk + I(sak) =: Iak ,

Φk(t2)
(
Wk(i2ε, rε)

)
= ζ ′ + I(sk),

and

Θk : ζ + I
( A∑
a=1

sak
)
→ ζ ′ + I(sk)
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is an increasing map and for each a = 0, 1, . . . , A the restriction Θk|Iak is an affine map with slope equal to
1. We are thus exaclty in the situation described in Section 4.1 and therefore we can define the intervals
Jak :=

{
τ ∈ ζ ′ + I(sk)

∣∣ Θ−1
k (τ) ∈ Iak

}
. Notice, moreover, that the effective flux feff

k (t2) at time t2 and

the flux fk associated to the Riemann problem (uL, uR) coincide up to affine functions, i.e.

d2

dτ2
conv
ζ′+I(sk)

feff
k (t2)(ζ ′ + τ) =

d2

dτ2
conv
I(sk)

fk(τ), τ ∈ I(sk).

Hence, by the properties of the convex envelope, we can compute the quadratic amount of interaction
Bquadr(i2ε, rε) using the effective flux feff

k (t2) instead of fk:

B
quadr
k (i2ε, rε) :=

∥∥∥∥ ddτ conv⋃A
a=0 J

a
k

feff
k (t2)−

A⋃
a=0

d

dτ
conv
Jak

feff
k (t2)

∥∥∥∥
1

.

By triangular inequality, it is enough to prove that for any b = 1, . . . , A,∥∥∥∥ ddτ conv⋃b
a=0 J

a
k

feff
k (t2)−

( d
dτ

conv⋃b−1
a=0

feff
k (t2) ∪ d

dτ
conv
Jbk

feff
k (t2)

)∥∥∥∥
1

≤
∫∫

(
⋃b−1
a=0 J

a
k )×Jbk

qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′.

(5.4) E:albero:gen

The technique we use to prove (5.4) is the same as in [3, Proposition 6.9].

Step 2. Set

τM := sup

b−1⋃
a=0

Jak = inf Jbk,

and

τL := max

{
τ ∈

b−1⋃
a=0

Jak

∣∣∣∣ conv⋃b−1
a=0 J

a
k

feff
k (t2)(τ) = conv⋃b

a=0 J
a
k

feff
k (t2)(τ)

}
,

τR := min

{
τ ∈ Jbk

∣∣∣∣ conv
Jbk

feff
k (t2)(τ) = conv⋃b

a=0 J
a
k

feff
k (t2)(τ)

}
.

W.l.o.g. we assume that τL < τM < τR, otherwise there is nothing to prove.
It is quite easy to see that

B
quadr
k (iε, rε) =

1

τR − τL

[
σrh
(
feff
k (t2), (τL, τM ]

)
− σrh

(
feff
k (t2), (τM , τR]

)]
L2
(
(τL, τM ]× (τM , τR]

)
,

and thus it is sufficient to prove that

1

τR − τL

[
σrh
(
feff
k (t2), (τL, τM ]

)
− σrh

(
feff
k (t2), (τM , τR]

)]
L2
(
(τL, τM ]× (τM , τR]

)
≤
∫ τM

τL

∫ τR

τM

qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′.

(5.5) E_quadr_est

Observe that, by Proposition 2.16,

d
(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
≤ τR − τL;

hence (5.5) will follow if we prove that[
σrh
(
feff
k (t2), (τL, τM ]

)
−σrh

(
feff
k (t2), (τM , τR]

)]
L2
(
(τL, τM ]× (τM , τR]

)
≤
∫ τM

τL

∫ τR

τM

πk
(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′.

(5.6) E_delta_sigma

Step 3. Let
L := Ψ−1

k

(
(τL, τM ]

)
, R := Ψ−1

k

(
(τM , τR]

)
.

