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Abstract. We prove a quadratic interaction estimate for wavefront approximate solutions to the tri-
angular system of conservation laws {

ut + f̃(u, v)x = 0,
vt − vx = 0.

This quadratic estimate has been used in the literature to prove the convergence rate of the Glimm

scheme [2].
Our aim is to extend the analysis, done for scalar conservation laws [7], in the presence of transversal

interactions among wavefronts of different families. The proof is based on the introduction of a quadratic

functional Q(t), decreasing at every interaction, and such that its total variation in time is bounded.
The study of this particular system is a key step in the proof of the quadratic interaction estimate

for general systems: it requires a deep analysis of the wave structure of the solution (u(t, x), v(t, x)) and

the reconstruction of the past history of each wavefront involved in an interaction.
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1. Introduction

Consider a hyperbolic system of conservation laws

(1.1)

{
ut + f(u)x = 0
u(0, x) = ū(x)
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where ū ∈ BV (R,Rn), f : Rn → Rn smooth (by smooth we mean at least of class C3(Rn,Rn)).
Let uε be a wavefront solution to (1.1) [9], where ε is a fixed discretization parameter. Let {tj}j=1,...,J

be the times at which two wavefronts w1, w2 meet or collide; each tj can be an interaction time if the
wavefronts w1, w2 belong to the same family and have the same sign; a cancellation time, if w1, w2 belong
to the same family and have opposite sign; a transversal interaction time if w1, w2 belong to different
families; a non-physical interaction time if at least one among w1, w2 is a non-physical wavefront (for a
precise definition see Definition 3.2).

In a series of papers [2, 3, 11, 12] the following estimate has been discussed:

(1.2)
∑

tj interaction

|σ(w1)− σ(w2)||w1||w2|
|w1|+ |w2|

≤ O(1)Tot.Var.(ū)2.

In the above formula w1, w2 are the wavefronts which interact at time tj , σ(w1) (resp. σ(w2)) is the
speed of the wavefront w1 (resp. w2) and |w1| (resp. |w2|) is its strength. Here and in the following, by
O(1) we denote a constant which depends only on the flux function f .

As it is shown in [3, 7], the proofs presented in the above papers contain glitches/missteps, which
justified the publication of a new and different proof in [7].

This last paper [7] considers the simplest case at the level of (1.1), namely the scalar case u ∈ R, and
shows that nevertheless the analysis is quite complicated: in fact, one has to follow the evolution of every
elementary component of a wavefront, which we call wave (see Section 1.1 below and also Definition 3.3),
an idea present also in [2]. One of the conclusions of the analysis in [7] is that the functional used to
obtain the bound (1.2) is non-local in time, a situation very different from the standard Glimm analysis
of hyperbolic systems of conservation laws.

In this work we want to study how the same estimate can be proved in the presence of waves of different
families. For this aim, we consider the most simple situation, namely the 2 × 2 Temple-class triangular
system (see [13] for the definition of Temple class systems)

(1.3)

{
ut + f̃(u, v)x = 0,

vt − vx = 0,

with ∂f̃(0,0)
∂u > −1, so that local uniform hyperbolicity is satisfied. Its quasilinear form in the Riemann

coordinates is given by

(1.4)

{
wt +

(
∂f̃(u,v)
∂u

)
wx = 0,

vt − vx = 0,

where u = u(w, v) is the Riemann change of coordinates. Being the equation for the first family v linear,
it is sufficient to consider the scalar non-autonomous PDE for w,

(1.5) wt +

(
∂f

∂w
(w, v)

)
wx = 0,

for some smooth (C3-)function f such that ∂f(0,0)
∂w > −1.

The (non-conservative) Riemann solver we consider for (1.5) in general will not generate the standard
(entropic) wavefront solution of (1.3): in this paper, we prefer to study the quasilinear system (1.4)
in order to focus on the main difficulty, namely the analysis of the transversal interactions. Indeed, the
choice of the coordinates (w, v) and of the (non-conservative) Riemann solver simplifies the computations.
Using the fact that the transformations w 7→ u(w, v), |v| � 1, are uniformly bi-Lipschitz, it is only a
matter of additional technicalities to prove that the analysis in the following sections can be repeated
for the standard (entropic) wavefront solution of (1.3). This will be addressed in a forthcoming paper
concerning general systems [8].

1.1. Main result. The main result of this paper is the proof of estimate (1.2) for the ε-wavefront
solution wε to (1.5): the parameter ε refers to the discretization fε of the flux f and to the discretization
(wε(0), vε(0)) of the initial data (w(0), v(0)), with, as usual,

(1.6) Tot.Var.(wε(0), vε(0)) ≤ Tot.Var.(w(0), v(0)).

In order to state precisely the main theorem of this paper (Theorem 1), as in [7] we need to introduce
what we call an enumeration of waves in the same spirit as the partition of waves considered in [2], see
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also [1]. Roughly speaking, we assign an index s to each piece of a wavefront (i.e. to each elementary
discontinuity of size ε), and construct two functions x(t, s), σ(t, s) which give the position and the speed
of the wave s at time t, respectively.

More precisely, let wε be the ε-wavefront solution: for definiteness we assume wε to be right continuous
in space. Consider the set

W :=

{
1, 2, . . . ,

1

ε
Tot.Var.(wε(0))

}
⊆ N,

which will be called the set of waves. In Section 3.3 we construct a function

x : [0,+∞)×W → (−∞,+∞]
(t, s) 7→ x(t, s)

with the following properties:

(1) the set {t : x(t, s) < +∞} is of the form [0, T (s)) with T (s) ∈ (0,+∞): define W(t) as the set

W(t) :=
{
s ∈ W | x(t, s) < +∞

}
;

(2) the function t 7→ x(t, s) is Lipschitz and affine between collisions;
(3) for s < s′ such that x(t, s), x(t, s′) < +∞ it holds

x(t, s) ≤ x(t, s′);

(4) there exists a time-independent function S(s) ∈ {−1, 1}, the sign of the wave s, such that

(1.7) Dxwε(t, ·) = x(t, ·)]
(
S(·) εcountxW(t)

)
,

where countxW(t) is the counting measure on W(t) ⊆ N.

The last formula means that for all test functions φ ∈ C1
c (R,R) it holds

−
∫
R
wε(t, x)Dxφ(x)dx = ε

∑
s∈W(t)

φ(x(t, s))S(s).

The fact that x(t, s) = +∞ is a convention saying that the wave has been removed from the solution wε
by a cancellation occurring at time T (s).
Formula (1.7) and a fairly easy argument, based on the monotonicity properties of the Riemann solver
and used in the proof of Lemma 3.11, yield that to each wave s it is associated a unique value ŵ(s)
(independent of t) by the formula

ŵ(s) = w(0,−∞) +
∑

p∈W(t)
p≤s

S(p).

We finally define the speed function σ : [0,+∞)×W → (−∞,+∞] as follows:
(1.8)

σ(t, s) :=


+∞ if x(t, s) = +∞,(
d
dw conv[wε(t,x(t,s)−),wε(t,x(t,s))] fε

)((
ŵ(s)− ε, ŵ(s)

)
, vε(t, x(t, s))

)
if S(s) = +1,(

d
dw conc[wε(t,x(t,s)),wε(t,x(t,s)−)] fε

)((
ŵ(s), ŵ(s) + ε

)
, vε(t, x(t, s))

)
if S(s) = −1.

We denote by fε(·, vε(t, x(t, s))) the piecewise affine interpolation of f(·, vε(t, x(t, s))) with grid size ε, as
a function of w (see Section 1.4 for the precise definition). The definition (1.8) of σ(t, s) means, in other
words, that to the wave s ∈ W(t) we assign the speed given by the (non-conservative) Riemann solver in
(t, x(t, s)) to the wavefront containing the interval (ŵ(s)− ε, ŵ(s)) for S(s) = +1 or (ŵ(s), ŵ(s) + ε) for
S(s) = −1.

We can now state our theorem. As before, let tj , j = 1, . . . , J , be the times where two wavefronts
meet, i.e. a collision occurs.
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Theorem 1. The following holds:

J∑
j=1

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤
[
3‖D2

wwf‖+ 12 log(2)‖D3
wwvf‖Tot.Var.(v(0, ·))

]
Tot.Var.(w(0, ·))2

+ ‖D2
wvf‖Tot.Var.(w(0, ·))Tot.Var.(v(0, ·)),

(1.9)

where |s| := ε is the strength of the wave s.

Notice that, since the r.h.s. of (1.9) is independent of ε (under the assumption (1.6)), the above theorem
provides a uniform estimate of (1.2) for wavefront tracking solution. In fact, a simple computation based
on Rankine-Hugoniot condition yields

(σ(w1)− σ(w2))|w1||w2|
|w1|+ |w2|

=
1

2

[(
σ(w1)− σ(w)

)
|w1|+

(
σ(w)− σ(w2)

)
|w2|

]
,

in the case of an interaction of the wavefronts w1, w2 generating the wavefront w, with w1 coming from
the left and w2 coming from the right.

1.2. Sketch of the proof. As observed in [3, 7], the study of wave collisions cannot be local in time,
but one has to take into account the whole sequence of interactions-cancellations-transversal interactions
involving every couple of waves.

Our approach in this paper follows the ideas of [7]: we construct a quadratic functional Q such that

(a) its total variation in time is bounded by O(1)Tot.Var.(w(0), v(0))2;
(b) at any interaction involving the wavefronts w1, w2, it decays at least of the quantity

|σ(w1)− σ(w2)||w1||w2|
|w1|+ |w2|

.

The functional can increase only when a transversal interaction occurs, but in this case we show that its
positive variation is controlled by the decrease of the classical transversal Glimm interaction functional
[10]

Qtrans(t) :=

H∑
h=1

∑
s∈W(t)

x(t,s)<x(t,vh)

|vh||s|.

In the above formula, we denote by {vh}1≤h≤H the wavefronts of the first family generated at t = 0,
by {|vh|}1≤h≤H their strengths, and by x(t, vh), 1 ≤ h ≤ H, their position at time t. Clearly it holds
x(t, vh) = x(0, vh)− t, and we assume that x(0, vh) < x(0, vh+1) for each h.
Being Qtrans a Lyapunov functional, it follows that

(1.10) positive total variation of Q(t) ≤ O(1)Qtrans(0) ≤ O(1)Tot.Var.(w(0))Tot.Var.(v(0)),

so that, being by construction Q(0) ≤ O(1)Tot.Var.(w(0), v(0))2, the functional t 7→ Q(t) has total
variation of the order of Tot.Var.(w(0), v(0))2. In particular,

(1.11) left hand side of (1.9) at interactions ≤ negative variation of Q ≤ O(1)Tot.Var.(w(0), v(0))2.

The estimates (1.9) concerning transversal interactions and cancellations are much easier (and already
done in the literature, see [2, 7]), and we present them in Propositions 4.1, 4.3.

As in [7], Q(t) has the form

Q(t) :=
∑

s,s′∈W(t)
s<s′

q(t, s, s′)|s||s′|.

What differs from the analysis in the scalar case is the computation of the weights q(t, s, s′).
We recall that in the scalar case the computation of q(t, s, s′) involves two steps:

(1) the definition of the interval I(t, s, s′), made of all waves which have interacted both with s and
s′;

(2) the computation of an artificial difference in speed of s, s′, obtained by solving the Riemann
problem in I(t, s, s′) with the flux of the scalar equation f .
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The fundamental fact in the analysis of the scalar case is that

Property (D). The Riemann solution of Point (2) divides waves which are divided in the approximate
solution of the Cauchy problem (1.1).

As a consequence, two waves which have been separated at a time tj > 0, can join again at some
interaction only if this interaction involves waves which have never interacted.

The main difficulty we face in our setting (i.e. in the presence of wavefronts of different families) is that
the two properties above are not true any more. This has an impact in the construction of the intervals
I(t, s, s′) (Point (1) above) and in the definition of the weights q, which is now given by an ”artificial
flux” (Point (2)).

We now address these points more deeply.

1.2.1. Definition of the interval I(t, s, s′). The model situation to be considered here is the following:
even in the absence of cancellations or interactions involving waves which have never interacted with
s, s′, the waves s, s′ can undergo to a sequence of splittings and interactions due to the presence of
the wavefronts of the first family. In this case, the interval I(t, s, s′) as defined in [7] does not contain
the information about their common story: in fact, by the definition given in [7], Section 3.3, I(t, s, s′)
contains all waves which have interacted both with s and s′, but it gives us no information about the
transversal interactions in which each wave p ∈ I(t, s, s′) has been involved before time t.

Hence, it is more natural to compute the interval I(t, s, s′) starting from the last common splitting
point.

The drawback of this definition is that, differently from the scalar case (Lemma 3.17 of [7]), the intervals
I(t, s, s′) and I(t, p, p′), for (s, s′) 6= (p, p′), are not in general comparable. However, a fundamental
reduction property still holds, Proposition 4.13.

1.2.2. Computation of the weight q(t, s, s′). The other characteristic of systems is that the scalar reduced
flux function (see [6]) depends (as a function) on the solution. Hence the separation property cited above
is certainly not valid, if we use this reduced scalar flux. Indeed, as we said before, two waves which have
split can be again approaching due only to transversal interactions, which means that the flux function
f of (1.5) is not separating them when solving the Riemann problem in I(t, s, s′).
In any case, it is not clear which can be a natural flux function to be used to compute the difference in
speeds as in Point (2), because of the presence of the wavefronts of the first family.

