
ON THE RIEMANN PROBLEM FOR NON-CONSERVATIVE HYPERBOLICSYSTEMSSTEFANO BIANCHINIAbstra
t. We 
onsider the 
onstru
tion and the properties of the Riemann solver for the hyperboli
system(0.1) ut + f(u)x = 0;assuming only that Df is stri
tly hyperboli
. In the �rst part we prove a general regularity theorem onthe admissible 
urves Ti of the i-family, depending on the number of in
e
tion points of f : namely, ifthere is only one in
e
tion point, Ti is C1;1. If the i-th eigenvalue of Df is genuinely nonlinear, by itis well known that Ti is C2;1. However, we give an example of an only Lips
hitz 
ontinuous admissible
urve Ti if f has two in
e
tion points.In the se
ond part, we show a general method for 
onstru
ting the 
urves Ti, and we prove a stabilityresult for the solution to the Riemann problem. In parti
ular we prove the uniqueness of the admissible
urves for (0.1).Finally we apply the 
onstru
tion to various approximations to (0.1): vanishing vis
osity, relaxations
hemes and the semidis
rete upwind s
heme. In parti
ular, when the system is in 
onservation form,we obtain the existen
e of smooth travelling pro�les for all small admissible jumps of (0.1).1. Introdu
tionIn this paper we 
onsider the 
onstru
tion of the self similar solution u(t) to the n�n stri
tly hyperboli
system in one spa
e dimension(1.1) ut + f(u)x = 0;with initial data(1.2) u(0; x) = (u� x < 0u+ x � 0This problem is known as the Riemann problem, and it 
orresponds to the weak solution to the boundaryvalue problem(1.3) ��u� + f(u)� = 0; u(�1) = u�:where � = x=t. It is well known that a weak solution to (1.1), (1.2) is not unique, unless we spe
ify someadmissibility 
ondition on the solution u(t).Let A(u) := Df(u) be the Ja
obian matrix of the 
ux fun
tion f , and denote with �i(u), i = 1; : : : ; nits eigenvalues and with li(u), ri(u), i = 1; : : : ; n its left and right eigenve
tors, respe
tively.The most general solution to (1.1), (1.2) is given in [8℄. It is assumed that the 
ux fun
tion f hasa �nite number of in
e
tion points, i.e. the dire
tional derivative of the i-th eigenvalue �i(u) in thedire
tion of ri(u), D�iri(u), is zero along a �nite number of hypersurfa
e Fm, m = 1; : : : ;M , and ea
hFm is transversal to ri(u). Under this hypothesis, it is shown that there exists only one weak self similarsolution to the Riemann problem (1.1), (1.2), for u� � u+ suÆ
iently small. This solution is obtainedby pat
hing together a �nite number of rarefa
tion fronts and sho
ks or 
onta
t dis
ontinuities, and theadmissibility 
ondition is that ea
h sho
k satis�es Liu's stability 
ondition (see [8℄ and se
tion 2).An alternative approa
h is given in [10℄, using the limit of an ellipti
 regularization of the Riemannoperator (1.3), ��u� + f(u)� = �u��; u(�1) = u�:Date: Mar
h 28, 2002.1991 Mathemati
s Subje
t Classi�
ation. 35L65.Key words and phrases. Hyperboli
 systems, 
onservation laws, Riemann problem.This work is supported by The Institute of Mathemati
al S
ien
es, The Chinese University of Hong Kong.1



2 STEFANO BIANCHINIThe author shows that for a general 
ux fun
tion f the solutions to the above equation exists and it hasuniformly bounded total variation, independent of �, if u��u+ is suÆ
iently small. Up to a subsequen
e,for � ! 0 we thus obtain a weak solution to the Riemann problem (1.1), (1.2). If the 
ux f has a �nitenumber of in
e
tion points, then one 
an show that this limit 
oin
ides with Liu's Riemann solver.A generalization of the above results has been obtained in 
onne
tion to the vanishing vis
osity ap-proximation [3℄. In that work it is shown that the limit of the solutions u� to(1.4) ut + f(u)x � �uxx = 0with initial data (1.2) 
onverges to a unique weak solution of (1.1). This limiting solution is a self similarsolution, obtained by pat
hing together a 
ountable number of rarefa
tion fronts and sho
ks (or 
onta
tdis
ontinuities), and ea
h jump satis�es Liu's stability 
ondition. The argument relies on the 
onstru
tionof a 
enter manifold for the equation of travelling pro�les and the analysis of the redu
ed dynami
s onthis manifold. We sket
h the main ideas here.The equation for travelling pro�les of (1.4) is the �rst order system of ODE(1.5) 8<: ux = ppx = �A(u)� �I�p�x = 0The linearized system of ODE around the equilibrium (�u; 0; �i(�u)) has the eigenvalue 0 with multipli
ityn+ 2, and the 
orresponding n+ 2 dimensional invariant eigenspa
e M0 is given by(1.6) M0 := n(u; p; �) 2 R2n+1 : p = viri(�u); pi 2 Ro :By the stri
t hyperboli
ity assumption, the other eigenvalues are real and di�erent from 0, so that thereis an invariant n+ 2 dimensional manifold Ci for (1.5), parameterized by u; pi; �, whi
h 
ontains all theorbits remaining 
lose to the equilibrium (�u; 0; �i(�u)). We 
an thus writepj = 
lj(�u); p� = Cji(u; vi; �) = vi~rj;i(u; vi; �) 8j 6= i;where the last equality follows from the fa
t that all the equilibrium points with p = 0 belong to Ci.De�ning the ve
tor ~ri by(1.7) 
lj(�u); ~ri(u; vi; �)� = (1 j = i~rj;i(u; vi; �) j 6= iwe 
an write the equation on Ci as(1.8) 8<: ux = vi~ri(u; vi; �)vi;x = �~�(u; vi; �)� ��vi�x = 0where ~�i(u; pi; �) = 
li(�u); A(u)~ri(u; vi; �)�:By 
onstru
tion, all the bounded and small travelling pro�les of (1.4) belongs to Ci, so that it is suÆ
ientto study the system (1.8).We asso
iate the following system to (1.8): �xed s suÆ
iently small, 
onsider(1.9) 8>>><>>>: u(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&vi(�) = fi�� ;u; vi; �i�� 
onv[0;s℄fi�� ;u; vi; �i��i(�) = dd� 
onv[0;s℄fi�� ;u; vi; �i�where we de�ne the "redu
ed" 
ux fi by(1.10) fi(� ;u; vi; �i) := Z �0 ~�i�u(&); vi(&); �i(&)�d&;and 
onv[0;s℄fi denotes the 
onvex envelope of fi in [0; s℄.It is 
lear that in the regions where fi > 
onvfi, (1.8) and (1.9) are equivalent, and the solution(u(�); vi(�); �i(�)) 
orresponds to a travelling wave. The idea is that the regions where vi = 0 des
ribe