We will identify waves through the equivalence relation ./, already introduced in (2.8): for any couple of
waves w,w′ ∈ L ∪R, set w ./ w′ if and only if

tcr(w) = tcr(w′) and x(t, w) = x(t, w′) for any t ∈
[
tcr(w), iε

)
.



CONVERGENCE RATE OF THE GLIMM SCHEME 33

L̂

L̂C

R̂
R̂C

Π0(Ĉ)

Π1(Ĉ)Π2(Ĉ)

Π3(Ĉ)

Figure 3. Partition of Ĉ := L̂C × R̂C .
〈F_partition_lxr〉

The sets

L̂ := L
/
./, R̂ := R

/
./

are finite and totally ordered by the order ≤ of Wk(t2). Moreover for any ξ ∈ L̂, ξ′ ∈ R̂, let w ∈ ξ,
w′ ∈ ξ′ and set

I(t1, t2, ξ, ξ
′) := I(t1, t2, w, w

′), P(t1, t2, ξ, ξ
′) := P(t1, t2, w, w

′),

and

Î(t1, t2, ξ, ξ
′) := I(t1, t2, ξ, ξ

′)
/
./ .

It is not hard to see that the above definitions are well posed and that Î ⊆ L̂ ∪ R̂.

Now we partition the rectangle L̂ × R̂ in sub-rectangles, as follows. For any non empty rectangle

Ĉ := L̂C × R̂C ⊆ L̂ × R̂, define (see Figure 3)

Π0(Ĉ) :=
[
L̂C ∩ Î(t1, t2,max L̂C ,min R̂C)

]
×
[
R̂C ∩ Î(t1, t2,max L̂C ,min R̂C)

]
,

Π1(Ĉ) :=
[
L̂C ∩ Î(t1, t2,max L̂C ,min R̂C)

]
×
[
R̂C \ Î(t1, t2,max L̂C ,min R̂C)

]
,

Π2(Ĉ) :=
[
L̂C \ Î(t1, t2,max L̂C ,min R̂C)

]
×
[
R̂C \ Î(t1, t2,max L̂C ,min R̂C)

]
,

Π3(Ĉ) :=
[
L̂C \ Î(t1, t2,max L̂C ,min R̂C)

]
×
[
R̂C ∩ Î(t1, t2,max L̂C ,min R̂C)

]
.

Clearly
{

Π0(Ĉ),Π1(Ĉ),Π2(Ĉ),Π3(Ĉ)
}

is a disjoint partition of Ĉ.
For any set A, denote by A<N the set of all finite sequences taking values in A. We assume that

∅ ∈ A<N, called the empty sequence. There is a natural ordering E on A<N: given α, β ∈ A<N,

αE β ⇐⇒ β is obtained from α by adding a finite sequence.

A subset D ⊆ A<N is called a tree if for any α, β ∈ A<N, αE β, if β ∈ D, then α ∈ D.

Define a map Ψ̂ : {0, 1, 2, 3}<N −→ 2L̂×R̂, by setting

Ψ̂α =

{
L̂ × R̂, if α = ∅,
Πzn ◦ · · · ◦Πz1(L̂ × R̂), if α = (z1, . . . , zL) ∈ {0, 1, 2, 3}<N \ {∅}.
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L̂

R̂

Π̂0

Π̂10

Π̂11Π̂12

Π̂13Π̂20

Π̂21Π̂22

Π̂23

Π̂30

Π̂31

Figure 4. Partition of L ×R using the tree D.
〈F_tree〉

For α ∈ {0, 1, 2, 3}<N, let L̂α, R̂α be defined by the relation Ψ̂α = L̂α×R̂α. Define a treeD in {0, 1, 2, 3}<N

setting

D :=
{
∅
}
∪
{
α = (z1, . . . , zL) ∈ {0, 1, 2, 3}<N

∣∣∣ L ∈ N, Π̂α 6= ∅, zl 6= 0 for l = 1, . . . , L− 1

}
.

See Figure 4.