In order to overcome this difficulty and preserve the separation Property (D), we build first the partition
P(t, s, s′) of I(t, s, s′) as follows: P(t, s, s′) is the least refined partition such that for all t′ ≤ t, if p, p′ are
waves in I(t, s, s′) which are separated at t′, then they belong to different elements J ,J ′ ∈ P(t, s, s′),
Proposition 4.11. It is fairly easy to see that the elements J of the partition P(t, s, s′) are intervals.
The weights q(t, s, s′) are then constructed recursively by computing at each transversal interaction the
worst possible increase in the difference in speed π(t, s, s′)[s, s′], see (4.9) and Lemma 4.14, and then
defining (4.10)

(1.12) q(tj , s, s
′) :=


0 s, s′ joined at time tj in the real solution

π(tj , s, s
′)[s, s′]

|ŵ(s′)− (ŵ(s)− S(s)ε)|
s, s′ divided at time tj and already interacted,

‖D2
wwf‖L∞ s, s′ never interacted.

Another difference w.r.t. the scalar case is that here we do not increase the weight q(t, s, s′) when a
cancellation occurs. Even if we do not obtain the sharpest estimate on (1.9), this choice is sufficient for
proving (1.2) and the analysis is certainly simpler.

In Section 3.4, we introduce an effective flux function feff , which is defined up to an affine function by
the formula (3.7),

d2feff
t̄

dw2
(w) :=

∂2f

∂w2
(w, v) for a.e. w,

where v = v(t̄, x(t̄, s)) for any s such that w ∈ (ŵ(s) − ε, ŵ(s)] in the case of s positive (resp. w ∈
[ŵ(s), ŵ(s) + ε) in the case of s negative). As observed before, this flux feff is not useful for computing
the weights: in fact, its main use is in the comparison in the difference in Rankine-Hugoniot speed
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σrh(feff ,J ) (obtained by Rankine-Hugoniot condition with flux feff on the element J of the partition
P(t, s, s′)) with the weights π(t, s, s′), see (4.12).
In particular, when no transversal wavefronts are present, then, up to a constant independent of J ∈
P(t, s, s′), σrh(feff ,J ) corresponds to the Rankine-Hugoniot speed σrh(f,J ) computed according to the
flux f on the interval J , and hence the weights π(t, s, s′) yield a control on the speed difference.

An important consequence of the fact that the intervals I(t, s, s′), I(t, p, p′) for (s, s′) 6= (p, p′) are not
comparable, is that the reasoning of Theorem 3.23 of [7] (precisely the inequality before (3.16) in Step 4
of the proof) cannot be carried out.
However, the separation property of the partitions P(t, s, s′) allows to divide the pairs of waves (s, s′)
(involved in an interaction of the wavefronts L, R, with s ∈ L, s′ ∈ R) according to the last transversal
interaction-cancellation time which splits them (Lemma 4.17). The proof of Point (b) of page 4 then
proceeds by considering a subtree D of {1, 2, 3}<N and by constructing for each α ∈ D a subrectangle
Ψα = Lα ×Rα of L ×R, such that the following estimate holds:

σrh(f,Lα)− σrh(f,Rα) ≤
∑

(s,s′)∈Ψα
(s,s′) already

interacted

π(tj−1, s, s
′)[s, s′]|s||s′|

+
∑

(s,s′)∈Ψα
(s,s′) never
interacted

‖D2
wwf‖L∞

(
|L|+ |R|

)
|s||s′|.

This is done in Lemma 4.18 for the elements Ψα with α final leaf of the tree D. A standard argument
allows to move backward the above estimate to all the elements Ψα, α ∈ D, obtaining finally

σrh(f,L)− σrh(f,R) ≤
∑

(s,s′)∈L×R
(s,s′) already

interacted

π(tj−1, s, s
′)[s, s′]|s||s′|

+
∑

(s,s′)∈L×R
(s,s′) never
interacted

‖D2
wwf‖L∞

(
|L|+ |R|

)
|s||s′|.

Dividing both side by |L| + |R| and remembering the definition of q(t, s, s′) (1.12), we obtain the proof
of Point (b).

1.3. Structure of the paper. The paper is organized as follows.
Section 2 provides some useful results on convex envelopes. Part of these results are already present in

the literature, others can be deduced with little effort. We decided to collect them for reader’s convenience.
Two particular estimates play a key role in the main body of the paper: the dependence of the derivative
of the convex envelope of f when f changes (Proposition 2.12) and the behavior of the speed assigned
to a wave by the solution to Riemann problem [uL, uR] when the left state uL or the right state uR are
varied (Proposition 2.11).

The next two sections contain the main results of the paper.
In Section 3 we introduce the main tools which are used in the proof of the main theorem, Theorem 1.

After recalling how the (non-conservative) wavefront approximated solution wε is constructed, we begin
with the definition of the wave map x and of enumeration of waves in Section 3.3, Definition 3.3. This
is the triple (W, x, ŵ), where x is the position of the waves s and ŵ is its right state. In Section 3.3.3 we
show that it is possible to construct a function x(t, s) such that at any time (W, x(t), ŵ) is an enumeration
of waves, with ŵ independent on t.
The second tool is the definition of the effective flux function feff , Section 3.4, and we list some of its
properties.
Finally in Section 3.5 we recall the definition of transversal Glimm interaction functional Qtrans and
Proposition 3.14 recalls the two main properties of Qtrans.

Once we have an enumeration of waves, we can start the proof of Theorem 1 (Section 4).
First we study the estimate (1.9) when a single transversal interaction or a cancellation occurs. These
estimates are standard (see for example [2, 7]).
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In the case of a transversal interaction, the variation of speed is controlled by the strength of the wavefront
of the first family interacting with the solution wε, and then the l.h.s. of (1.9) is controlled by the decay
of Qtrans. The precise estimate is reported in Proposition 4.1; Corollary 4.2 completes the estimate (1.9)
for the case of transversal interaction times.
For cancellation times, the variation of speed is controlled by the amount of cancellation, which in turn is
bounded by the decay of a first order functional, namely Tot.Var.(wε(t, ·)). This is shown in Proposition
4.3, where the dependence w.r.t. Tot.Var.(wε(t, ·)) and ‖Dwwf‖L∞ is singled out. Corollary 4.4 concludes
the estimate (1.9) for the case of cancellation times.
The rest of Section 4 is the construction and analysis of the functional Q described above (Section 1.2), in
order to prove Proposition 4.5. This proposition proves (1.9) for the case of interaction times, completing
the proof of Theorem 1.
In Section 4.1 we define the notion of pairs of waves (s, s′) which have never interacted before a fixed time t
and pairs of waves which have already interacted and, for any pair of waves which have already interacted,
we associate an interval of waves I(t, s, s′) and a partition P(t, s, s′) of this interval, which in some sense
summarize their past common history. In order to overcome the difficulty mentioned at the beginning of
Section 1.2.1, we introduce the time of last interaction T(t, s, s′) (4.7), defined as the last time before t
such that s, s′ have the same position. The computation of I(t, s, s′) starts from time T(t, s, s′) (see (4.8))
as well as the construction of the partition P(t, s, s′). The desired separation properties of P(t, s, s′) are
proved in Propositions 4.11 and 4.13.
In Section 4.2 we write down the functional Q in order to conclude the proof of Theorem 1.
Then we study separately the behavior of Q at interactions and transversal interactions-cancellations.
Theorem 4.16 and Corollary 4.19 in Section 4.3 prove that the functional Q decreases at least of the
quantity (1.9) at a single interaction time.
Theorem 4.20 in Section 4.4 shows that the increase of Q at each transversal interaction time is controlled
by the decrease of the transversal Glimm interaction functional Qtrans. The behavior of Q at cancellations
is elementary, due to the definition of the weights q(t, s, s′), see the end of Section 4.2.
These two facts conclude the proof of Proposition 4.5, as shown in Section 1.2, namely estimates (1.10)
and (1.11).

1.4. Notations. For usefulness of the reader, we collect here some notations used in the subsequent
sections.

• g(u+) = limu→u+ g(u), g(u−) = limu→u− g(u);
• g′(u−) (resp. g′(u+)) is the left (resp. right) derivative of g at point u;
• If g : [a, b] → R, h : [b, c] → R are two functions which coincide in b, we define the function
g ∪ h : [a, c]→ R as

g ∪ h(x) =

{
g(x) if x ∈ [a, b],
h(x) if x ∈ [b, c].

• Sometime we will write Rx instead of R (resp. [0,+∞)t instead of [0,+∞)) to emphasize the
symbol of the variables (resp. x or t) we refer to.

• For any f : R → R and for any ε > 0, the piecewise affine interpolation of f with grid size ε is
the piecewise affine function fε : R → R which coincides with f in the points of the form mε,
m ∈ Z.

• If a, b ∈ N, we will denote by [a, b] :=
{
n ∈ N

∣∣ a ≤ n ≤ b
}

. From the context it will be always
clear if [a, b] is an interval of natural number or the usual interval of real number.

• Given a Lipschitz function g : E ⊆ R −→ R, we denote by

Lip(g) := sup
u,v∈E
u 6=v

|g(v)− g(u)|
|v − u|

the best Lipschitz constant of g.

2. Convex Envelopes

In this section we define the convex envelope of a continuous function f : R → R in an interval [a, b]
and we prove some related results. The first section provides some well-known results about convex
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envelopes, while in the second section we prove some propositions which will be frequently used in the
paper.

The aim of this section is to collect the statements we will need in the main part of the paper. In
particular, the most important results are Theorem 2.5, concerning the regularity of convex envelopes;
Proposition 2.11, referring to the behavior of convex envelopes when the interval [a, b] is varied; Proposi-
tion 2.12, referring to the to the behavior of convex envelopes when the function is varied: these estimates
will play a major role for the study of the Riemann problems.

2.1. Definitions and elementary results.

Definition 2.1. Let f : R→ R be continuous and [a, b] ⊆ R. We define the convex envelope of f in the
interval [a, b] as

conv[a,b] f(u) := sup

{
g(u)

∣∣∣ g : [a, b]→ R is convex and g ≤ f
}
.

A similar definition holds for the concave envelope of f in the interval [a, b] denoted by conc[a,b] f . All
the results we present here for the convex envelope of a continuous function f hold, with the necessary
changes, for its concave envelope.

Lemma 2.2. In the same setting of Definition 2.1, conv[a,b] f is a convex function and conv[a,b] f(u) ≤
f(u) for each u ∈ [a, b].

The proof is straightforward.
Adopting the language of Hyperbolic Conservation Laws, we give the next definition.

Definition 2.3. Let f be a continuous function on R, let [a, b] ⊆ R and consider conv[a,b] f . A shock
interval of conv[a,b] f is an open interval I ⊆ [a, b] such that for each u ∈ I, conv[a,b] f(u) < f(u).

A maximal shock interval is a shock interval which is maximal with respect to set inclusion.
A shock point is any u ∈ [a, b] belonging to a shock interval. A rarefaction point is any point u ∈ [a, b]

which is not a shock point, i.e. any point such that conv[a,b] f(u) = f(u).

Notice that, if u ∈ [a, b] is a point such that conv[a,b] f(u) < f(u), then, by continuity of f and
conv[a,b] f , it is possible to find a maximal shock interval I containing u.

It is fairly easy to prove the following result.

Proposition 2.4. Let f : R → R be continuous; let [a, b] ⊆ R. Let I be a shock interval for conv[a,b] f .
Then conv[a,b] f is affine on I.

The following theorem is classical and provides a description of the regularity of the convex envelope
of a given function f . For a self contained proof, see Theorem 2.5 of [7].

Theorem 2.5. Let f be a C1,1 function. Then:

(1) the convex envelope conv[a,b] f of f in the interval [a, b] is differentiable on [a, b];
(2) for each rarefaction point u ∈ (a, b) it holds

d

du
f(u) =

d

du
conv[a,b] f(u);

(3) d
du conv[a,b] f is Lipschitz-continuous with Lipschitz constant less or equal than Lip(f ′).

By ”differentiable on [a, b]” we mean that it is differentiable on (a, b) in the classical sense and that in
a (resp. b) the right (resp. the left) derivative exists.

2.2. Further estimates. We now state some useful results about convex envelopes, which we will fre-
quently use in the following sections.

Proposition 2.6. Let f : R→ R be continuous and let a < ū < b. If conv[a,b] f(ū) = f(ū), then

conv[a,b] f = conv[a,ū] f ∪ conv[ū,b] f.

Proof. See Proposition 2.7 of [7]. �

Corollary 2.7. Let f : R → R be continuous and let a < ū < b. Assume that ū belongs to a maximal
shock interval (u1, u2) with respect to conv[a,b] f . Then conv[a,ū] f |[a,u1] = conv[a,b] f |[a,u1].
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Proof. It is an easy consequence of Proposition 2.6, just observing that by maximality of (u1, u2),
conv[a,b] f(u1) = f(u1). �

Proposition 2.8. Let f : R→ R be continuous; let a < ū < b. Then

(1)
(
d
du conv[a,ū] f

)
(u+) ≥

(
d
du conv[a,b] f

)
(u+) for each u ∈ [a, ū);

(2)
(
d
du conv[a,ū] f

)
(u−) ≥

(
d
du conv[a,b] f

)
(u−) for each u ∈ (a, ū];

(3)
(
d
du conv[ū,b] f

)
(u+) ≤

(
d
du conv[a,b] f

)
(u+) for each u ∈ [ū, b);

(4)
(
d
du conv[ū,b] f

)
(u−) ≤

(
d
du conv[a,b] f

)
(u−) for each u ∈ (ū, b].

The above statement is identical to Proposition 2.9 of [7], to which we refer for the proof.