ON THE RIEMANN PROBLEM 3rarefa
tion waves, and the solution to (1.9) is a sequen
e of rarefa
tion and travelling pro�les des
ribingthe Riemann Solver for the hyperboli
 system (1.1).In this paper we generalize the 
onstru
tion of the Riemann Solver for the vanishing vis
osity 
ase.For many s
hemes, for example semidis
rete s
hemes or relaxation, it is possible to �nd an invariantmanifold of travelling pro�les, but the redu
ed equations on this manifold are not of the form (1.8). Ingeneral, these equations are of the form(1.11) 8<: ux = vi~ri(u; vi; �i)pi;x = vi�(u; vi; �i)�i;x = 0where u 2 Rn , vi 2 R and �i is the speed of the pro�le. We show however that under an assumption ofnon-degenera
y, namely ��i=��i < 0, it is possible to 
onstru
t an integral system of the form (1.9). This
onstru
tion works even for systems not in 
onservation form, and a slight modi�
ation of the system(1.9) allows us to 
onstru
t the rarefa
tion 
urves Ri and sho
k 
urves Si for these systems.Note that the 
hoi
e �i = dd� 
onv[0;s℄fi�� ;u; vi; �i�;generalizes the Lax 
onstru
tion of the Riemann Solver for the s
alar 
ase, where one 
onsiders the 
onvexenvelope of the 
ux fun
tion f . The main di�eren
e here is that the redu
ed 
ux fun
tion fi is not givenexpli
itly, but it must be dedu
ed from the fun
tion �i.On
e we have the sho
k 
urves even for non 
onservative systems, we 
an verify that the RiemannSolver we 
onstru
t by means of (1.9) satis�es Liu's stability 
ondition. We prove that if the 
urvesRi and Si are given, and there exists a Riemann Solver su
h that every sho
k satis�es Liu's stability
ondition, then this Riemann Solver must 
oin
ide with the one given here. In parti
ular, if the system(1.11) is derived from an approximation in 
onservation form, then the rarefa
tion and sho
k 
urvesare uniquely determined, and thus there is a unique Riemann Solver whi
h satis�es the sho
k stability
ondition. This Riemann Solver is the Riemann Solver obtained by means of the vanishing vis
osity.Another 
onsequen
e of this uniqueness result is that if [u�; u+℄ is a stable sho
k in the sense of Liu,then there is a travelling pro�les �, i.e. a solution to the system (1.11) su
h thatlimx!�1�(x) = u�; limx!+1�(x) = u+:The paper is organized as follows.In se
tion 2 we prove a general regularity results for the i-th admissible 
urve Ti. We re
all that ubelongs to the admissible 
urve starting in u� if u 
an be 
onne
ted to u� by pat
hing together i-thrarefa
tions and i-th admissible sho
ks. In [7℄ it is shown that if there are not in
e
tion points theadmissible 
urve is C2;1, i.e. with se
ond derivative Lips
hitz 
ontinuous. We prove that if there is onein
e
tion point, then Ti is in general C1;1, and we give a simple example whi
h shows that if there aremore than two in
e
tion points then this 
urve is only Lips
hitz 
ontinuous. We re
all that in [3℄ the
urve Ti is proved to be Lips
hitz.In se
tion 3 we give the 
onstru
tion of the admissible 
urve under the hypotheses that there exist ave
tor fun
tion ~ri with values in Rn and a s
alar fun
tion �i, both depending on n+ 2 s
alar quantities.Roughly speaking, the two fun
tions des
ribe the evolution of the equation for travelling pro�les on the
enter manifold of travelling pro�les: the ve
tor ~ri gives the dire
tion of the derivative ux, while thes
alar �i 
ontains the information of the internal dynami
s of the pro�les. The approa
h follows 
losely[3℄ and it is based on the 
ontra
tion prin
iple.Finally in se
tion 4 we show how to obtain the fun
tions ~ri, �i for several singular approximationsof (1.1): vanishing vis
osity with semide�nite positive vis
osity matrix, general relaxation s
hemes andsemidis
rete s
hemes. In all these approximations, the fun
tions ~ri, ~�i are obtained by writing the redu
edequations for travelling pro�les on the 
enter manifold of travelling pro�les.2. Regularity of the admissible 
urves for general hyperboli
 systemsConsider the n� n stri
tly hyperboli
 system of 
onservation laws(2.1) ut + f(u)x = 0:



4 STEFANO BIANCHINILet �i(u) be the i-th eigenve
tor of A(u) := Df(u), and ri(u), li(u) the 
orresponding right and lefteigenve
tors, normalized by ��ri(u)�� = 1; 
lj(u); ri(u)� = (1 i = j0 i 6= jDenote with Ri(s; u), Si(s; u) the i-th rarefa
tion and sho
k 
urves starting in u, respe
tively. It is wellknown that these 
urves are de�ned for s 2 [�Æ1; Æ1℄, Æ1 small, and that 
an be parametrized by the i-th
oordinates, i.e. s = 
li(u0); Ri(s; u)� u�; s = 
li(u0); Si(s; u)� u�:See for example [5℄, [6℄.In [8℄ it is shown how to 
onstru
t the entropi
 self-similar solution a Riemann problem for (2.1), i.e.with the initial data(2.2) u(0; �) = (u� x � 0u+ x > 0The fundamental step is the de�nition of the admissible i-
urve Ti(s; u) passing through u: ea
h pointTi(s; u) 
an be 
onne
ted to u by a �nite union of rarefa
tions and admissible sho
ks of the i-th familywith in
reasing speed. We say that the a sho
k joining the states u� = u, u+ = Si(�s; u) and travellingwith speed � = �(Si(�s; u); u) is admissible if it satis�es the Rankine-Hugoniot 
onditions,(2.3) f�Si(�s; u)�� f(u) = ��Si(�s; u); u��Si(�s; u)� u�;and the Liu's admissibility 
onditions [8℄: for all 0 � s � �s we have that(2.4) ��Si(�s; u); u� � ��Si(s; u); u�:In [8℄ it is shown that the above 
ondition is equivalent to(2.5) ���s; u� � ��Si(s� �s; Si(�s; u)); Si(�s; u)�;and that Ti(s; u) exists and it is unique in a neighborhood of u, under the assumption that the 
uxfun
tion f has a �nite number of in
e
tion points. The last 
ondition means that for all i = 1; : : : ; N ,the dire
tional derivative of �i along ri(u), D�iri(u), vanishes only on a �nite number of hypersurfa
esFm, m = 1; : : : ;Mi, and ea
h Fi is transversal to the ve
tor �eld ri(u).As it is shown in [8℄, for �xed s, u�, the point Ti(s; u�) 
an be 
onstru
ted pat
hing together a �nitenumber of 
urves Ri and Si. Moreover as it will be shown in Se
tion 3, the mixed 
urve Ti is Lips
hitz
ontinuous. The following example shows that this is the best regularity we 
an expe
t in general.Example 2.1. Consider the following triangular system:(2.6) � ut + f(u)x = 0vt + �vx � �u2=2�x = 0with � 2 (0; 1℄ and where f is the fun
tionf(u) = u(u� �)2(3�� u):Sin
e we will 
onsider solution with u 2 [0; 4�℄, in this region the above system is 
ertainly stri
tlyhyperboli
 for all 0 < � � 1 if � > 4.It is easy to see that the sho
k 1-
urve for this system passing in (u; v) is given by(2.7) u(s) = s; v(s) = v + s2 � u22(�� �(s)) ; �(s) = f(s)� f(u)s� u :For this system, we 
an expli
itly 
onstru
t the mixed 
urve Ti starting in (0; 0): in fa
t, for s 2 [0; �℄,Ti(s; (0; 0)) 
oin
ides with the sho
k 
urve Si(s; (0; 0)):(2.8) u(s) = s; v(s) = s22(�� �(s)) ; �(s) = (s� �)2(3�� s):For s 2 [�; 3�), let x(s) be the point in [�; s) determined by(2.9) f 0(x(s))(s � x(s)) = f(s)� f(x(s)):
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Figure 1. The 
urves T1(s; (0; 0)), R1(s; P1) and T1(s; P1) for the hyperboli
 system (2.6).Then the 
urve Ti(s; 0) is given by(2.10) u(s) = s; v(s) = �22� + Z x(s)� s�� �1(s)ds+ s2 � x2(s)2(�� �0(s)) ; �0(s) = f(s)� f(x(s))s� x(s) ;where �1(s) = f 0(s). In fa
t, the point (s; v(s)) is 
onne
ted to (0; 0) by a sho
k, a rarefa
tion and asho
k: the �rst sho
k start at P0 := (0; 0) and ends in P1 := S1(�; (0; 0)) = (�; �=2�), and has speed 0.The rarefa
tion starts in P1 and ends in P2 := R1(x(s)��; P1), with speed in
reasing from 0 to f 0(x(s)).The last sho
k is S1(s� x(s);P2), and has speed equal to f 0(x(s)).Finally for s � 3�, the 
urve T1(s; (0; 0)) 
oin
ides with the sho
k 
urve S1(s; (0; 0)), given by (2.8).Similarly the mixed 
urve T1 starting in P1 is given by (2.10) for � < s < 3� and by the sho
k 
urveS1(s;P1) for s � 3�, whi
h is the given by(2.11) v(s) = �22� + s2 � �22(�� �00(s)) ; �00(s) = s(s� �)(3�� s):For s = 3� we have thatT1(3�; P0) = S1(3�;P0) = T1(3�;P1) = S2(3�;P1) = �3�; 9�22� � :We now 
ompute the derivatives of these 
urves for s = 3�. We have with elementary 
omputations thatthe �rst and se
ond derivatives of (2.10) are given by:(2.12) dvds ����s=3� = 3�� � 24�4�2 ; d2vds2 ����s=3� = 1� � 67�3�2 + 288�6�3 :On the other hand we have that for the Rankine-Hugoniot 
urve (2.8), starting in (0; 0),(2.13) dvds ����s=3� = 3�� � 18�4�2 :Instead, the Rankine-Hugoniot 
urve (2.11) starting at P1 has derivatives(2.14) dvds ����s=3� = 3�� � 24�4�2 ; d2vds2 ����s=3� = 1� � 58�3�2 + 288�6�3 :Thus we obtain that the 
urve T1(s; P1) is only C1;1 in s = 3�, and the 
urve T1(s; (0; 0)) is only Lips
hitz
ontinuous in s = 3�.



6 STEFANO BIANCHININote that T1(s; P1) is only C1;1 be
ause in the interval [�; 3�℄ there is an in
e
tion point, and thejump in the se
ond derivative is due to the fa
t that x0 = �3=2 for s ! 3��, but x � 1 for s � 3�:thus the fun
tion x(s) is only Lips
hitz 
ontinuous. On the other hand, there are two in
e
tion points in[0; 3�℄, and the Lips
hitz 
ontinuity of T1(s; (0; 0)) is due to the fa
t that we swit
h from the sho
k 
urveS1(s� �; P1) to the sho
k 
urve S1(s; (0; 0)) as the parameter s 
rosses 3�.The above example proves that if there are at least 2 in
e
tion points, then the 
urve Ti is in generalonly Lips
hitz 
ontinuous. On the other hand, it is well known that if the �eld is genuinely nonlinear,then the 
urve Ti is C2;1, i.e. twi
e di�erentiable with Lips
hitz 
ontinuous se
ond derivative [7℄, so thatone expe
t an intermediate situation when there is only one in
e
tion point: as example 2.1 suggests, Tishould be C1;1. This is what is proved in the following proposition:Proposition 2.2. Assume that f has only one in
e
tion point in the i-th family, i.e. the i-th eigenvaluesatis�es D�i(u)ri(u) = 0in a hypersurfa
e F transversal to the ve
tor �eld ri(u). Then the admissible i-th 
urve Ti(s; u) is C1;1.Proof. Consider a point u�, and and let Ti(s; u�) be the mixed 
urve of the i-th family starting in u�and parametrized by 
li(u�); Ti(s; u�)� u�� = s:Assume for de�niteness that D�i(u�)ri(u�) > 0 and D�i(u� + sri(u�))ri(u� + sri(u�)) < 0 for somes > 0: this means that the rarefa
tion 
urve Ri will 
ross the hypersurfa
e F for some s1 > 0In [8℄ it is shown that the 
urve Ti for s > 0 is formed by a rarefa
tion until s = s1, i.e. Ti(s1; u�) 2 F .Then, for s1 < s < s2, it is 
omposed by a rarefa
tion Ri(�; u�), � 2 [0; x(s)℄, starting in u� and endingin the point P1 = Ri(x(s); u�), followed by a sho
k Si(� 0; P1), � 0 2 [0; s�x(s)℄, where x(s) is determinedby the equation(2.15) f�Si(s; P1)�� f(P1) = �i(P1)�Si(s; P1)� P1�:The value s2 is determined by the relation(2.16) f�Si(s; u�)�� f(u�) = �i(u�)�Si(s; u�)� u��:Finally, for s � s2, Ti(s; u�) 
oin
ides with the sho
k 
urve Si(s; u�). Note that by letting s ! �sthe admissibility assumption (2.5) implies that �i(Ti(�s; u�)) � �(Si(�s; u�); u�), and by the genuinelynonlinearity for s � s1 we obtain that(2.17) �i�Ti(s2; u�)� < ��Ti(s2; u�)� = �i(u�);i.e. �i(u�) is not an eigenvalue of A(Ti(s2; u�)).In [8℄ it is shown that the mixed 
urve Ti(s; u�) is C2 for s 6= s2, i.e. outside the point P2 :=Ti(s2; u�) = Si(s2; u�). The proof is based on the fa
t that the point x(s) depends smoothly on s.We now prove that in that point the 
urve is C1. In fa
t, di�erentiating (2.15) for s = s�2 , we have�A(P2)� �i(u�)I���Si�s +DuSiri(u�)dxds� = �A(u�)� �i(u�)I�ri(u�)dxds +D�iri(u�)dxds �P2 � u��= D�iri(u�)dxds �P2 � u��:By de�nition �Ti�s ����s�2 = �Si�s +DuSiri(u�)dxds ����s�2 ;so that, using the fa
t that hli(u�); �Ti=�s� = 1 and (2.17), we obtain�Ti�s ����s�2 = D�iri(u�) dxds ����s�2 �A(P2)� �i(u�)I��1�P2 � u��(2.18) = �A(P2)� �i(u�)I��1�P2 � u��
li(u�); �A(P2)� �i(u�)I��1�P2 � u��� :
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Figure 2. Single in
e
tion point in the i-th family.Repeating the above 
omputation for �Ti=�s��s+2 we obtain�Ti�s ����s+2 = d�ids ����s+2 �A(P2)� �i(u�)I��1�P2 � u��= �A(P2)� �i(u�)I��1�P2 � u��
li(u�); �A(P2)� �i(u�)I��1�P2 � u��� = �Ti�s ����s�2 ;and as a 
onsequen
e d�ids ����s+2 = d�ids ����s�2 = D�iri(u�) dxds ����s�2 :This 
on
ludes the proof. �Remark 2.3. Using similar te
hniques, one 
an 
he
k that in parti
ular, if u� 2 F , then Ti is C3.3. Constru
tion of the mixed 
urvesConsider the hyperboli
 system (2.1) with vis
osity,(3.1) ut + f(u)x � uxx = 0It is well known that to identify a small travelling pro�le of the i-th family one needs n+ 2 parameters:the value u, the derivative of u in the i-th dire
tion ri and the speed �i of the pro�le [3℄. In the 
ase of(3.1), it is known that there is a lo
al 
enter manifold, whi
h 
ontains all small i-th travelling pro�les,invariant under the 
ow generated by the ODE(3.2) ��ux + f(u)x � uxx = 0:On this manifold, the above ODE takes the form(3.3) 8<: ux = vi~ri(u; vi; �i)vi;x = vi�i(u; vi; �i)�i;x = 0The fun
tion ~ri gives the 
omponent of the derivative ux when we know the i-th 
omponent ui;x = vi,while the fun
tion �i, �i(u; vi; �i) := 
~ri(u; vi; �i); A(u)~ri(u; vi; �i)�� �;des
ribes the internal dynami
s of the travelling pro�le.