Since Π0(Π0(Ĉ)) = Π0(Ĉ) for any Ĉ ⊆ L̂ × R̂, this implies, together with the fact that L̂ × R̂ is a finite
set, that D is a finite tree.

For any α ∈ D, set

Lα :=
⋃
ξ∈L̂α

ξ, Rα :=
⋃

ξ′∈R̂α

ξ′,

Lα := Ψk(Lα), Rα := Ψk(Rα).

The idea of the proof is to show that, for each α ∈ D, on the rectangle Lα ×Rα it holds[
σrh(feff

k (t2), Lα)− σrh(feff
k (t2), Rα)

]
L2(Lα ×Rα) ≤

∫
Lα×Rα

πk(t1, t2, τ, τ
′)dτdτ ′.(5.7) E_fund_ineq

The conclusion will follow just considering that ∅ ∈ D and L∅ = (τL, τM ], R∅ = (τM , τR].

Step 4. Using Propositions 2.16, 2.18, 2.19, it is possible to prove that 5.7 holds for each α = (z1, . . . zL) ∈
D such that zL = 0. This is a major part of the proof, in which the partitions P(t1, t2, w, w

′) are
widely used, but we don’t prove this step explicitly, since its proof can be obtained adapting the proofs
of [3, Lemmas 6.10-6.11].

Step 5. We prove now that (5.7) holds for any α ∈ D by (inverse) induction on the tree. If α is a leaf
of the tree, then, by definition, the last component of α is equal to zero, and thus (5.7) has already been
proved in Step 4. If α is not a leaf, then

Ψ̂α = Ψ̂α0 ∪ Ψ̂α1 ∪ Ψ̂α2 ∪ Ψ̂α3

and thus

Lα ×Rα =
(
Lα0 ×Rα0

)
∪
(
Lα1 ×Rα1

)
∪
(
Lα2 ×Rα2

)
∪
(
Lα3 ×Rα3

)
.
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The estimate (5.7) holds on Lα0 × Rα0 by Step 4, while it holds on Lαa × Rαa, a = 1, 2, 3, by inductive
assumption. Hence we can write

[
σrh(feff

k (t2), Lα)− σrh(feff
k (t2), Rα)

]
L2(Lα ×Rα) =

∫∫
Lα×Rα

[
dfeff
k (t2)

dτ
(τ)− dfeff

k (t2)

dτ
(τ ′)

]
dτdτ ′

=

3∑
a=0

∫∫
Lαa×Rαa

[
dfeff
k (t2)

dτ
(τ)− dfeff

k (t2)

dτ
(τ ′)

]
dτdτ ′

=

3∑
a=0

[
σrh(feff

k (t2), Lαa)− σrh(feff
k (t2), Rαa)

]
L2(Lαa ×Rαa)

≤
3∑
a=0

∫∫
Lαa×Rαa

πk
(
t1, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′

=

∫∫
Lαa×Rαa

πk
(
t1, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′.

As already observed, for α = ∅, we get inequality (5.6), thus concluding the proof of the lemma. �

Lemma 5.6. It holds

∫∫
(Ψk×Ψk)(F)

qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′ ≤ O(1)

i2∑
i=i1+1

∑
m∈Z

Acr
k (iε,mε).

Proof. The proof is an easy consequence of the definition (5.2)-(5.3) of the sets Fr,F and the fact that
the weights qk are uniformly bounded, Remark 2.20. �

Lemma 5.7. It holds

∫∫
(Ψk×Ψk)(E)

qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− qk

(
tint
(
t1,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)
dτdτ ′

≤ O(1)

i2∑
i=i1+1

∑
m∈Z

A(iε,mε).