Proposition 2.9. Let f : R→ R be continuous; let a < ū < b. Then

(1) for each u1, u2 ∈ [a, ū), u1 < u2,( d
du

conv[a,ū] f
)

(u2+)−
( d
du

conv[a,ū] f
)

(u1+)

≥
( d
du

conv[a,b] f
)

(u2+)−
( d
du

conv[a,b] f
)

(u1+);

(2) for each u1, u2 ∈ (a, ū], u1 < u2,( d
du

conv[a,ū] f
)

(u2−)−
( d
du

conv[a,ū] f
)

(u1−)

≥
( d
du

conv[a,b] f
)

(u2−)−
( d
du

conv[a,b] f
)

(u1−);

(3) for each u1, u2 ∈ [ū, b), u1 < u2,( d
du

conv[ū,b] f
)

(u2+)−
( d
du

conv[ū,b] f
)

(u1+)

≥
( d
du

conv[a,b] f
)

(u2+)−
( d
du

conv[a,b] f
)

(u1+);

(4) for each u1, u2 ∈ (ū, b], u1 < u2,( d
du

conv[ū,b] f
)

(u2−)−
( d
du

conv[ū,b] f
)

(u1−)

≥
( d
du

conv[a,b] f
)

(u2−)−
( d
du

conv[a,b] f
)

(u1−).

Proof. Easy consequence of previous proposition. �

Corollary 2.10. Let f : R → R be continuous and let a < ū < b. Let u1, u2 ∈ [a, ū], u1 < u2. If u1, u2

belong to the same shock interval of conv[a,ū] f , then they belong to the same shock interval of conv[a,b] f .

Proposition 2.11. Let f be a C1,1 function, let a < ū < b. Then(
d

du
conv[a,ū] f

)
(ū−)−

(
d

du
conv[a,b] f

)
(ū) ≤ Lip(f ′)(b− ū).

Moreover, if fε is the piecewise affine interpolation of f with grid size ε, it holds(
d

du
conv[a,ū] fε

)
(ū−)−

(
d

du
conv[a,b] fε

)
(ū−) ≤ Lip(f ′)(b− ū).

Proof. See Proposition 2.15 of [7]. �

Proposition 2.12. Let f, g : R −→ R be C1 functions. Let a, b ∈ R, a < b. It holds∥∥∥∥ ddu conv[a,b] f −
d

du
conv[a,b] g

∥∥∥∥
L∞
≤
∥∥∥∥ dfdu − dg

du

∥∥∥∥
L∞

.

Moreover, if fε, gε are the piecewise affine interpolation of f, g respectively, with grid size ε, then∥∥∥∥ ddu conv[a,b] fε −
d

du
conv[a,b] gε

∥∥∥∥
L∞
≤
∥∥∥∥ dfdu − dg

du

∥∥∥∥
L∞

.
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Proof. Take ū ∈ [a, b]. We want to prove

(2.1)

∣∣∣∣ ddu conv[a,b] f(ū)− d

du
conv[a,b] g(ū)

∣∣∣∣ ≤ ∥∥∥∥ dfdu − dg

du

∥∥∥∥
L∞

.

Without loss of generality we can assume that ū is a rarefaction point for f and a shock point for
g. Namely if ū is a rarefaction point both for f and for g, estimate (2.1) is a direct consequence of
Theorem 2.5, Point (2). If ū is a shock point both for f and for g, we can always find a point û where
d
du conv[a,b] f(ū) = d

du conv[a,b] f(û), d
du conv[a,b] g(ū) = d

du conv[a,b] g(û) and u is a rarefaction point for
either f or g.

Hence let us assume that ū is a rarefaction point for f and a shock point for g. Set

m :=
d

du
conv[a,b] f(ū), m̄ :=

d

du
conv[a,b] g(ū).

Since u is a rarefaction point for f , it holds

(2.2) f(ū) +m(u− ū) ≤ f(u) for each u ∈ [a, b].

On the other hand, since ū is a shock point for g, denoting by (ā, b̄) the maximal shock interval of g
which ū belongs to, it holds

(2.3)
g(b̄)− g(ū)

b̄− ū
≤ m̄ ≤ g(ū)− g(ā)

ū− ā
.

Now assume that m ≥ m̄. It holds∣∣∣∣ ddu conv[a,b] f(ū)− d

du
conv[a,b] g(ū)

∣∣∣∣ = m− m̄

(2.2),(2.3)

≤ f(b̄)− f(ū)

b̄− ū
− g(b̄)− g(ū)

b̄− ū

≤ 1

b̄− ū

∫ b̄

ū

(
df

du
(u)− dg

du
(u)

)
du

≤
∥∥∥∥ dfdu − dg

du

∥∥∥∥
L∞

.

(2.4)

If m ≤ m̄ a similar argument yields (2.1).
In the piecewise affine case, inequalities (2.2), (2.3) still hold with fε instead of f and gε instead of g.

We can always assume that ū, ā, b̄ ∈ Zε. Since fε = f, gε = g on Zε, the chain of inequalities (2.4) still
holds. �

Proposition 2.13. Let f : R −→ R be continuous. Let a, b ∈ R. Let r(u) = mu+q be an affine function,
m, q ∈ R. It holds

conv[a,b](f + r) =
(

conv[a,b] f
)

+ r.

Proof. Let us prove that
(

conv[a,b] f
)

+ r is the convex envelope of f + r in the interval [a, b]. First

observe that
(

conv[a,b] f
)

+ r is convex, since it is sum of convex functions. Next, since conv[a,b] f ≤ f ,

then
(

conv[a,b] f
)

+ r ≤ f + r. Finally let h be any convex function such that h ≤ f + r. This

means that h − r ≤ f . Since r is affine, h − r is convex and so h − r ≤ conv[a,b] f , or, in other words,

h ≤
(

conv[a,b] f
)

+ r. �

3. Preliminary results

In this section we construct a wavefront solution to a triangular system, and for this solution we
introduce the notions of waves and the idea of enumeration of waves of the solution u. We next construct
a scalar flux function feff , the effective flux function, which is defined by removing the jumps in the first
derivative of f due to the waves of the first family v. We conclude the section recalling the definition of
the transversal Glimm interaction potential and its decay properties.
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3.1. Triangular systems of conservation laws: a case study. The system of conservation laws we
consider is of the form

(3.1)

{
ut + f̃(u, v)x = 0,

vt − vx = 0.

The function f̃ is assumed to satisfy

∂f̃

∂u
(0, 0) > −1,

so that the system is uniformly hyperbolic in every compact neighborhood of the origin.
It is elementary to verify that the system (3.1) is of Temple class [13], in particular it admits a set of

Riemann coordinates (w, v) such that its quasilinear form is given by

(3.2)

{
wt + ∂f̃(u,v)

∂u wx = 0,
vt − vx = 0,

where u = u(w, v) is the Riemann change of coordinates.

3.2. Wavefront solution. Let us define f : R2 −→ R be the relation

∂f̃

∂u
(u(w, v), v) =

∂f

∂w
(w, v).

Since the Riemann change of coordinates has the regularity of Df̃ , we can assume that f is a C3 function
satisfying

(1) ‖Dαf‖L∞ <∞ for any multindex α, |α| ≤ 3;

(2) ∂f
∂w (w, v) > −1 in a neighborhood of (0, 0).

We will construct a wavefront solution in the coordinates (w, v), by specifying a (non-conservative)
Riemann solver.

Remark 3.1. The solution we will construct in general will not correspond to the standard (entropic)
wavefront solution of (3.1): in this paper, we prefer to study the quasilinear system (3.2) in order to
focus on the main difficulty, namely the analysis of the transversal interactions. Indeed, the choice of the
coordinates (w, v) and of the (non-conservative) Riemann solver simplifies the computations.

Using the fact that the transformations w 7→ u(w, v), |v| � 1, are uniformly bi-Lipschitz, it is only
a matter of additional technicalities to prove that the analysis in the following sections can be repeated
for the standard (entropic) wavefront solution of (3.1). This will be addressed in a forthcoming paper
concerning general systems [8].

For any ε > 0 denote by fε(·, v) be the piecewise affine interpolation of f(·, v) with grid size ε, as a
function of w.

We define the approximate Riemann solver associated to f as follows: the solution of the Riemann
problem (

(w−, v−), (w+, v+)
)
∈ (Zε)2 × (Zε)2 ⊆ R2 × R2

is given by the function (t, x) 7→ (w(t, x), v(t, x)), where

v(t, x) =

{
v−, if x < −t,
v+, if x ≥ −t,

while w(t, x) is the piecewise constant, right continuous solution of the scalar Riemann problem (w−, w+)
with flux function fε(·, v+).

Let (w̄ε, v̄ε) be an approximation of the initial datum (w̄, v̄) (in the sense that (w̄ε, v̄ε) → (w̄, v̄) in
L1-norm, as ε→ 0) of the Cauchy problem associated to the system (3.2), such that w̄ε, v̄ε have compact
support, they take values in the discrete set Zε, and

(3.3) Tot.Var.(w̄ε) ≤ Tot.Var.(w̄), Tot.Var.(v̄ε) ≤ Tot.Var.(v̄).

Now, by means of the usual wavefront tracking algorithm, one can construct a function

(t, x) 7→ (w(t, x), v(t, x))
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defined for all t ≥ 0 and for all x ∈ R, see for example [4], [5]. It is easy to see that (w(t, ·), v(t, ·)) is
right continuous, compacted supported, piecewise constant and takes values in the set Zε× Zε.

We will call wavefronts the piecewise affine discontinuity curves of the function (t, x) 7→ (w(t, x), v(t, x));
in particular the discontinuity curves of v will be called wavefronts of the first family (positive or negative
according to the sign of the jump), while those of w will be called wavefronts of the second family. This
is a standard notation used in hyperbolic conservation laws.

Let {(tj , xj)}, j ∈ {1, 2, . . . , J}, be the points in the t, x-plane where two (or more) wavefronts collide.
Let us suppose that tj < tj+1 and for every j exactly two wavefronts meet in (tj , xj). This is a standard
assumption, achieved by slightly perturbing the wavefront speed. We also set t0 := 0.

Definition 3.2. For each j = 1, . . . , J , we will say that (tj , xj) is an interaction point (or non transversal
interaction point) if the wavefronts colliding in (tj , xj) are of the second family and have the same sign.
An interaction point will be called positive (resp. negative) if wavefronts which collide in (tj , xj) are
positive (resp. negative).

Moreover we will say that (tj , xj) is a cancellation point if the wavefronts which collide in (tj , xj) are
of the second family and have opposite sign.

Finally we will say that (tj , xj) is a transversal interaction point if one of the wavefronts which collide
in (tj , xj) is of the first family and the other one is of the second family.

Since, by definition of the Riemann solver, wavefronts of the second family are not created nor split
at times t > 0, the three cases above cover all possibilities.

Let us denote by {vh}1≤h≤H the wavefronts of the first family generated at t = 0. For each h, denote by
v−h , v

+
h respectively the left and the right state of the wavefront vh, denote by |vh| := |v+

h −v
−
h | its strength,

and denote by x(t, vh) the position of the wavefront vh at time t. Clearly it holds x(t, vh) = x(0, vh)− t.
Assume x(0, vh) < x(0, vh+1) for each h. Finally if (tj , xj) is a transversal interaction point, denote by
h(j) the index of the wavefront of the second family vh(j) involved in the transversal interaction.

3.3. Definition of waves (of the second family). In this section we define the notion of wave (of
the second family), the notion of position of a wave and the notion of speed of a wave. By definition of
wavefront solution, for each time t ≥ 0, wε(t, ·) is a piecewise constant, compacted supported function,
which takes values in the set Zε. Hence Tot.Var.(wε(t, ·)) is an integer multiple of ε.

3.3.1. Enumeration of waves. In this section we define the notion of enumeration of waves related to a
function w : Rx → R of the single variable x: in the following sections, w will be the piecewise constant,
compacted supported function wε(t, ·) for fixed time t, considered as a function of x.

Definition 3.3. Let w : R→ R, w ∈ BV (R), be a piecewise constant, right continuous function, which
takes values in the set Zε. An enumeration of waves for the function w is a 3-tuple (W, x, ŵ), where

W ⊆ N is the set of waves,
x :W → (−∞,+∞] is the position function,
ŵ :W → Zε is the right state function,

with the following properties:

(1) the restriction x|x−1(−∞,+∞) takes values only in the set of discontinuity points of w;
(2) the restriction x|x−1(−∞,+∞) is increasing;

(3) for given x0 ∈ R, consider x−1(x0) = {s ∈ W | x(s) = x0}; then it holds:
(a) if w(x0−) < w(x0), then ŵ|x−1(x0) : x−1(x0) → (w(x0−), w(x0)] ∩ Zε is strictly increasing

and bijective;
(b) if w(x0−) > w(x0), then ŵ|x−1(x0) : x−1(x0) → [w(x0), w(x0−)) ∩ Zε is strictly decreasing

and bijective;
(c) if w(x0−) = w(x0), then x−1(x0) = ∅.

Given an enumeration of waves as in Definition 3.3, we define the sign of a wave s ∈ W with finite
position (i.e. such that x(s) < +∞) as follows:

(3.4) S(s) := sign
[
w(x(s))− w(x(s)−)

]
.

We immediately present an example of enumeration of waves which will be fundamental in the sequel.
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Example 3.4. Fix ε > 0 and let w̄ε ∈ BV (R) be the first component of the approximate initial datum
of the Cauchy problem associated to the system (3.2), with compact support and taking values in Zε.
The total variation of w̄ε is an integer multiple of ε. Let

W : R→ [0,Tot.Var.(w̄ε)], x 7→W (x) := Tot.Var.(w̄ε; (−∞, x]),

be the total variation function. Then define:

W :=

{
1, 2, . . . ,

1

ε
Tot.Var.(w̄ε)

}
and

x0 :W → (−∞,+∞], s 7→ x0(s) := inf
{
x ∈ (−∞,+∞]

∣∣∣ εs ≤W (x)
}
.