8 STEFANO BIANCHINIAim of this se
tion is to prove that it is possible to asso
iate three 
urves to the system (3.3) underthe assumptions that the fun
tions ~ri, �i are smooth and that(3.4) ��i��i < 0:These 
urves, whi
h we will denote as Ri, Si, Ti, 
orrespond to the rarefa
tion 
urves Ri, sho
k 
urvesSi and mixed 
urves Ti for the hyperboli
 system (2.1). Given the fun
tions ~ri, �i, the 
urves Ri, Si, Tiare then uniquely determined, in terms of ~ri, �i. However, we will prove that if the \rarefa
tion 
urves"Ri and the \sho
k 
urves" Si of (3.3) 
oin
ide with their hyperboli
 
ounterparts Ri, Si, then also the\mixed 
urves" Ti 
oin
ide with the 
urves Ti. As a 
onsequen
e the uniqueness of the admissible 
urvesTi follows.In parti
ular, using the fun
tions ~ri, �i obtained by the 
enter manifold theorem applied to (3.1), we
an 
onstru
t the 
urves Ti without any assumption on the number of in
e
tion points of f , see [3℄.Consider a �xed basis of ve
tors �ri, i = 1; : : : ; n in Rn , and its dual base �li, normalized by���ri�� = 1; 
�lj ; �ri� = (1 j = i0 j 6= iWe will use the following norm in Rn :��u�� = maxn��
�li; u���; i = 1; : : : ; no:Let ~ri be a smooth ve
tor valued fun
tion de�ned in a neighborhood of a the point (�u; 0; ��i) 2 Rn+2 ,(3.5) ~ri = ~ri�u; vi; �i�; with ~ri��u; 0; ��i� = �ri;normalized su
h that(3.6) 
�li; ~ri(u; vi; �i)� = 1:The last 
ondition is not a restri
tion be
ause for any smooth fun
tion ~ri satisfying (3.5) we have(3.7) ���~ri�u; vi; �i�� ~ri�u0; v0i; �0i���� � C0n��u� u0��+ ��vi � v0i��+ ���i � �0i��o;where C0 is a suÆ
iently big 
onstant and thus
�li; ~ri(u; vi; �i)� � 12 ;if (u; vi; �i) is suÆ
iently 
lose to (�u; 0; ��i). We will 
all ~ri the i-th generalized eigenve
tor.Similarly, let �i be a smooth fun
tion satisfying(3.8) �i = �i(u; vi; �i); �i(�u; 0; ��i) = 0; ���i �(�u; 0; ��i) := �
 < 0:Sin
e we have(3.9) ����i�u; vi; �i�� �i�u0; v0i; �0i���� � C0n��u� u0��+ ��vi � v0i��+ ���i � �0i��o;the last 
onditions in (3.8) imply that(3.10) ����i(u; vi; �i����; ����1
 ��i�� + 1���� � C0�ju� �uj+ jvij+ j�i � ��ij	;for some 
onstant C0. For reasons whi
h will be 
lear later, we de�ne(3.11) ~�i(u; vi; �i) := 1
�i(u; vi; �i) + �ias the i-th generalized eigenvalue. By 
hoosing C0 � 1 suÆ
iently big, we 
an also assume that(3.12) 1
n��Du�i��+ ���i;v��o � C0:Note that from (3.8) there is a unique smooth fun
tion ~�i = ~�i(u; vi) su
h that(3.13) �i�u; vi; ~�i(u; vi)� = 0:



ON THE RIEMANN PROBLEM 9Fix a point u� 2 Rn suÆ
iently 
lose to �u and let Æ1 be a small 
onstant. For any s � Æ1 
onsider thefamily of Lips
hitz 
ontinuous 
urves with values in Rn+2(3.14) �i(s; u�) = �
 : [0; s℄ 7! Rn+2 ; 
(�) = �u(�); vi(�); �i(�)��su
h thatu(0) = u�; ui(�) = u�i + �; ��u(�)� u��� = �; ��vi(0)�� = 0; ��vi(�)�� � Æ1; ���i(�)� ��i�� � 2C0Æ1 � 1;for some small Æ1 � 1=2C0. We de�ne in �i the norm(3.15) 