Proof. Fix (w,w′) ∈ E . Observe that for any i = i1, . . . , i2,

(5.8) E:phi:magg:psi

∣∣∣Φk(iε)(w′)− Φk(iε)(w)
∣∣∣ ≥ ∣∣∣Ψk(iε)(w′)−Ψk(iε)(w)

∣∣∣,
since Ψ takes into account only the waves which are in Wk(i1ε) ∩Wk(i2ε). Then notice that

q
(
tint(t1, w, w

′)− ε, w,w′
)

= q
(
tint(t1, w, w

′)− ε, tint(t1, w, w
′)− ε, w,w′

)
= q
(
t1, t

int(t1, w, w
′)− ε, w,w′

)
≥ q
(
t1, t

int(t1, w, w
′)− ε, t2, w, w′

)
.
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Hence

∆qk(w,w′) = q
(
t1, t2, t2, w, w

′
)
− q
(
tint(t1, w, w

′)− ε, w,w′
)

≤ q
(
t1, t2, t2, w, w

′
)
− q
(
t1, t

int(t1, w, w
′)− ε, t2, w, w′

)
≤

i2∑
i=tint(t1,w,w′)/ε

[
q
(
t1, iε, t2, w, w

′
)
− q
(
t1, (i− 1)ε, t2, w, w

′
)]

(by (2.23))

≤ O(1)

i2∑
i=tint(t1,w,w′)/ε

1

|Φk(iε)(w′)− Φk(iε)(w)|
∑
m∈Z

A(iε,mε)

(by (5.8))

≤ O(1)
1

|Ψk(w′)−Ψk(w)|

i2∑
i=i1+1

∑
m∈Z

A(iε,mε).

Therefore

∫∫
(Ψk×Ψk)(E)

qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− qk

(
tint
(
t1,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)
≤ O(1)

i2∑
i=i1+1

∑
m∈Z

A(iε,mε)

∫∫
(Ψk×Ψk)(E)

dτdτ ′

|τ ′ − τ |

≤ O(1)L2
((

Ψk ×Ψk

)
(E)
) i2∑
i=i1+1

∑
m∈Z

A(iε,mε)

≤ O(1)

i2∑
i=i1+1

∑
m∈Z

A(iε,mε). �

Lemma 5.8. It holds

∫∫
(Ψk×Ψk)(E)

qk

(
tint
(
t1,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)
dτdτ ′ ≤ O(1)

(
Υ(t1)−Υ(t2)

)
.
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Proof. It holds∫∫
(Ψk×Ψk)(E)

qk

(
tint
(
t1,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)
dτdτ ′

=

i2∑
i=i1+1

∫∫
(Ψk×Ψk)(Ei)

qk

(
(i− 1)ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)
dτdτ ′

=

i2∑
i=i1+1

∫∫(
Φk((i−1)ε)×Φk((i−1)ε)

)
(Ei)

qk

(
(i− 1)ε,Φk((i− 1)ε−1(τ),Φk((i− 1)ε)−1(τ ′)

)
dτdτ ′

(see (2.20))

≤
i2∑

i=i1+1

∑
m∈Z

∫∫
JLm×JRm

q((i− 1)ε)dτdτ ′

(using (2.21)-(2.22) and the fact that for waves w,w′ interacting at time iε, q(iε, w,w′) = 0)

≤
i2∑

i=i1+1

(
Q((i− 1)ε)−Q(iε)

)
+O(1)Tot.Var.(ū)

i2∑
i=i1+1

∑
m∈Z

A(iε,mε)

(since Qknown is decreasing in time)

≤
i2∑

i=i1+1

(
Q((i− 1)ε)−Q(iε)

)
+ C

(
Qknown((i− 1)ε)−Qknown(iε)

)

+O(1)Tot.Var.(ū)

i2∑
i=i1+1

∑
m∈Z

A(iε,mε)

(by the definition of Υ and Corollary 2.24)

≤ O(1)

i2∑
i=i1+1

(
Υ((i− 1)ε)−Υ(iε)

)
= O(1)

(
Υ(t1)−Υ(t2)

)
. �

The conclusion of the proof of Proposition 5.4 is an immediate consequence of the previous four lemmas,
Corollary 2.24 and Proposition 5.3. �
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