Moreover, recalling (3.4), we define

ŵ :W → R, s 7→ ŵ(s) := w̄ε(x0(s)−) + S(s)
[
εs−W (x0(s)−)

]
.

It is fairly easy to verify that x0, ŵ are well defined and that they provide an enumeration of waves,
in the sense of Definition 3.3.

3.3.2. Interval of waves. In this section we define the notion of interval of waves and some related notions
and we prove some important results about them.

As in previous section, consider a function w : R −→ R, w ∈ BV (R), piecewise constant, compacted
supported, right continuous, taking values in the set Zε and let (W, x, ŵ) be an enumeration of waves for
w.

Definition 3.5. Let I ⊆ W. We say that I is an interval of waves for the function w and the enumeration
of waves (W, x, ŵ) if for any given s1, s2 ∈ I, with s1 ≤ s2, and for any p ∈ W

s1 ≤ p ≤ s2 =⇒ p ∈ I.

We say that an interval of waves I is homogeneous if for each s, s′ ∈ I, S(s) = S(s′). If waves in I are
positive (resp. negative), we say that I is a positive (resp. negative) interval of waves.

Proposition 3.6. Let I ⊆ W be a positive (resp. negative) interval of waves. Then the restriction of ŵ
to I is strictly increasing (resp. decreasing) and

⋃
s∈I(ŵ(s)− ε, ŵ(s)] (resp.

⋃
s∈I [ŵ(s), ŵ(s) + ε)) is an

interval in R.

Proof. Assume I is positive, the other case being similar. First we prove that ŵ restricted to I is
increasing. Let s, s′ ∈ I, with s < s′. Let ξ0 := x(s) < ξ1 < · · · < ξK := x(s′) be the discontinuity points
of w between x(s) and x(s′). By definition of ‘interval of waves’ and by the fact that each wave in I is
positive, for any k = 0, 1, . . . ,K, {p | x(p) = ξk} contains only positive waves. Thus, by Definition 3.3 of
enumeration of waves, and by the fact that for each k = 0, . . . ,K − 1, w(ξk) = w(ξk+1−), the restriction

(3.5) ŵ :

K⋃
k=0

{p | x(p) = ξk} → (w(ξ0−), w(ξK)] ∩ Zε

is strictly increasing and bijective, and so ŵ(s) < ŵ(s′); hence ŵ|I is strictly increasing.
In order to prove that

⋃
s∈I(ŵ(s) − ε, ŵ(s)] is a interval in R, it is sufficient to prove the following:

for any s < s′ in I and for any m ∈ Z such that ŵ(s) < mε ≤ ŵ(s′), there is p ∈ I, s < p ≤ s′ such
that ŵ(p) = mε. This follows immediately from the fact that the map in (3.5) is bijective and strictly
increasing. �

Let us give the following definitions. We define the strength |I| of an interval of waves I as

|I| := ε card I.

Let I ⊆ R be an interval in R, such that inf I, sup I ∈ Zε; let g : R −→ R be a C1,1 function. The
quantity

σrh(g, I) :=
g(sup I)− g(inf I)

sup I − inf I

is called the Rankine-Hugoniot speed given to the interval I by the function g.
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Moreover let s be any positive (resp. negative) wave such that (ŵ(s)−ε, ŵ(s)) ⊆ I (resp. (ŵ(s), ŵ(s)+ε) ⊆
I). The quantity

σent(g, I, s) :=
d

du
convI gε

(
(ŵ(s)− ε, ŵ(s))

)
(resp. σ(g, I, s) := d

du concI gε

(
(ŵ(s), ŵ(s) + ε)

)
) is called the entropic speed given to the wave s by the

Riemann problem I and the function g.
If σrh(g, I) = σent(g, I, s) for any s, we will say that I is entropic w.r.t. the function g.
We will say that the Riemann problem I with flux function g divides s, s′ if σent(g, I, s) 6= σent(g, I, s′).

Remark 3.7. Let I be any positive (resp. negative) interval of waves at fixed time t̄. By Proposition
3.6, the set I :=

⋃
s∈I(ŵ(s)− ε, ŵ(s)] (resp. I =

⋃
s∈I [ŵ(s), ŵ(s) + ε)) is an interval in R. Hence, we will

also write σrh(g, I) instead of σrh(g, I) and call it the Rankine-Hugoniot speed given to the interval of
waves I by the function g; we will write σent(g, I, s) instead of σent(g, I, s) and call it the entropic speed
given to the waves s by the Riemann problem I with flux function g; we will say that I is entropic if I is;
finally we will say that the Riemann problem I with flux function g divides s, s′ if the Riemann problem
I with flux function g does.

Remark 3.8. Notice that σent is always increasing on I, whatever the sign of I is, by the monotonicity
properties of the derivatives of the convex/concave envelopes.

Definition 3.9. Given two interval of waves I1, I2, we will write I1 < I2 if for any s1 ∈ I1, s2 ∈ I2,
s1 < s2. We will write I1 ≤ I2 if either I1 < I2 or I1 = I2.

Remark 3.10. Given a function g and an homogenous interval of waves I, we can always partition I
through the equivalence relation

p ∼ p′ ⇐⇒ p, p′ are not divided by the Riemann problem I with flux function gε.

As a consequence of Remark 3.8, we have that each element of this partition is an entropic interval of
waves and the relation < introduced in Definition 3.9 is a total order on the partition.

3.3.3. Position and speed of the waves. Consider the Cauchy problem associated to the system (3.2) and
fix ε > 0; let (t, x) 7→ (wε(t, x), vε(t, x)) be the piecewise constant wavefront solution, constructed as
in Section 3.2. For the first component of the initial datum wε(0, ·), consider the enumeration of waves
(W, x0, ŵ) provided in Example 3.4; let S be the sign function defined in (3.4) for this enumeration of
waves.

Now our aim is to define two functions

x : [0,+∞)t ×W → Rx ∪ {+∞}, σ : [0,+∞)t ×W → [0, 1] ∪ {+∞},

called the position at time t ∈ [0,+∞) of the wave s ∈ W and the speed at time t ∈ [0,+∞) of the wave
s ∈ W. As one can imagine, we want to describe the path followed by a single wave s ∈ W as time goes
on and the speed assigned to it by the Riemann problems it meets along the way. Even if there is a slight
abuse of notation (in this section x depends also on time), we believe that the context will avoid any
misunderstanding.

The function x is defined by induction, partitioning the time interval [0,+∞) in the following way

[0,+∞) = {0} ∪ (0, t1] ∪ · · · ∪ (tj , tj+1] ∪ · · · ∪ (tJ−1, tJ ] ∪ (tJ ,+∞).

First of all, for t = 0 we set x(0, s) := x0(s), where x0(·) is the position function in the enumeration
of waves of Example 3.4. Clearly (W, x(0, ·), ŵ) is an enumeration of waves for the function wε(0, ·) as a
function of x (ŵ being the right state function, as in the example above).

Assume to have defined x(t, ·) for every t ≤ tj and let us define it for t ∈ (tj , tj+1] (or t ∈ (tJ ,+∞)).
For any t ≤ tj set

(3.6) σ(t, s) := σent

(
f
(
·, v(x(t, s))

)
, x−1

(
x(t, s)

)
, s

)
,

i.e. the Rankine-Hugoniot speed of the wavefront containing s. For t < tj+1 (or tJ < t < +∞) set

x(t, s) := x(tj , s) + σ(tj , s)(t− tj).
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For t = tj+1 set
x(tj+1, s) := x(tj , s) + σ(tj , s)(tj+1 − tj)

if x(tj , s) + σ(tj , s)(tj+1 − tj) is not the point of interaction/cancellation/transversal interaction xj+1;
otherwise for the waves s such that x(tj , s) + σ(tj , s)(tj+1 − tj) = xj+1 and

S(s)wε(tj+1, xj+1−) ≤ S(s)ŵ(s)− ε ≤ S(s)ŵ(s) ≤ S(s)wε(tj+1, xj+1)

(i.e. the ones surviving the possible cancellation in (tj+1, xj+1)) define

x(tj+1, s) := x(tj , s) + σ(tj , s)(tj+1 − tj) = xj+1.

where S(s) is defined in (3.4), using the enumeration of waves for the initial datum. To the waves s
canceled by a possible cancellation in (tj+1, xj+1) we assign x(tj+1, s) := +∞.

The following lemma proves that the above procedure produces an enumeration of waves.

Lemma 3.11. For any t̄ ∈ (tj , tj+1] (resp. t̄ ∈ (tJ ,+∞)), the 3-tuple (W, x(t̄, ·), ŵ) is an enumeration
of waves for the piecewise constant function wε(t̄, ·).

Proof. We prove separately that the Properties (1-3) of Definition 3.3 are satisfied.

Proof of Property (1). By definition of wavefront solution, x(t̄, ·) (restricted to the set of waves where it
is finite-valued) takes values only in the set of discontinuity points of wε(t̄, ·).
Proof of Property (2). Let s < s′ be two waves and assume that x(t̄, s), x(t̄, s′) < +∞. By contradiction,
suppose that x(t̄, s) > x(t̄, s′). Since by the inductive assumption at time tj , the 3-tuple (W, x(tj , ·), ŵ)
is an enumeration of waves for the function wε(tj , ·), it holds x(tj , s) ≤ x(tj , s

′). Two cases arise:

• If x(tj , s) = x(tj , s
′), then it must hold σ(tj , s) > σ(tj , s

′), but this is impossible, due to Remark
3.8 and equality (3.6).

• If x(tj , s) < x(tj , s
′), then lines t 7→ x(tj , s) + σ(tj , s)(t − tj) and t 7→ x(tj , s

′) + σ(tj , s
′)(t − tj)

must intersect at some time τ ∈ (tj , t̄), but this is impossible, by definition of wavefront solution
and times (tj)j .

Proof of Property (3). For t < tj+1 or t = tj+1 and for discontinuity points x 6= xj+1, the third property
of an enumeration of waves is straightforward. So let us check the third property only for time t = tj+1

and for the discontinuity point xj+1.
Assume first that wavefronts involved in the collision at (tj+1, xj+1) are of the second family, i.e.

(tj+1, xj+1) is an interaction/cancellation point. Fix any time t̃ ∈ (tj , tj+1); according to the assumption
on binary intersections, you can find two points ξ1, ξ2 ∈ R such that for any s with x(tj , s)+σ(tj , s)(tj+1−
tj) = xj+1, either x(t̃, s) = ξ1 or x(t̃, s) = ξ2 and moreover wε(t̃, ξ1−) = wε(tj+1, xj+1−), wε(t̃, ξ2) =
wε(tj+1, xj+1), wε(t̃, ξ1) = wε(t̃, ξ2−).

We now just consider two main cases: the other ones can be treated similarly. Recall that at time
t̃ < tj+1, the 3-tuple (W, x(t̃, ·), ŵ) is an enumeration of waves for the piecewise constant function wε(t̃, ·).

If wε(t̃, ξ1−) < wε(t̃, ξ1) = wε(t̃, ξ2−) < wε(t̃, ξ2), then

ŵ|x−1(t̃,ξ1) : x−1(t̃, ξ1)→ (wε(t̃, ξ1−), wε(t̃, ξ1)] ∩ Zε

and
ŵ|x−1(t̃,ξ2) : x−1(t̃, ξ2)→ (wε(t̃, ξ2−), wε(t̃, ξ2)] ∩ Zε

are strictly increasing and bijective; observing that in this case x−1(tj+1, xj+1) = x−1(t̃, ξ1) ∪ x−1(t̃, ξ2),
one gets the thesis.

If wε(t̃, ξ1−) < wε(t̃, ξ2) < wε(t̃, ξ1) = wε(t̃, ξ2−), then

ŵ|x−1(t̃,ξ1) : x−1(t̃, ξ1)→ (wε(t̃, ξ1−), wε(t̃, ξ1)] ∩ Zε

is strictly increasing and bijective; observing that in this case

x−1(tj+1, xj+1) =
{
s ∈ x−1(t̃, ξ1) | ŵ(s) ∈ (wε(t̃, ξ1−), wε(t̃, ξ2)]

}
,

one gets the thesis.
Now assume that (tj+1, xj+1) is a transversal interaction point. In this case, by the definition of the

Riemann solver we are using, you can easily find a time t̃ < tj+1 and a point ξ̃ ∈ R such that

{s | x(t̃, s) = ξ̃} = {s | x(tj+1, s) = xj+1}
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and

wε(t̃, ξ̃−) = wε(tj+1, xj+1−), wε(t̃, ξ̃) = wε(tj+1, xj+1).

From the fact that at time t̃ the 3-tuple (W, x(t̃, ·), ŵ) is an enumeration of waves for the function wε(t̃, ·),
one gets the thesis. �

Remark 3.12. For fixed wave s, t 7→ x(t, s) is Lipschitz, while t 7→ σ(t, s) is right-continuous and
piecewise constant.

To end this section, we introduce the following notations. Given a time t ∈ [0,+∞) and a position
x ∈ (−∞,+∞], we set

W(t) := {s ∈ W | x(t, s) < +∞}, W(t, x) := {s ∈ W | x(t, s) = x}.

We will callW(t) the set of the real waves, while we will say that a wave s is removed or canceled at time
t if x(t, s) = +∞. It it natural to define the interval of existence of s ∈ W(0) by

T (s) := sup
{
t ∈ [0,+∞) | x(t, s) < +∞

}
.