 � 
0

 = 

u� u0

L1 + 

vi � v0i

L1 + Æ1

�i � �0i

L1 :For any 
 2 �i(s; u�), de�ne the fun
tion fi(� ; 
), � � s as(3.16) fi(� ; 
) := Z �0 ~�i�
i(&)�d& = Z �0 �1
�i�u(&); vi(&); �i(&)�+ �i(&)� d&:It is easy to verify that we have the estimates(3.17) ���fi�� ; 
�� fi�� ; 
0���� � C0��

u� u0

L1 + 

vi � v0i

L1 + 4C20Æ1

�i � �0i

L1� = 4C20�


 � 
0

;where we used (3.10). For any fun
tion f de�ned on [0; s℄, denote with 
onvf its lower 
onvex envelope,i.e. the set
onvf(x) = infn�f(y) + (1� �)f(z); x = �y + (1� �)z; x; y; z 2 [0; s℄; � 2 [0; 1℄o:We now de�ne the i-th rarefa
tion 
urve Ri(s; u�) as the solution of the ODE(3.18) duds = ~ri�u; 0; ~�i(u; 0)�:The i-th sho
k 
urve Si(s; u�) is the value u at � = s of the solution of the system(3.19) 8>>><>>>: u(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&vi(�) = 
�fi�� ;u; vi; �i�� ��i��i = fi�s;u; vi; �i�=sfor � 2 [0; s℄. Similarly, the i-th admissible 
urve Ti(s; u�) = u(s), where, for any �xed s > 0, u(s) is theterminal value of the solution of the system(3.20) 8>>>><>>>>: u(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&vi(�) = 
�fi�� ;u; vi; �i�� 
onvfi�� ;u; vi; �i���i(�) = dd� 
onvfi�� ;u; vi; �i�de�ned � 2 [0; s℄. For s < 0, we perform an entirely similar 
onstru
tion, taking the upper 
on
aveenvelope of fi in the se
ond and third equation of (3.20).Remark 3.1. Consider the triangular system of example 2.1 with unit vis
osity matrix(3.21) � ut + �u(u� �)2(3�� u)�x = uxxvt + �vx � u2=2 = vxxIn [4℄ using the 
enter manifold theorem, it is shown that there is a fun
tion ~r1 satisfying (3.5),(3.6).Moreover it is shown that the equations on the 
enter manifold are(3.22) 8<: u� = ~ri�u(�); v1(�); �1(�)�v1;� = �1�u(�)�� �1�1;� = 0so that the fun
tion �i = �1(u) � � satis�es (3.8). It is easy to 
he
k that in this spe
ial 
ase f1(s) �s(s � �)2(3� � s), and then, using the 
onservation form of (3.21), we have the identities R1 � R1,S1 � S1, T1 � T1.
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u
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u

1
2

1Figure 3. The lines R1, S1 and T1 in the triangular 
ase.We 
onsider only the 
onstru
tion of Ti(s; u�) for s > 0, sin
e (3.18) is a standard ODE and the
onstru
tion of Si and of Ti for s < 0 are similar. We basi
ally repeat the 
omputations of [3℄.On the set �i(s; u�) 
onsider the transformation �i;s : 
 = (u; vi; �i) 7! 
̂ = (û; v̂i; �̂i) de�ned by(3.20), i.e.(3.23) 8>>>><>>>>: û(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&v̂i(�) = 
�fi�� ;u; vi; �i�� 
onvfi�� ;u; vi; �i���̂i(�) = dd� 
onvfi�� ;u; vi; �i�First of all we show that the new 
urve 
̂ = (û; v̂i; �̂i) belongs to �i. In fa
t, using (3.7) we have that���u(�)� u���� = maxj ������lj ; Z �0 ~ri(&)d&����� � maxj n�; 4C20�Æ1 + C0��u� � �u��o = � � Æ1;��vi(�)�� � 
 Z �0 ��f 0(& ; 
)� f 0(0; 
)��d& = 



~�i(
)� ~�i(u�; 0; �i(0))


L1 � 8
�C20Æ1 � Æ1;���i(�) � ��i�� � 1


�i + 
�i

L1 + C0��u� � �u�� � C0Æ1 + 4C30Æ21 + C0��u� � �u�� � 2C0Æ1:for s, Æ1 suÆ
iently small. Moreover fi is a C1;1 fun
tion, whi
h implies that �̂i is at least Lips
hitz
ontinuous, while u(�) and vi(�) are C1;1. In parti
ular we have a uniform estimate on the Lips
hitznorm of u(�), vi(�), �i(�): in fa
t for u, vi it follows easily that��u0(�)�� = ��~ri(�)�� = 1; ��v0i(�)�� � 


~�i � ~�i�u�; 0; �(0)�

L1 � 16
C20Æ1;while for � one has ���0i(�)�� � C0n1 + 16
C20Æ1 + Æ1

�0i

L1o � 20
C30Æ1;if k�0ikL1 � 10
C30Æ1 and Æ1 suÆ
iently small. This implies that if we obtain a limit in C0 of 
, this limitis Lips
hitz 
ontinuous (a
tually one 
an prove that it is C1;1 in �).Next we show that the map 
i;s is a 
ontra
tion in �i(s; u�) if s is suÆ
iently small: in fa
t we have��u(�) � u0(�)�� = ����Z �0 �~ri�u; vi; �i�� ~ri�u0; (vi)0; �0i��d� ����� C0��


u� u0


L1 + 


vi � v0i


L1 + 


�i � �0i


L1�;��vi(�)� v0i(�)�� � ����Z s0 n�i�u; vi; �i�� �i�u0; v0i; �0i�+ 
��i � �0i�od&����� C0s�


u� u0


L1 + 


vi � v0i


L1 + 4
C0Æ1


�i � �0i


L1�;