If I ⊆ W(t) is an interval of waves for the function wε(t, ·) and the enumeration of waves (W, x(t, ·), ŵ),
we will say that I is an interval of waves at time t.

3.4. The effective flux function feff . As in the previous sections, let (t, x) 7→ wε(t, x) be the first
component of the ε-wavefront solution of the Cauchy problem (1.1) constructed before; consider the
enumeration of waves and the related position function (t, s) 7→ x(t, s) and speed function (t, s) 7→ σ(t, s)
defined in previous section.

Fix any time t̄. Partitioning W(t̄) with respect to the equivalence relation

s ∼ s′ ⇐⇒ [s, s′] ∩W(t̄) is an homogeneous interval of waves,

it is possible to write W(t̄) as a finite union of mutually disjoint, maximal (with respect to set inclusion)
homogenous interval of waves Ml,

W(t̄) =

L⋃
l=1

Ml.

Observe that the partition changes only at cancellation times.
Fix time t̄ and fix a maximal homogeneous positive (resp. negative) interval of wavesMl. Let us define

the effective flux function feff
t̄ :

⋃
s∈Ml

(ŵ(s) − ε, ŵ(s)] −→ R (resp. feff
t̄ :

⋃
s∈Ml

[ŵ(s), ŵ(s) + ε) −→ R)

as any C1,1 function satisfying the following condition:

(3.7)
d2feff

t̄

dw2
(w) :=

∂2f

∂w2
(w, v) for a.e. w,

where v = v(t̄, x(t̄, s)) for any s such that w ∈ (ŵ(s)− ε, ŵ(s)] (resp. w ∈ [ŵ(s), ŵ(s) + ε)).

Remark 3.13. Let us observe what follows.

(1) To simplify the notation we do not write the explicit dependence of feff
t̄ on the homogeneous

interval Ml. No confusion should occur in the following.
(2) The effective flux function feff

t̄ is defined up to affine functions.
(3) Let I ⊆ Ml be a positive (resp. negative) interval of waves at time t̄. Assume that I 3 s 7→

v(t̄, x(t̄, s)) is identically equal to some v̄ on I. Then feff
t̄ coincides with f(·, v̄) on

⋃
s∈I(ŵ(s) −

ε, ŵ(s)] (resp.
⋃
s∈I [ŵ(s), ŵ(s) + ε)) up to affine functions. Hence, by Proposition 2.13, s, s′ ∈ I

are divided by the Riemann problem I with flux function feff
t̄ if and only if they are divided by

the same Riemann problem with flux function f(·, v̄). More precisely

σent(feff
t̄ , I, s

′)− σent(feff
t̄ , I, s) = σent(f(·, v̄), I, s′)− σent(f(·, v̄), I, s).

Similarly, if I, I1, I2 ⊆ Ml are intervals of waves at time t̄ such that I1, I2 ⊆ I and I 3 s 7→
v(t̄, x(t̄, s)) is identically equal to some v̄, then

σrh(feff
t̄ , I2)− σrh(feff

t̄ , I1) = σrh(f(·, v̄), I2)− σrh(f(·, v̄), I1).
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3.5. The transversal interaction functional Qtrans. In this section we define the standard Glimm
transversal interaction functional Qtrans which will be frequently used in the following:

Qtrans(t) :=

H∑
h=1

∑
s∈W(t)

x(t,s)<x(t,vh)

|vh||s|.

Recall that |vh| is the strength of the wavefront vh and |s| = ε is the strength of the wave s. The following
proposition is standard, see for example [9].

Proposition 3.14. The following hold:

(1) Qtrans(0) ≤ Tot.Var.(v(0, ·))Tot.Var.(w(0, ·));
(2) Qtrans is positive, piecewise constant, right continuous and not increasing; moreover, at each

transversal interaction times tj, it holds

Qtrans(tj)−Qtrans(tj−1) = −|vh(j)||W(tj , xj)|,

where vh(j) is the wavefront of the first family involved in the transversal interaction at time tj.

4. The main theorem

The rest of the paper is devoted to prove our main result, namely Theorem 1. For easiness of the
reader we will repeat the statement below.

As in the previous section, let (t, x) 7→ (wε(t, x), vε(t, x)) be an ε-wavefront solution of the Cauchy
problem (1.1); consider the enumeration of waves for the function wε(t, ·) and the related position function
x = x(t, s) and speed function σ = σ(t, s) constructed in previous section. Fix a wave s ∈ W(0) and
consider the function t 7→ σ(t, s). By construction it is finite valued until the time T (s), after which its
value becomes +∞; moreover it is piecewise constant, right continuous, with jumps possibly located at
times t = tj , j ∈ 1, . . . , J .

The results we are going to prove is

Theorem 1. The following holds:

J∑
j=1

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤
[
3‖D2

wwf‖+ 12 log(2)‖D3
wwvf‖Tot.Var.(v(0, ·))

]
Tot.Var.(w(0, ·))2

+ ‖D2
wvf‖Tot.Var.(w(0, ·))Tot.Var.(v(0, ·)),

where |s| := ε is the strength of the wave s.

The first step in order to prove Theorem 1 is to reduce the quantity we want to estimate, namely

J∑
j=1

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|,

to three different quantities, which requires three separate estimates, according to (tj , xj) being an inter-
action/cancellation/transversal interaction point:

J∑
j=1

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| =
∑

(tj ,xj)
interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

+
∑

(tj ,xj)
cancellation

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

+
∑

(tj ,xj)
transversal
interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|.



18 STEFANO BIANCHINI AND STEFANO MODENA

The estimates on transversal interaction and cancellation points are fairly easy. Let us begin with the
one related to transversal interaction points.

Proposition 4.1. Let (tj , xj) be a transversal interaction point. Then∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wvf‖L∞ |vh(j)||W(tj , xj)|,

where |vh(j)| is the wavefront of the first family involved in the transversal interaction at time tj.

Proof. Set wL := wε(tj , xj−), wR := wε(tj , xj). Assume by simplicity wL < wR, the other case being
similar. Recall that v−h(j), v

+
h(j) are the left and right state respectively of the wavefront vh(j). By

Proposition 2.12, for any s ∈ W(tj , xj),

|σ(tj , s)− σ(tj−1, s)|

=

(
d

dw
conv[wL,wR] fε

)(
(ŵ(s)− ε, ŵ(s)), v+

h(j)

)
−
(
d

dw
conv[wL,wR] fε

)(
(ŵ(s)− ε, ŵ(s)), v−h(j)

)
(Prop. 2.12)

≤
∥∥∥∥ ∂

∂w
f( · , v+

h(j))−
∂

∂w
f( · , v−h(j))

∥∥∥∥
L∞

≤ ‖D2
wvf‖L∞ |v+

h(j) − v
−
h(j)|.

Hence, observing that the only waves which change speed are those in W(tj , xj),∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| =
∑

s∈W(tj ,xj)

|σ(tj , s)− σ(tj−1, s)||s|

≤ ‖D2
wvf‖L∞ |v+

h(j) − v
−
h(j)|

∑
s∈W(tj)

|s|

= ‖D2
wvf‖L∞ |vh(j)||W(tj , xj)|. �

Corollary 4.2. It holds∑
(tj ,xj)

transversal
interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wvf‖L∞Tot.Var.(w(0, ·))Tot.Var.(v(0, ·)).

Proof. The proof is an easy consequence of Proposition 3.14 and the fact that, by previous proposition,
for any transversal interaction time tj ,∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wvf‖L∞ |vh(j)||W(tj , xj)|

= ‖D2
wvf‖L∞

(
Qtrans(tj−1)−Qtrans(tj)

)
. �

Let us now prove the estimate related to the cancellation points. First of all define for each cancellation
point (tj , xj) the amount of cancellation as follows:

(4.1) C(tj , xj) := Tot.Var.(wε(tj−1, ·))− Tot.Var.(wε(tj , ·)).

Proposition 4.3. Let (tj , xj) be a cancellation point. Then∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))C(tj , xj).

Proof. Let wL, wM be respectively the left and the right state of the left wavefront involved in the
collision at point (tj , xj) and let wM , wR be respectively the left and the right state of the right wavefront
involved in the collision at point (tj , xj), so that wL = lim

x↗xj
wε(tj , x) and wR = wε(tj , xj). Without loss

of generality, assume wL < wR < wM . Finally set v̄ := v(tj , xj).
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Then we have

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

=
∑

s∈W(tj)

[(
d

dw
conv[wL,wR] fε

)(
(ŵ(s)− ε, ŵ(s)), v̄

)
−
(
d

dw
conv[wL,wM ] fε

)(
(ŵ(s)− ε, ŵ(s)), v̄

)]
|s|

(Prop. 2.9)

≤
∑

s∈W(tj)

[(
d

dw
conv[wL,wR] fε

)
(wR−, v̄)−

(
d

dw
conv[wL,wM ] fε

)
(wR−, v̄)

]
|s|

=

[(
d

dw
conv[wL,wR] fε

)
(wR−, v̄)−

(
d

dw
conv[wL,wM ] fε

)
(wR−, v̄)

] ∑
s∈W(tj)

|s|

≤
[(

d

dw
conv[wL,wR] fε

)
(wR−, v̄)−

(
d

dw
conv[wL,wM ] fε

)
(wR−, v̄)

]
Tot.Var.(w(0, ·)).

(4.2)

Now observe that, by Proposition 2.11,(
d

dw
conv[wL,wR] fε

)
(wR−, v̄)−

(
d

dw
conv[wL,wM ] fε

)
(wR−, v̄) ≤

∥∥∥d2f(·, v̄)

dw2

∥∥∥
L∞

(wM − wR)

≤ ‖D2
wwf‖L∞(wM − wR)

≤ ‖D2
wwf‖L∞C(tj , xj).

(4.3)

Hence, from (4.2) and (4.3), we obtain∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))C(tj , xj). �

Corollary 4.4. It holds∑
(tj ,xj)

cancellation

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))2.

Proof. From (3.3), (4.1) and Proposition 4.3 we obtain∑
(tj ,xj)

cancellation

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))

J∑
j=1

[
Tot.Var.(wε(tj−1, ·))− Tot.Var.(wε(tj , ·))

]
≤ ‖D2

wwf‖L∞Tot.Var.(w(0, ·))
[
Tot.Var.(wε(0, ·))− Tot.Var.(wε(tJ , ·))

]
≤ ‖D2

wwf‖L∞Tot.Var.(w(0, ·))2,

thus concluding the proof of the corollary. �

From now on, our aim is to prove that∑
(tj ,xj)

interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤ 2
[
‖D2

wwf‖+ 6 log(2)‖D3
wwvf‖Tot.Var.(v(0, ·))

]
Tot.Var.(w(0, ·))2.

As outlined in Section 1.2, the idea is the following: we define a positive valued functional Q = Q(t),
t ≥ 0, such that Q is piecewise constant in time, right continuous, with jumps possibly located at times
tj , j = 1, . . . , J and such that

(4.4) Q(0) ≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))2.

Such a functional will have three properties:
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(1) for each j such that (tj , xj) is an interaction point, Q is decreasing at time tj and its decrease
bounds the quantity we want to estimate at time tj as follows:

(4.5)
∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ 2
[
Q(tj−1)−Q(tj)

]
;

this is proved in Corollary 4.19;
(2) for each j such that (tj , xj) is a cancellation point, Q is decreasing; this will be an immediate

consequence of the definition of Q;
(3) for each j such that (tj , xj) is a transversal interaction point, Q can increase at most by

Q(tj)−Q(tj−1) ≤ 6 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·));(4.6)

this is proved in Theorem 4.20.

Using the two estimates above, we obtain the following proposition, which completes the proof of Theorem
1.

Proposition 4.5. It holds

∑
(tj ,xj)

interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤ 2
[
‖D2

wwf‖+ 6 log(2)‖D3
wwvf‖Tot.Var.(v(0, ·))

]
Tot.Var.(w(0, ·))2.
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Proof. By direct computation,∑
(tj ,xj)

interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

(by (4.5)) ≤ 2
∑

(tj ,xj)
interaction

[
Q(tj−1)−Q(tj)

]

≤ 2

[ ∑
(tj ,xj)

interaction

[
Q(tj−1)−Q(tj)

]

+
∑

(tj ,xj)
cancellation

[
Q(tj−1)−Q(tj)

]
−

∑
(tj ,xj)

cancellation

[
Q(tj−1)−Q(tj)

]]

+
∑

(tj ,xj)
transversal

[
Q(tj−1)−Q(tj)

]
−

∑
(tj ,xj)

transversal

[
Q(tj−1)−Q(tj)

]]

(Q decreases at cancellations)

≤ 2

[
J∑
j=1

[
Q(tj−1)−Q(tj)

]
+

∑
(tj ,xj)

transversal

[
Q(tj)−Q(tj−1)

]]

(by (4.6)) ≤ 2

[
J∑
j=1

[
Q(tj−1)−Q(tj)

]
+ 6 log(2)‖D3

wwvf‖L∞Tot.Var.(w(0, ·))
∑

(tj ,xj)
transversal

|vh(j)||W(tj , xj)|

]

= 2

[
J∑
j=1

[
Q(tj−1)−Q(tj)

]
+ 6 log(2)‖D3

wwvf‖L∞Tot.Var.(w(0, ·))
∑

(tj ,xj)
transversal

(
Qtrans(tj−1)−Qtrans(tj)

)]

(by Proposition 3.14)

≤ 2
[
Q(0) + 6 log(2)‖D3

wwvf‖L∞Tot.Var.(w(0, ·))Qtrans(0)
]

(by (4.4) and Proposition 3.14)

≤ 2
[
‖D2

wwf‖+ 6 log(2)‖D3
wwvf‖Tot.Var.(v(0, ·))

]
Tot.Var.(w(0, ·))2,

thus concluding the proof of the proposition. �

In the remaining part of the paper we prove estimates (4.5) and (4.6).

4.1. Analysis of waves collisions. In this section we define the notion of pairs of waves which have
never interacted before a fixed time t and pairs of waves which have already interacted and, for any pair
of waves which have already interacted, we associate an interval of waves and a partition of this interval,
which in some sense summarize their past common history.

Definition 4.6. Let t̄ be a fixed time and let s, s′ ∈ W(t̄). We say that s, s′ interact at time t̄ if
x(t̄, s) = x(t̄, s′).

We also say that they have already interacted at time t̄ if there is t ≤ t̄ such that s, s′ interact at time
t. Moreover we say that they have never interacted at time t̄ if for any t ≤ t̄, they do not interact at time
t.
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Lemma 4.7. Assume that the waves s, s′ have already interacted at time t̄. Then they have the same
sign.

Proof. Easy consequence of definition of enumeration of waves and the fact that S(s) is independent of
t. �

Lemma 4.8. Let t̄ be a fixed time, s, s′ ∈ W(t̄), s < s′. Assume that s, s′ have already interacted at time
t̄. If p, p′ ∈ W(t̄) and s ≤ p ≤ p′ ≤ s′, then p, p′ have already interacted at time t̄.

Proof. Let t be the time such that s, s′ interact at time t. Clearly s, s′, p, p′ ∈ W(t) ⊇ W(t̄). Since for t
fixed, x is increasing on W(t), it holds x(t, s) = x(t, p) = x(t, p′) = x(t, s′). �

Definition 4.9. Let s, s′ ∈ W(t̄) be two waves which have already interacted at time t̄. We say that
s, s′ are divided in the real solution at time t̄ if

(x(t̄, s), σ(t̄, s)) 6= (x(t̄, s′), σ(t̄, s′)),

i.e. if at time t̄ they have either different position, or the same position but different speed.
If they are not divided in the real solution, we say that they are joined in the real solution.

Remark 4.10. It t̄ 6= tj for each j, then two waves are divided in the real solution if and only if they have
different position. The requirement to have different speed is needed only at cancellation and transversal
interaction times.

Fix a time t̄ and two waves s < s′ which have already interacted at time t̄ and assume that s, s′ are
divided in the real solution at time t̄. Define the time of last interaction T(t̄, s, s′) by the formula

(4.7) T(t̄, s, s′) := max{t ≤ t̄ | x(t, s) = x(t, s′)}.
Moreover set

X(t̄, s, s′) := x(T(t̄, s, s′), s) = x(T(t̄, s, s′), s′).

Finally define

(4.8) I(t̄, s, s′) :=W
(
T(t̄, s, s′), X(t̄, s, s′)

)
∩W(t̄).

It is easy to see that I(t̄, s, s′) is an interval of waves at time t̄ (i.e. with respect to the function wε(t̄, ·) and
the related enumeration of waves). Observe also that it changes only at interaction/cancellation/transversal
interaction times. It is immediate to see that if x(t̄, s) = x(t̄, s′), but s, s′ are divided in the real solution
at time t̄ (i.e. σ(t̄, s) < σ(t̄, s′)), then t̄ = T(t̄, s, s′) and

I(t̄, s, s′) =W(t̄, x(t, s)) =W(t̄, x(t, s′)).

The interesting case we are interested in is for t̄ > T(t̄, s, s′).
Let us now define a partition P(t̄, s, s′) of the interval of waves I(t̄, s, s′) by recursion on t̄ = t0, . . . , tJ ,

t̄ ≥ T(t̄, s, s′), s, s′ divided in the real solution at time t̄, as follows.
For t̄ = T(t̄, s, s′) = tj̄ , for some j̄ ∈ {0, . . . , J}, then P(tj̄ , s, s

′) is given by the equivalence relation

p ∼ p′ ⇐⇒ p, p′ are not divided in the real solution at time tj̄ or, equivalently,

they are not divided by the Riemann problem W(tj̄ , x(tj̄ , s)) with flux function feff
tj̄
.

On the other hand, if t̄ = tj̄ > T(t̄, s, s′) for some j̄ ∈ {1, . . . , J} (i.e. s, s′ are divided in the real solution
also at time tj̄−1), then P(tj̄ , s, s

′) is given by the equivalence relation

p ∼ p′ ⇐⇒ p, p′ belong to the same equivalence class J ∈ P(tj̄−1, s, s
′) at time tj̄−1

and the Riemann problem J ∩W(tj̄) with flux function feff
tj̄

does not divide them.

As a consequence of Remark 3.10 and the fact that both W(tj̄ , x(tj̄ , s)) and J ∩ W(tj̄) are interval of
waves at time tj̄ , we immediately see that each element of the partition P(tj̄ , s, s

′) is an entropic interval

of waves (w.r.t. flux function feff
tj̄

) and the relation < introduced in Definition 3.9 is a total order on

P(tj̄ , s, s
′).

Proposition 4.11. For any j = 0, . . . , J such that s, s′ are divided at time tj in the real solution, if
r, r′ ∈ I(tj , s, s

′) are not divided by the partition P(tj , s, s
′), then they are not divided in the real solution

at time tj.
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Proof. We prove the proposition by induction. Clearly we have only to consider the the case tj >
T(tj , s, s

′), since the case tj = T(tj , s, s
′) is immediate.

Assume thus s, s′ already divided at time tj−1. Take r, r′ ∈ I(tj , s, s
′), not divided by the partition

P(tj , s, s
′). By definition, this means that r, r′ belong to the same equivalence class J ∈ P(tj−1, s, s

′) at
time tj−1 and the Riemann problem J ∩W(tj) with flux function feff

tj does not divide them. Assume by

contradiction that they are divided in the real solution at time tj . This means that x(tj , r) = x(tj , r
′) = xj

and the Riemann problem W(tj , xj) with flux function feff
tj (see Remark 3.13, Point (3)) divides r, r′.

Since by inductive assumption waves in J are not divided in the real solution at time tj−1 and r, r′ ∈
J ∩W(tj , xj), then J ∩W(tj) ⊆ W(tj , xj). By Corollary 2.10, this is a contradiction. �

Definition 4.12. Let A,B two sets, A ⊆ B. Let P be a partition of B. We say that P can be restricted
to A if for any C ∈ P, either C ⊆ A or C ⊆ B \A. We also write

P|A :=
{
C ∈ P

∣∣∣ C ⊆ A}.
Clearly P can be restricted to A if and only if it can be restricted to B \A.

Proposition 4.13. Let j = 0, . . . , J fixed. Let s, s′, p, p′ ∈ W(tj), p ≤ s < s′ ≤ p′; assume that p, p′ have
already interacted at time tj and s, s′ are divided in the real solution at time tj. Then P(tj , p, p

′) can be
restricted both to I(tj , s, s

′) ∩ I(tj , p, p
′) and to I(tj , p, p

′) \ I(tj , s, s
′).

Moreover if p, p′ ∈ I(tj , s, s
′), then I(tj , p, p

′) = I(tj , s, s
′) and P(tj , p, p

′) = P(tj , s, s
′).

Proof. Let us prove the first part of the proposition. Assume first that either j = 0 or s, s′ are joined
in the real solution at time tj−1. Let J ∈ P(tj , p, p

′) such that J ∩ I(tj , s, s
′) 6= ∅. Since I(tj , s, s

′) =
W(tj , x(tj , s)), by Proposition 4.11 applied to I(tj , p, p

′) and waves in J , it must hold J ⊆ W(tj , xj).
Now assume that s, s′ are divided in the real solution at time tj−1. Take J ∈ P(tj , p, p

′) and assume that
J ∩ I(tj , s, s

′) 6= ∅. By definition of the equivalence classes, there is K ∈ P(tj−1, p, p
′) such that J ⊆ K.

Clearly K ∩ I(tj−1, s, s
′) 6= ∅, and so, by inductive assumption, K ⊆ I(tj−1, s, s

′). Hence

J ⊆ K ∩W(tj) ⊆ I(tj−1, s, s
′) ∩W(tj) = I(tj , s, s

′).

Let us now prove the second part of the proposition by recursion. If either j = 0 or at time tj−1, waves
s, s′ are joined in the real solution, then the conclusion is obvious. Assume now that at time tj−1 waves
s, s′ are divided in the real solution and assume that I(tj−1, p, p

′) = I(tj−1, s, s
′). Thus

I(tj , p, p
′) = I(tj−1, p, p

′) ∩W(tj) = I(tj−1, s, s
′) ∩W(tj) = I(tj , s, s

′).

Finally assume that r, r′ ∈ I(tj , s, s
′) = I(tj , p, p

′). Then it holds

r ∼ r′ w.r.t. the partition P(tj , p, p
′) ⇐⇒ r, r′ belong to the same equivalence

class J ∈ P(tj−1, p, p
′) at time tj−1

and the Riemann problem J ∩W(tj)

with flux function feff
tj does not divide them

⇐⇒ r, r′ belong to the same equivalence

class J ∈ P(tj−1, s, s
′) at time tj−1

and the Riemann problem J ∩W(tj)

with flux function feff
tj does not divide them

⇐⇒ r ∼ r′ w.r.t. the partition P(tj , s, s
′).

Hence P(tj , p, p
′) = P(tj , s, s

′). �

4.2. Definition of Q. We can finally define the functional Q and prove that it satisfies inequalities (4.5)
and (4.6).

Let s < s′ be two waves. Let tj be a transversal interaction time; assume that s, s′ are divided in the
real solution both at tj−1 and at tj , and have already interacted. For any p, p′ ∈ I(tj−1, s, s

′) = I(tj , s, s
′),
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let Jp,Jp′ be the element of P(tj−1, s, s
′) containing p, p′ respectively. Define

M(tj , s, s
′)[p, p′] :=

∑
J∈P(tj−1,s,s

′)
Jp≤J≤Jp′
J⊆W(tj ,xj)

|J |.

The above number is the length of the minimal interval containing p, p′, obtained by union of components
of P(tj−1, s, s

′) which are subsets of W(tj , xj).
Let s < s′ be two waves. For any time tj < min{T (s), T (s′)} such that s, s′ are divided at time tj in

the real solution and have already interacted, define by recursion the map

π(tj , s, s
′) :
(
I(tj , s, s

′)× I(tj , s, s
′)
)
∩ {p < p′} −→ R

as follows:

(1) if either j = 0 or s, s′ are joined in the real solution at time tj−1, set π(tj , s, s
′)[p, p′] = 0 for any

(p, p′) ∈
(
I(tj , s, s

′)× I(tj , s, s
′)
)
∩ {p < p′};

(2) if s, s′ are divided in the real solution at time tj−1,
(a) if tj is an interaction or a cancellation point, set π(tj , s, s

′)[p, p′] := π(tj−1, s, s
′)[p, p′] ;

(b) if tj is a transversal interaction point, set

(4.9) π(tj , s, s
′)[p, p′] := π(tj−1, s, s

′)[p, p′] + 2‖D3
wwvf‖L∞ |vh(j)|M(tj , s, s

′)[p, p′].

Now for any time tj and for any pair of wave (s, s′), s < s′, define the weight q(tj , s, s
′) of the pair of

waves s, s′ at time tj in the following way:

(4.10) q(tj , s, s
′) :=


0 s, s′ joined at time tj in the real solution

π(tj , s, s
′)[s, s′]

|ŵ(s′)− (ŵ(s)− S(s)ε)|
s, s′ divided at time tj and already interacted,

‖D2
wwf‖L∞ s, s′ never interacted.

Finally set

(4.11) Q(tj) :=
∑

s,s′∈W(tj)

s<s′

q(tj , s, s
′)|s||s′|,

and Q(t) = Q(tj) for t ∈ [tj , tj+1) (or [tJ ,+∞)). Recall that |s| = |s′| = ε is the strength of the waves
s, s′ respectively.

It is immediate to see that Q is positive, piecewise constant, right continuous, with jumps possibly
located at times tj , j = 1, . . . , J , and Q(0) ≤ ‖D2

wwf‖L∞Tot.Var.(w(0, ·))2. In the next two sections we
prove that it also satisfies inequality (4.5) and (4.6). This completes the proof of Proposition 4.5.

Indeed, the fact that Q decreases at cancellation is simply due to the fact that the weights are not
increasing, and some terms of the sum (4.11) are canceled.

4.3. Decreasing part of Q. This section is devoted to prove inequality (4.5). We will prove it only in
the case of a positive interaction point, the negative case being completely similar.

Lemma 4.14. Let tj be a fixed time. Let s < s′ be two waves, divided in the real solution at time tj,
but which have already interacted. Assume s, s′ positive. Let J ,J ′ ∈ P(tj , s, s

′), J < J ′, and p ∈ J ,
p′ ∈ J ′. It holds

(4.12) σrh(feff
tj ,J )− σrh(feff

tj ,J
′) ≤ π(tj , s, s

′)[p, p′].

Proof. The proof is by induction on times (tj)j=0,...,J . Notice that the r.h.s. of (4.12) is greater or equal
than 0. If either j = 0 or at time tj−1 waves s, s′ are joined in the real solution, the l.h.s. of (4.12) is
negative, hence (4.12) holds.

Assume now that at time tj−1 waves s, s′ are divided in the real solution.