ON THE RIEMANN PROBLEM 11����i(�) � �0i(�)��� � 1



�i�u; vi; �i�+ 
�i � �i�u0; v0i; �0i�+ 
�0i


L1� C0�


u� u0


L1 + 


vi � v0i


L1 + 4C0Æ1


�i � �0i


L1�:Thus we 
on
lude that



̂ � 
̂0


 � C0(2s+ Æ1)

u� u0

L1 + C0(2s+ Æ1)

vi � v0i

L1 + C0�s+ 4
C0Æ1s+ 4C0Æ21�

�i � �0i

L1(3.24) � 10C0(1 + 
)Æ1�

u� u0

L1 + 

vi � v0i

L1 + Æ1

�i � �0i

L1� � 12



 � 
0


;if s = O(1)Æ21 and Æ1 is suÆ
iently small. Hen
e �i;s is a 
ontra
tion and has a unique �xed point.Now we de�ne Ti(s; u�) by(3.25) Ti�s; u�� := u(s);
orresponding to the end point of the solution 
 2 �i(s; u�) to system (3.20).Remark 3.2. Note that to �nd the point Ti(s; u�) we have to solve the system (3.20) for � 2 [0; s℄.This is similar to the hyperboli
 
ase, where to 
onstru
t a line Ti(s; u�) we have to �nd the pointu(s) = Ti(s; u�) whi
h 
an be 
onne
ted to u� using only admissible sho
ks and rarefa
tions of the i-thfamily.We prove that the 
urve s 7! Ti(s; u�) is Lips
hitz 
ontinuous, and its derivative is 
lose to �ri. In fa
t,if 
 2 �i(s; u�), 
0 2 �i(s+h; u�) are the �xed points of the transformations �i;s and �i;s+h respe
tively,by the 
ontra
tion property (3.24) we have



 � 
0��[0;s℄


 � 2


�i;s�
0��[0;s℄�� 
0��[0;s℄


 � O(1)sh:Thus from the �rst equation in (3.20) one obtains that(3.26) Ti(s; u�)� Ti(s+ h; u�) = O(1)sh:In parti
ular Ti(s; u�) is di�erentiable in 0 and has derivative�Ti�s ����s=0 = ~ri�u�; 0; ~�i(u�; 0)�:We now prove a stability result for the 
urves Ti, analogous to the stability for sho
ks of 1-dimensionals
alar 
onservation laws.Lemma 3.3. Fix u�, and let 0 < s < s0. Denote with
i(�) = �u(�); vi(�); �i(�)�; 
0i(�) = �u0(�); v0i(�); �0i(�)�;the solutions to (3.23) in �i(s; u�), �i(s0; u�). Then(3.27) �i(�) � �0i(�) � 2 [0; s℄:Proof. Consider f 0i(� ; 
0) and denote with 
onvsf 0i is its 
onvex envelope in [0; s℄. De�ne the quantities(3.28) wi(�) := f 0i(� ; 
0)� 
onvsf 0i(� ; 
0); �i(�) := dd� 
onvsf 0i(� ; 
0):Note that by 
onstru
tion wi(�) � v0i(�), and that v0i � wi, �i � �0i are in
reasing and positive.We will now use the following norm on �i(s; u�):(3.29) 




X = Æ1

u

L1 + Æ1

vi

L1 + 

�

L1 :It is easy to prove that the map (3.23) is 
ontra
tion w.r.t. the norm k � kX , i.e.


i;s(
)� 
i;s(
0)

X � 12


 � 
0

X :
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an estimate �i;s(u0j[0;s℄; wi; �i) as


�i;s�u0j[0;s℄; wi; �i�� �u0j[0;s℄; wi; �i�


X � Z s0 ���~ri�u(&); wi(&); �i(&)�� ~ri�u(&); v0i(&); �0i(&)����d&+ 
 Z s0 ���~�i�u(&); wi(&); �i(&)�� ~�i�u(&); v0i(&); �0i(&)����d&+ Z s0 ���~�i�u(&); wi(&); �i(&)�� ~�i�u(&); v0i(&); �0i(&)����d&� 5C0(1 + 
) Z s0 n�v0i(&)� wi(&)�+ ��(&)� �0i(&)�od& � 10C0(1 + 
)vi(s):Thus by the stri
t 
ontra
tion property


fi � f 0i j[0;s℄


 � C0Æ1


 � 
0

X � 2C0Æ1


�i;s�u;wi; �i�� �u;wi; �i�


X � 10C20Æ1v0i(s) � 12 ��v0i(s)��:(3.30)This implies immediately that fi(s) � f 0i(s) + jv0i(s)j=2.Assume now that �i(�) < �0i(�) for some � 2 [0; s℄. Sin
e fi(s) � f 0i(s), there is a point �s 2 [0; s℄ su
hthat fi(�s) < f 0i(�s) and 
onvfi(�s) = fi(�s):The last equality implies vi(�s) = 0. It is easy to 
he
k that the 
urve 
 restri
ted to [0; �s℄ is the solutionto (3.20) in �i(�s; u�). But this is in 
ontradi
tion with (3.30). �For any u� we de�ne the jump [u�;Si(s0; u�)℄ admissible if for all s 2 [0; s0℄ one has(3.31) �i(�) � �0i � 2 [0; s℄;where �0i is the speed of the sho
k and �i is obtained as the solution to (3.20) in �i(s; u�). Using thesame arguments as in the proof of Lemma 3.3, it is easy to prove that this is equivalent to the 
onditionof admissibility introdu
ed by T.P. Liu in [8℄,(3.32) �i � �0i;where �i is the speed of the jump [u�;Si(s; u�)℄. Note moreover that the same proof given above showsthat any Liu's admissible sho
k is a solution with � 
ostant of systems (3.20).We 
on
lude then with the following theorem:Theorem 3.4. For all u� 
lose to �u, and for any s suÆ
iently small, the admissible 
urves s 7! Ti(s; u�),de�ned in terms of (3.20), are Lips
hitz 
ontinuous and admit derivative for s = 0. Moreover these
urves are the unique 
urves su
h that ea
h point u(s) = Ti(s; u�) 
an be 
onne
ted to u� by pat
hing a
ountable number of rarefa
tions Ri and admissible sho
ks Si, in su
h a way that the 
orresponding speed�i is in
reasing.Proof. By 
onstru
tion the line 
 2 �i(s; u�) solution to (3.20) is the union of generalized rarefa
tion orsho
ks. In fa
t, if fi(�) = 
onvfi(�) in some 
lose interval [sm; sm+1℄ � [0; s℄ with non empty interior,then 
(�) 
learly 
oin
ides with the rarefa
tion Ri(� � sm; 
i(si)) for � 2 [sm; sm+1℄. On the other hand,if fi(�) � 
onvfi(�) in some interval [sn; sn+1℄ � [0; s℄, fi(sn) = 
onvfi(sn), fi(sn+1) = 
onvfi(sn+1) and�i(�) is 
onstant in [sn; sn+1℄, then it is 
lear that 
(sn+1) = Si(sn+1 � sn; 
(sn)). By Lemma 3.3 thesesho
ks are admissible.Suppose now that ~
 is another 
urve obtained by pat
hing rarefa
tions and admissible sho
ks su
hthat �i is in
reasing. Then it is 
learly a solution to (3.20). By the uniqueness of the solution the resultfollows. �As a 
orollary we have thatCorollary 3.5. Assume that the rarefa
tions Ri and sho
k lines Si 
oin
ide with the rarefa
tion Ri andsho
ks Si of the hyperboli
 system (2.1). Then for every u� there is a unique admissible 
urve Ti(s; u�)for s suÆ
iently small.