Case 1. Assume tj is an interaction point. In this case I(tj , s, s
′) = I(tj−1, s, s

′), P(tj , s, s
′) =

P(tj−1, s, s
′), π(tj , s, s

′) = π(tj−1, s, s
′), feff

tj = feff
tj−1

; hence by inductive assumption we are done.
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Case 2. Assume that tj is a cancellation point and w.l.o.g. suppose that the cancellation is on the
right of I(tj−1, s, s

′). It is not difficult to see that there is at most one interval K ∈ P(tj−1, s, s
′) which

is reduced (but not completely canceled) and possibly split by the cancellation.

• If J ,J ′ ⊆ K, the l.h.s. of (4.12) is negative and we are done.
• If J < K and J ′ ⊆ K, σrh(feff

tj−1
,J ) = σrh(feff

tj ,J ), while, by Proposition 2.8, σrh(feff
tj−1

,K) ≤
σrh(feff

tj ,J
′). Hence

σrh(feff
tj ,J )− σrh(feff

tj ,J
′) ≤ σrh(feff

tj−1
,J )− σrh(feff

tj−1
,K) ≤ π(tj−1, s, s

′)[p, p′] = π(tj , s, s
′)[p, p′],

where the second inequality comes from the inductive assumption at time tj−1.
• If J ,J ′ < K, then, as before,

σrh(feff
tj ,J )− σrh(feff

tj ,J
′) = σrh(feff

tj−1
,J )− σrh(feff

tj−1
,J ′) ≤ π(tj−1, s, s

′)[p, p′] = π(tj , s, s
′)[p, p′].

Case 3. Assume that tj is a transversal interaction point. There exist K,K′ ∈ P(tj−1, s, s
′) containing

J ,J ′ respectively. If J ,J ′ < W(tj , xj) (or J ,J ′ > W(tj , xj)), then J = K, J ′ = K′ and we can use
inductive assumption to conclude:

σrh(feff
tj ,J )− σrh(feff

tj ,J
′) = σrh(feff

tj−1
,J )− σrh(feff

tj−1
,J ′) ≤ π(tj−1, s, s

′)[p, p′] = π(tj , s, s
′)[p, p′].

Assume thus(
J <W(tj , xj) or J ⊆ W(tj , xj)

)
and

(
J ′ ⊆ W(tj , xj) or J ′ >W(tj , xj)

)
.

We can also assume K < K′, otherwise the l.h.s. of (4.12) is less or equal than 0. Set J :=
⋃
r∈J (ŵ(r)−

ε, ŵ(r)] and similarly define J ′,K,K ′,W ⊆ R as the union of the waves segments in J ′,K,K′,W(tj , xj),
respectively. Let a be any point such that supK ≤ a ≤ inf K ′. Since feff is defined up to affine function on
each maximal monotone interval of waves, we can choose feff

tj , f
eff
tj−1

such that, d
dwf

eff
tj−1

(a) = d
dwf

eff
tj (a) = 0.

For any w ∈ K, it holds∣∣∣∣ ddwfeff
tj (w)− d

dw
feff
tj−1

(w)

∣∣∣∣ =

∣∣∣∣ ∫ a

w

d2

dw2
feff
tj (τ)dτ −

∫ a

w

d2

dw2
feff
tj−1

(τ)dτ

∣∣∣∣
≤
∫

(w,a)∩W

∣∣∣∣ ∂2

∂w2
f(τ, v(tj , xj))−

∂2

∂w2
f(τ, v(tj , xj−))

∣∣∣∣dτ
≤
∫

(w,a)∩W

∫ v+
h(j)

v−
h(j)

∣∣∣∣ ∂3f

∂w2∂v
(τ, v)

∣∣∣∣dvdτ
≤
∥∥D3

wwvf
∥∥
L∞

∣∣vh(j)

∣∣∣∣(w, a) ∩W
∣∣

≤
∥∥D3

wwvf
∥∥
L∞

∣∣vh(j)

∣∣M(tj , s, s
′)[p, p′],

and thus

(4.13)

∥∥∥∥ d

dw
feff
tj −

d

dw
feff
tj−1

∥∥∥∥
L∞(K)

≤
∥∥D3

wwvf
∥∥
L∞

∣∣vh(j)

∣∣M(tj , s, s
′)[p, p′].

Now observe that for any w ∈ J ,∣∣∣σrh(feff
tj ,J )− σrh(feff

tj−1
,K)

∣∣∣ =

∣∣∣∣ ddw convK feff
tj ,ε(w)− d

dw
convK feff

tj−1,ε(w)

∣∣∣∣
(by Proposition 2.12) ≤

∥∥∥∥ d

dw
feff
tj −

d

dw
feff
tj−1

∥∥∥∥
L∞(K)

(by (4.13)) ≤
∥∥D3

wwvf
∥∥
L∞

∣∣vh(j)

∣∣M(tj , s, s
′)[p, p′].

(4.14)

A similar computation yields

(4.15)
∣∣∣σrh(feff

tj ,K
′)− σrh(feff

tj−1
,J ′)

∣∣∣ ≤ ∥∥D3
wwvf

∥∥
L∞

∣∣vh(j)

∣∣M(tj , s, s
′)[p, p′].
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Using (4.14), (4.15) and the inductive assumption, we obtain

σrh(feff
tj ,J )− σrh(feff

tj ,J
′) =

[
σrh(feff

tj ,J )− σrh(feff
tj−1

,K)
]

+
[
σrh(feff

tj−1
,K)− σrh(feff

tj−1
,K′)

]
+
[
σrh(feff

tj−1
,K′)− σrh(feff

tj ,J
′)
]

≤ π(tj−1, s, s
′)[p, p′] + 2

∥∥D3
wwvf

∥∥
L∞

∣∣vh(j)

∣∣M(tj , s, s
′)[p, p′]

= π(tj , s, s
′)[p, p′]. �

Lemma 4.15. Let tj be a fixed time. Let s < s′ be two waves, divided in the real solution at time tj, but
which have already interacted. Let p, p′ ∈ I(tj , s, s

′), p ≤ s < s′ ≤ p′. Then for each r, r′ ∈ I(tj , s, s
′) =

I(tj , p, p
′),

π(tj , s, s
′)[r, r′] = π(tj , p, p

′)[r, r′].

Proof. By the second part of Proposition 4.13, I(tj , s, s
′) = I(tj , p, p

′) and P(tj , s, s
′) = P(tj , p, p

′).
The conclusion follows just observing that in the definition of π(tj , s, s

′), π(tj , p, p
′) only the partitions

P(tj , s, s
′),P(tj , p, p

′) are used. �

Theorem 4.16. Let (tj , xj) be a positive interaction point. Let L, R be the two wavefronts (considered
as sets of waves) interacting in (tj , xj), L < R. It holds

σrh(feff
tj−1

,L)−σrh(feff
tj−1

,R)|L||R|

≤
∑

(s,s′)∈L×R
(s,s′) already

interacted

π(tj−1, s, s
′)[s, s′]|s||s′| +

∑
(s,s′)∈L×R
(s,s′) never
interacted

‖D2
wwf‖L∞

(
|L|+ |R|

)
|s||s′|.

Proof. First let us introduce some useful tools. For any rectangle C := L̃× R̃ ⊆ L×R, define (see Figure
1):

Φ0(C) :=


∅, C = ∅,[
L̃ ∩ I(tj−1,max L̃,min R̃)

]
×
[
R̃ ∩ I(tj−1,max L̃,min R̃)

]
, max L̃,min R̃ already interacted,

{(max L̃,min R̃)}, max L̃,min R̃ never interacted,

Φ1(C) :=


∅, C = ∅,[
L̃ ∩ I(tj−1,max L̃,min R̃)

]
×
[
R̃ \ I(tj−1,max L̃,min R̃)

]
, max L̃,min R̃ already interacted,

{max L̃} ×
[
R̃ \ {min R̃}

]
, max L̃,min R̃ never interacted,

Φ2(C) :=


∅, C = ∅,[
L̃ \ I(tj−1,max L̃,min R̃)

]
×
[
R̃ \ I(tj−1,max L̃,min R̃)

]
, max L̃,min R̃ already interacted,[

L̃ \ {max L̃}
]
×
[
R̃ \ {min R̃}

]
, max L̃,min R̃ never interacted,

Φ3(C) :=


∅, C = ∅,[
L̃ \ I(tj−1,max L̃,min R̃)

]
×
[
R̃ ∩ I(tj−1,max L̃,min R̃)

]
, max L̃,min R̃ already interacted,[

L̃ \ {max L̃}
]
× {min R̃}, max L̃,min R̃ never interacted.

Clearly
{

Φ0(C),Φ1(C),Φ2(C),Φ3(C)
}

is a disjoint partition of C.
Denote by ∆σrh(feff

tj−1
, C) := σrh(feff

tj−1
, L̃) − σrh(feff

tj−1
, R̃) the difference in speed assigned to the first

and the second edge of C by the effective flux function at time tj−1. Set |C| := |L||R| = card(C)ε2. By

conservation it holds ∆σrh(feff
tj−1

, C)|C| =
∑3
a=0 ∆σrh(feff

tj−1
,Φa(C))|Φa(C)|.
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Figure 1. Partition of L̃ × R̃

For any set A, denote by A<N the set of all finite sequences taking values in A. We assume that ∅ ∈ A<N

and it is called the empty sequence. There is a natural ordering E on A<N: given α, β ∈ A<N,

αE β ⇐⇒ β is obtained from α by adding a finite sequence.

A subset D ⊆ A<N is called a tree if for any α, β ∈ A<N, αE β, if β ∈ D, then α ∈ D.
Define a map Ψ : {1, 2, 3}<N −→ 2L×R, by setting

Ψα =

{
L ×R, if α = ∅,
Φan ◦ · · · ◦ Φa1

(L ×R), if α = (a1, . . . , an) ∈ {1, 2, 3}<N \ {∅}.

For α ∈ {1, 2, 3}<N, let Lα,Rα defined by the relation Ψα = Lα ×Rα.
Define a tree in {1, 2, 3}<N setting α ∈ D ⇐⇒ Ψα 6= ∅. See Figure 2.

The idea of the proof is to show that for each α ∈ D, on the rectangle Ψα it holds

∆σrh(feff
tj−1

,Ψα)|Ψα| ≤
∑

(s,s′)∈Ψα
(s,s′) already

interacted

π(tj−1, s, s
′)[s, s′]|s||s′|+

∑
(s,s′)∈Ψα

(s,s′) never
interacted

‖D2
wwf‖L∞

(
|L|+ |R|

)
|s||s′|.

The conclusion will follow just considering that ∅ ∈ D and Ψ∅ = L × R. We need the following two
lemmas.

Lemma 4.17. For any α ∈ D, if maxLα,minRα have already interacted at time tj−1, then the partition
P(tj−1,maxLα,minRα) of I(tj−1,maxLα,minRα) can be restricted to

Lα ∩ I(tj−1,maxLα,minRα)

and to

Rα ∩ I(tj−1,maxLα,minRα).

Proof. If α = ∅ the proof is an easy consequence of Proposition 4.11. Thus assume α = βa for some
a ∈ {1, 2, 3}, β ∈ D. By simplicity assume a = 1, the other cases being similar. In this case it is not
difficult to see that

Lα ∩ I(tj−1,maxLα,minRα) = L ∩ I(tj−1,maxLβ ,minRβ) ∩ I(tj−1,maxLα,minRα).
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Figure 2. Example of partition of L ×R using the tree D

We have that P(tj−1,maxLα,minRα) can be restricted both to L∩ I(tj−1,maxLα,minRα) by Propo-
sition 4.11 and to I(tj−1,maxLβ ,minRβ) ∩ I(tj−1,maxLα,minRα) by Proposition 4.13, since

(4.16) maxLα ≤ maxLβ < minRβ ≤ minRα.

Hence P(tj−1,maxLα,minRα) can be restricted to Lα ∩ I(tj−1,maxLα,minRα).
Similarly,

Rα ∩ I(tj−1,maxLα,minRα) = R∩
(
I(tj−1,maxLα,minRα) \ I(tj−1,maxLβ ,minRβ)

)
.

As before, P(tj−1,maxLα,minRα) can be restricted both toR∩I(tj−1,maxLα,minRα) (by Proposition
4.11) and to I(tj−1,maxLα,minRα) \ I(tj−1,maxLβ ,minRβ) (by Proposition 4.13 and (4.16)); thus it
can be restricted also to Rα ∩ I(tj−1,maxLα,minRα). �

Lemma 4.18. For each α ∈ D, if maxLα,minRα have already interacted at time tj−1, then on Φ0(Ψα)
it holds

∆σrh(feff
tj−1

,Φ0(Ψα))|Φ0(Ψα)| ≤
∑

(s,s′)∈Φ0(Ψ(α))

π(tj−1, s, s
′)[s, s′]|s||s′|.

Proof. By definition of Φ0,

Φ0(Ψα) =
[
Lα ∩ I(tj−1,maxLα,minRα)

]
×
[
Rα ∩ I(tj−1,maxLα,minRα)

]
.

By previous lemma,

P(tj−1,maxLα,minRα)|Lα∩I(tj−1,maxLα,minRα) =
{
J1, . . . ,JL

}
,

P(tj−1,maxLα,minRα)|Rα∩I(tj−1,maxLα,minRα) =
{
K1, . . . ,KN

}
.
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Hence,

∆σrh(feff
tj−1

,Φ0(Ψα))|Φ0(Ψα)|

(by conservation) =

L∑
l=1

N∑
n=1

∆σrh(feff
tj−1

,Jl ×Kn)|Jl ×Kn|

=

L∑
l=1

N∑
n=1

∆σrh(feff
tj−1

,Jl ×Kn)
∑

(s,s′)∈Jl×Kn

|s||s′|

(by Lemma 4.14) ≤
L∑
l=1

N∑
n=1

∑
(s,s′)∈Jl×Kn

π(tj−1,maxLα,minRα)[s, s′]|s||s′|

≤
∑

(s,s′)∈Φ0(Ψα)

π(tj−1,maxLα,minRα)[s, s′]|s||s′|

(by Lemma 4.15) ≤
∑

(s,s′)∈Φ0(Ψα)

π(tj−1, s, s
′)[s, s′]|s||s′|. �

Conclusion of the proof of Theorem 4.16. As said before, to conclude the proof of the theorem it
is sufficient to show that for each α ∈ D, on Ψα it holds

∆σrh(feff
tj−1

,Ψα)|Ψα| ≤
∑

(s,s′)∈Ψα
(s,s′) already

interacted

π(tj−1, s, s
′)[s, s′]|s||s′|+

∑
(s,s′)∈Ψα

(s,s′) never
interacted

‖D2
wwf‖L∞

(
|L|+ |R|

)
|s||s′|.

(4.17)

This is proved by (inverse) induction on the tree D. If α ∈ D is a leaf of the tree (i.e. αa /∈ D
for each a ∈ {1, 2, 3}), then Ψα = Φ0(Ψα). If maxLα,minRα have never interacted at time tj−1,
then Ψα = Φ0(Ψα) = {(maxLα,minRα)} and inequality (4.17) follows from Mean Value Theorem; if
maxLα,minRα have already interacted at time tj−1, then each wave in Lα have interacted with any
wave in Rα and thus inequality (4.17) is a consequence of Lemma 4.18.
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Now take α ∈ D, α not a leaf. Then Φ1(Ψα) = Ψα1, Φ2(Ψα) = Ψα2, Φ3(Ψα) = Ψα3 and

∆σrh(feff
tj−1

,Ψα)|Ψα|

(by conservation) = ∆σrh(feff
tj−1

,Φ0(Ψα))|Φ0(Ψα)|+
3∑
a=1

∆σrh(feff
tj−1

,Φa(Ψα))|Φa(Ψα)|

= ∆σrh(feff
tj−1

,Φ0(Ψα))|Φ0(Ψα)|+
3∑
a=1

∆σrh(feff
tj−1

,Ψαa)|Ψαa|

(by Lemma 4.18) ≤
∑

(s,s′)∈Φ0(Ψα)

π(tj−1, s, s
′)[s, s′]|s||s′|+

3∑
a=1

∆σrh(feff
tj−1

,Ψαa)|Ψαa|

(by inductive assumption)

≤
∑

(s,s′)∈Φ0(Ψα)

π(tj−1, s, s
′)[s, s′]|s||s′|

+

3∑
a=1

( ∑
(s,s′)∈Ψαa

(s,s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|

+
∑

(s,s′)∈Ψαa
(s,s′) never
interacted

‖D2
wwf‖L∞

(
|L|+ |R|

)
|s||s′|

)

=
∑

(s,s′)∈Ψα
(s,s′) already

interacted

π(tj−1, s, s
′)[s, s′]|s||s′|+

∑
(s,s′)∈Ψα

(s,s′) never
interacted

‖D2
wwf‖L∞

(
|L|+ |R|

)
|s||s′|,

thus concluding the proof of the theorem. �

Corollary 4.19. For any interaction point (tj , xj), it holds

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ 2
[
Q(tj−1)−Q(tj)

]
.

By direct inspection of the proof one can verify that the constant 2 is sharp.

Proof. As said at the beginning of this section, we assume w.l.o.g. that all the waves in W(tj , xj) are
positive. Let L, R be the two wavefronts (considered as sets of waves) interacting in (tj , xj), L < R.
With standard arguments, observing that the waves which change speed after the interaction are those
in L ∪R, one can see that

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| = 2
|σrh(feff

tj−1
,L)− σrh(feff

tj−1
,R)||L||R|

|L|+ |R|

= 2

(
σrh(feff

tj−1
,L)− σrh(feff

tj−1
,R)

)
|L||R|

|L|+ |R|
,
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where the last equality is justified by the fact that, since L and R are interacting and L < R, then
σrh(feff

tj−1
,L) > σrh(feff

tj−1
,R). Hence, using Theorem 4.16, we obtain∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

= 2

(
σrh(feff

tj−1
,L)− σrh(feff

tj−1
,R)

)
|L||R|

|L|+ |R|

≤ 2

|L|+ |R|

[ ∑
(s,s′)∈L×R

(s, s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′| +

∑
(s,s′)∈L×R
(s, s′) never
interacted

‖D2
wwf‖L∞

(
|L|+ |R|

)
|s||s′|

]

≤ 2

[ ∑
(s,s′)∈L×R

(s, s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|

ŵ(s′)− (ŵ(s)− ε)
+

∑
(s,s′)∈L×R
(s, s′) never
interacted

‖D2
wwf‖L∞ |s||s′|

]

= 2
∑

(s,s′)∈L×R

q(tj−1, s, s
′)|s||s′|

= 2
[
Q(tj−1)−Q(tj)

]
,

which is what we wanted to get. �

4.4. Increasing part of Q. This section is devoted to prove inequality (4.6), more precisely we will
prove the following theorem.

Theorem 4.20. If (tj , xj) is a transversal interaction point, then

Q(tj)−Q(tj−1) ≤ 6 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·)),

where |vh(j)| is the strength of the wavefront of the first family involved in the transversal interaction at
time tj.

Proof. Assume for simplicity that W(tj , xj) = [p1, p2] and waves in W(tj , xj) are positive. First of all,
let us split the quantity we want to estimate as follows. Recall that given s < s′ in W(tj), their weight
can increase only if they are divided both before and after the transversal interaction and have already
interacted before the transversal interaction.

Q(tj)−Q(tj−1) =
∑

s,s′∈W(tj)

s<s′

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]
|s||s′|

=
∑

s<W(tj ,xj)

∑
s′∈W(tj ,xj)

s′ already interacted
with s

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]
|s||s′|

+
∑

s<W(tj ,xj)

∑
s′>W(tj ,xj)

s′ already interacted
with s

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]
|s||s′|

+
∑

s∈W(tj ,xj)

∑
s′>W(tj ,xj)

s′ already interacted
with s

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]
|s||s′|.

(4.18)

Let us begin with the estimate on the first term of the summation. Fix s <W(tj , xj) and assume that
s has interacted with p1. Set

rs := max
{
p ∈ W(tj , xj)

∣∣∣ p has interacted with s at time tj−1

}
.

We need the following lemma.
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Lemma 4.21. There exists a partition Ps = {K1, . . . ,KK} of [p1, rs], with Kk < Kk+1 such that for any
s′ ∈ [p1, rs], if Kk(s′) is the element of the partition Ps containing s′, it holds

M(tj , s, s
′)[s, s′] =

k(s′)∑
k=1

Kk.

The remarkable point in this lemma is the fact that the partition Ps depends only on s and not on s′.

Proof. Define N ∈ N and a finite sequence (sn)n=1,...,N+1 as follows. Set s1 := p1. Now assume to have
defined sn ∈ [p1, rs]; set sn+1 := max I(tj−1, s, sn) + 1. If sn+1 ≤ rs, keep on the recursive procedure,
otherwise set N := n and stop the procedure. Clearly s1 < · · · < sN .

Now observe that for each n = 1, . . . N , the partition P(tj−1, s, sn) can be restricted to I(tj−1, s, sn)∩
[sn, sn+1 − 1]. Namely for n = 1 this follows from Proposition 4.11, while for n ≥ 2, it is a consequence
of Proposition 4.13, just observing that

I(tj−1, s, sn) ∩ [sn, sn+1 − 1] = I(tj−1, s, sn) \ I(tj−1, s, sn−1)

and s < sn−1 ≤ sn. Hence we can set

Ps :=

N⋃
n=1

P(tj−1, s, sn)|I(tj−1,s,sn)∩[sn,sn+1−1]

Observe also that for each s′ ∈ [sn, sn+1 − 1] ⊆ I(tj−1, s, sn), by the second part of Proposition 4.13, it
holds I(tj−1, s, s

′) = I(tj−1, s, sn) and P(tj−1, s, s
′) = P(tj−1, s, sn).

Hence for any s′ ∈ [sn, sn+1 − 1], denoting by Js,Js′ the elements of P(tj−1, s, s
′) containing s, s′

respectively, we have

M(tj , s, s
′)[s, s′] =

∑
J∈P(tj−1,s,s

′)
Js≤J≤Js′
J⊆W(tj ,xj)

|J | =
∑

J∈P(tj−1,s,sn)
Js≤J≤Js′
J⊆W(tj ,xj)

|J | =
∑

J∈P(tj−1,s,sn)
J<sn

J⊆W(tj ,xj)

|J |+
∑

J∈P(tj−1,s,sn)
J⊆[sn,sn+1−1]
J≤Js′

|J |

=
∣∣∣[s1, sn − 1]

∣∣∣+
∑
K∈Ps

K⊆[sn,sn+1−1]
K≤Kk(s′)

|K| =
∑
K∈Ps
K<{sn}

|K|+
∑
K∈Ps

K⊆[sn,sn+1−1]
K≤Kk(s′)

|K| =
k(s′)∑
k=1

|K|. �

Now for fixed s < W(tj , xj), s already interacted with p1, consider the partition Ps = {K1, . . . ,KK}
of [p1, rs], with Kk < Kk+1 constructed in previous lemma and, as before, for any s′ ∈ [p1, rs] denote by
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Kk(s′) the element of the partition Ps containing s′. We have

∑
s′∈[p1,rs]

[
q(tj , s, s

′)−q(tj−1, s, s
′)
]
|s||s′|

= 2‖D3
wwvf‖L∞ |vh(j)||s|

rs∑
s′=p1

1

ŵ(s′)− (ŵ(s)− ε)
M(tj , s, s

′)[s, s′]|s′|

(by Lemma 4.21) = 2‖D3
wwvf‖L∞ |vh(j)||s|

rs∑
s′=p1

1

ŵ(s′)− (ŵ(s)− ε)
|s′|

k(s′)∑
k=1

|Kk|

= 2‖D3
wwvf‖L∞ |vh(j)||s|

K∑
l=1

∑
s′∈Kl

1

ŵ(s′)− (ŵ(s)− ε)
|s′|

l∑
k=1

|Kk|

= 2‖D3
wwvf‖L∞ |vh(j)||s|

K∑
k=1

K∑
l=k

∑
s′∈Kl

1

ŵ(s′)− (ŵ(s)− ε)
|s′||Kk|

≤ 2‖D3
wwvf‖L∞ |vh(j)||s|

K∑
k=1

|Kk|
rs∑

s′=p1

|s′|
ŵ(s′)− (ŵ(s)− ε)

≤ 2‖D3
wwvf‖L∞ |vh(j)||s||W(tj , xj)|

∫ ŵ(p2)

ŵ(p1)−ε

dw′

w′ − (ŵ(s)− ε)
.

Now we sum over all s <W(tj , xj) which have interacted with p1.∑
s<W(tj ,xj)

s interacted with p1

∑
s′∈[p1,rs]

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]
|s||s′|

≤ 2‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|

∑
s<W(tj ,xj)

s interacted with p1

|s|
∫ ŵ(p2)

ŵ(p1)−ε

dw′

w′ − (ŵ(s)− ε)

≤ 2‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|

∫ ŵ(p1)−ε

a

∫ ŵ(p2)

ŵ(p1)−ε

dw′dw

w′ − w
,

where a := ŵ

(
min

{
s
∣∣∣ s has interacted with p1

})
− ε. An easy computation shows that

(4.19)

∫ ξ

a

∫ b

ξ

dw′dw

w′ − w
≤ log(2)(b− a).

Hence, ∑
s<W(tj ,xj)

∑
s′∈W(tj ,xj)

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]
|s||s′|

≤ 2 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·)).

(4.20)

A similar computation holds for the third term in the summation (4.18) and gives∑
s∈W(tj ,xj)

∑
s′>W(tj ,xj)

s′ already interacted with s

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]
|s||s′|

≤ 2 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·)).

(4.21)
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The estimate on the second term of the summation in (4.18) is similar, but easier.∑
s<W(tj ,xj)

∑
s′>W(tj ,xj)

s′ already interacted
with s

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]
|s||s′|

≤
∑

s<W(tj ,xj)

∑
s′>W(tj ,xj)

s′ already interacted
with s

2‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|

|s||s′|
ŵ(s′)− (ŵ(s)− ε)

≤ 2‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|

∫ ŵ(p1)−ε

a

∫ b

ŵ(p2)

dw′dw

w′ − w
,

where a := ŵ(minM)− ε, b := ŵ(maxM) and M is the maximal monotone interval in which W(tj , xj)
is contained. Thus, using again (4.19),∑

s<W(tj ,xj)

∑
s′>W(tj ,xj)

s′ already interacted
with s

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]
|s||s′|

≤ 2 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·)).

(4.22)

Summing up inequalities (4.20), (4.21), (4.22), we conclude the proof. �

Corollary 4.22. It holds∑
tj transversal

interaction

Q(tj)−Q(tj−1) ≤ 6 log(2)‖D3
wwvf‖L∞Tot.Var.(w(0, ·))2Tot.Var.(v(0, ·)).

Proof. By previous theorem,

Q(tj)−Q(tj−1) ≤ 6 log(2)‖D3
wwvf‖L∞Tot.Var.(w(0, ·))

[
Qtrans(tj−1)−Qtrans(tj)

]
.

Using Proposition 3.14 we get the thesis. �
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