ON THE RIEMANN PROBLEM 13Proof. In [3℄ it is proved the existen
e of the admissible 
urves Ti(s; u�) obtained by pat
hing admissiblesho
ks and rarefa
tions by means of the 
enter manifold for (3.1). The above theorem gives the uniquenessof the line Ti � Ti. �Remark 3.6. Assume that we have the fun
tions ~ri, �i for i = 1; : : : ; n and that(3.33) spann�r1; : : : ; �rno = Rn ; ��1 < � � � < ��n:We 
an 
onstru
t the 
urves Ti(si; u), i = 1; : : : ; n for jsij � Æ1, ju � �uj � Æ1, with Æ1 suÆ
iently small,and moreover we have that the 
omposed map(3.34) (s1; : : : ; sn) 7! Tn�sn; Tn�1�sn�1; Tn�2�sn�2; : : : T1(s1; u)���has an invertible derivative in fsi = 0g be
ause of (3.33). Thus, by the impli
it fun
tion theorem,given u�, u+, we 
an 
onne
t u� to u+ by a sequen
e of rarefa
tions Ri and admissible sho
ks Si within
reasing speed.The inverse of (3.34) de�nes a Riemann solver, whi
h in the 
onservative 
ase is unique by Corollary3.5.Remark 3.7. If instead of the last inequality in (3.8) we assume that���i���u; 0; ��i� := 
 > 0;then we 
an repeat the 
omputations of this se
tion by 
onsidering the system8>>>><>>>>: û(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&v̂i(�) = 
�fi�� ;u; vi; �i�� 
on
fi�� ;u; vi; �i���̂i(�) = dd� 
on
fi�� ;u; vi; �i�where 
on
fi is the 
on
ave envelope of f . In the hyperboli
 setting, it means that we are going from u+to u�, or equivalently that t is reversed.4. Examples of Riemann SolversWe now 
onsider some examples of the 
onstru
tion of the 
urves Ti. Our aim is to prove that we 
anobtain the fun
tions ~ri, �i, and thus the 
urvesRi, Si, Ti using the 
enter manifold theorem in 
onne
tionwith many approximations of the hyperboli
 system (2.1): vanishing vis
osity, relaxation s
hemes andsemidis
rete s
hemes. By Remark 3.6, we 
an then spe
ify a Riemann solver \
ompatible" with theapproximation.In parti
ular we 
an identify all the small travelling pro�les of these approximations. If the system isin 
onservation form, i.e. the sho
k 
urve satisfy the Rankine-Hugoniot 
ondition, Corollary 3.5 impliesthat all the small admissible jumps [u�; u+℄ of the system (2.1) have a smooth travelling pro�le '(�) su
hthat '(�1) = u�, '(+1) = u+ (see [1℄, [9℄, [11℄).4.1. Vanishing vis
osity. Consider the paraboli
 system(4.1) ut +A(u; ux)ux �B(u)uxx = 0:Note that parti
ular 
ase of the above system is the system in 
onservation formut + f(u)x � �B(u)ux�x = 0:The matrix A(u; ux) is assumed to be stri
tly hyperboli
, smooth, de�ned for u� �u, ux 
lose to 0, andB(u) is a semide�nite positive matrix. Denote with �i(u; ux) the i-th eigenvalue of A(u; ux) and letri(u; ux), li(u; ux) be the 
orresponding right and left eigenve
tors.We assume that, by means of a 
hange of 
oordinates y = J(u)x, B(u) 
an be written as(4.2) B(u) = J(u) � 0 00 C(u) � J�1(u);



14 STEFANO BIANCHINIwhere C(u) is a k�k uniformly positive matrix. We assume moreover Kawashima's dissipative 
ondition,i.e. for a �xed index i 2 f1; : : : ; ng(4.3) 
li(u; ux); B(u)ri(u; ux)� > 0:The 
hange of 
oordinates y = J(u)x transforms the matrix A(u; ux) in(4.4) J�1(u)A(u; ux)J(u) = � A11(u; ux) A12(u; ux)A21(u; ux) A22(u; ux) � ;where A11 is a n� k-dimensional square matrix, and A22 is k-dimensional. Note that by (4.3), we havethat(4.5) ranknh �A11(u; ux)� �i(u; ux)I� A12(u; ux) io = n� k:The equation for travelling pro�les is the ODE�A(u; ux)� �I�ux = B(u)uxx;whi
h 
an be rewritten as the �rst order system by setting ux = J(u)p,(4.6) 8><>: ux = J(u)pB(u)J(u)px = �A�u; J(u)p�� �iI �B(u)�DJ(u)J(u)�p�J(u)p�i;x = 0Due to the assumptions (4.2), and its 
onsequen
e (4.5), the equation for p = (p1; p2), with p1 2 Rn�k ,p2 2 Rk , 
an be divided into two parts: n� k algebrai
 relations and a system of k ODE for p2.For simpli
ity we assume here the 
ondition(4.7) det�A11(�u; 0)� �i(�u)I� 6= 0;so that we 
an write p = Q(u; ux)p2;where A(u; ux) is the (n� k)� n-matrix(4.8) Q(�u) = " ��A11(u; ux)� �i(u; ux)I��1A12(u; ux)I # ;Note that the above 
ondition is not implied by (4.3).Let v = (v1; v2), where v2 is k-dimensional. The assumption (4.7) implies that we 
an obtain v1 as afun
tion of v2 by(4.9) v1 = ��A11 � �iI � �JB(DJJ)v�11��1�A12 + �JB(DJJ)v�12�v2;if v is suÆ
iently small, so that the system (4.6) be
omes(4.10) 8><>: ux = J(u)vC(u)v2;x = �A22 �A21�A11 � �iI��1A12 � �iI � d(u; v)v�v2�i;x = 0for some smooth fun
tion d(u; v).The linearization of the system (4.10) around the equilibrium (�u; 0; �i(�u)) gives the linear system(4.11) 8><>: ux = J(�u)vC(�u; 0)v2;x = �A22(�u; 0)�A21�A11 � �iI��1A12(�u; 0)� �i(�u)I�v2�i;x = 0where v = (v1; v2) 
an be obtained byv1 = ��A11(�u; 0)� �i(�u; 0)I��1A12(�u; 0)v2:We 
an write this system as _X = PX;



ON THE RIEMANN PROBLEM 15where the matrix P is the n+ k + 1 matrix(4.12) P = 264 0 I 00 A22 � A21�A11 � �iI��1A12 � �iI 00 0 0 375 :It is 
lear that P has a null spa
e of dimension n + 2 be
ause �i(�u) is an eigenvalue of A(�u; 0), so thatthere is a 
enter manifold Ci of dimension n+ 2 for the original system (4.6).In the spa
e (u; v; �i) 2 R2n+1 , the invariant manifold is tangent to the eigenspa
e(4.13) Mi = n(u; v; �i) 2 Rn � Rn � R; v = viri(�u; 0)o;so that we 
an write(4.14) vj = Cji�u; vi; �i�; 8j 6= i:Sin
e for (u; vi = 0; �) we have that the solution to (4.6) whi
h lies on the 
enter manifold is the 
onstantu(x) � u, this implies that Cji(u; 0; �i) = 0, i.e.(4.15) v = vi~ri�u; vi; �i�;for some smooth ve
tor fun
tion ~ri, normalized by hli(�u); ~rii = 1. Moreover Ci is tangent to the eigenspa
eMi, so that ~ri��u; 0; �i(�u)� = ri(�u):The equations on this invariant manifold are(4.16) 8<: ux = vi~ri(u; vi; �i)
i(u; vi; �i)vi;x = �ai(u; vi; �i)� �iI�vi�i;x = 0where we de�ned the fun
tions(4.17) 
i(u; vi; �i) := Dli(�u); B(u)�~ri(u; vi; �i) + vi~ri;v(u; vi; �i)�E;(4.18) ai(u; vi; �i) := Dli(�u); A(u; vi~ri)~ri(u; vi; �i)E� viDli(�u); B(u)Du~ri~ri(u; vi; �i)E:Note that by the assumption (4.3) we obtain that in a neighborhood of (�u; 0; �i(�u)), 
i is stri
tly biggerthan 0. De�ning(4.19) �i(u; vi; �i) := ai(u; vi; �i)� �i
i(u; vi; �i) ;we 
an apply the results of Se
tion 3: in fa
t,���i �i��u; 0; �i(�u)� = 1
i �
li(�u); A(�u; 0)~ri;��� 1�� 1
2i �
li(�u); A(�u; 0)ri(�u)�� �i(�u)�
i;�= � 1
i��u; 0; �i(�u)� ;be
ause hli(�u); ~ri;�i = 0.4.2. Relaxation s
hemes. Consider the relaxation problem(4.20) � ut +A11(u; v)ux +A12(u; v)vx = 0vt +A21(u; v)ux +A22(u; v)vx = Q(u; v):where u, v are n-dimensional and k-dimensional ve
tors, respe
tively.The equation for travelling pro�les is the ordinary di�erential equation(4.21) � �A11(u; v)� �I�ux +A12(u; v)vx = 0A21(u; v)ux + �A22(u; v)� �I�vx = Q(u; v):We assume that the 
ondition Q(u; v) = 0 uniquely determines v as a fun
tion of u, i.e. a manifold ofequilibria v = h(u).



16 STEFANO BIANCHINIThe linearization in the equilibrium (�u; �v := h(�u)) gives the linear system(4.22) � �A11(�u; �v)� �I�ux +A12(�u; �v)vx = 0A21(�u; �v)ux + �A22(�u; �v)� �I�vx = Qu(�u; �v)u+Qv(�u; �v)v:As in [11℄, we assume that there is an invertible (n+ k)� (n+ k) invertible matrix P (u; v) su
h that(4.23) P (u; v) � 0 0Qu(u; v) Qv(u; v) �P�1(u; v) = � 0 00 S(u; v) � ;where S is stri
tly negative de�nite. With a linear 
hange of 
oordinates v 7! Lu + v for some n � nmatrix L, we 
an set P (�u; �v) = I . We 
an thus rewrite (4.22) as(4.24) � �A11(�u; �v)� �I�ux +A12(�u; �v)vx = 0A21(�u; �v)ux + �A22(�u; �v)� �I�vx = S(�u; �v)v:We assume that ~A11(�u; �v) is stri
tly hyperboli
 and denote with �i(u; v) its i-th eigenvalue, and letri(u; v), li(u; v) be its left and right eigenve
tors, respe
tively in a neighborhood of (�u; h(�u)).The non 
hara
teristi
 
ondition says that A(u; v)� �i(�u; h(�u))I is invertible, whereA(u; v) := � A11(u; v) A12(u; v)A21(u; v) A22(u; v) � ;so that, for �i 
lose to �i(�u; h(�u)), the system (4.21) 
an be written as(4.25) 8<: � uxvx � = �A(u; v)� �iI��1� 0Q(u; v) ��i;x = 0whose linearization around (�u; 0; �i(�u)) is(4.26) 8<: � ~ux~vx � = �A(�u; �v)� �iI��1� 0S(�u; �v)v ��i;x = 0In [11℄ it is shown that, if �A(�u; �v)� �i(�u; h(�u))I��1 � 0 00 S(�u; �v) �has no nonzero purely imaginary eigenvalues, and if the following stability 
ondition holds(4.27) 
�li; A12(�u; �v)S�1(�u; �v) ~A21�ri� < 0;then there exists an invariant n+ 2-dimensional spa
e Mi for the linearized system (4.26),(4.28) Mi = spann�ri; S�1(�u; �v)A21(�u; �v)�rio;and by the 
enter manifold theorem there is an invariant manifold Ci tangent to Mi at (�u; �v = h(�u)),whi
h 
an be parametrized by u, a s
alar 
omponent �i and the speed �i. Sin
e all the equilibria v = h(u)belong to Ci, we 
an write(4.29) v = h(u) + �igi(u; �i; �i);with gi(�u; 0; �i(�u)) = S�1(�u; �v)A21(�u; �v)�ri and h(�u) = �v, Dh(�u) = 0. The last 
onditions follow from theassumption P (�u; �v) = I , i.e. Qu(�u; �v) = 0.Thanks to the non 
hara
teristi
 
ondition, the equations on Ci 
an be written as(4.30) 8<: ux = �i~ri(u; �i; �i)�i;x = �i�i(u; �i; �i)�i;x = 0for some fun
tions ~ri and �i, with h�li; ~rii = 1. In fa
t, for �i = 0 we are on the equilibrium manifoldv = h(u), and then ux = �i;x = 0. Be
ause Ci is tangent to Mi, we obtain the relations(4.31) ~ri(�u; 0; ��i) = �ri; �i(�u; 0; ��i) = 0:



ON THE RIEMANN PROBLEM 17Moreover a simple 
omputation shows that(4.32) ���i �i(�u; 0; ��i) = 1D�li; A12(�u; �v)S�1(�u; �v)A21(�u; �v)�riE < 0;by (4.27). It follows that we 
an 
onstru
t the 
urves Ri, Si and Ti in a neighborhood of �u. Moreover,if the system (4.20) is in 
onservation form, we have proved same results of [11℄, i.e. the existen
e oftravelling pro�les for all admissible sho
ks of the limiting hyperboli
 system.4.3. Semidis
rete s
hemes. Consider the semidis
rete s
heme(4.33) umt + f(um)� f(um�1) = 0;where for linear stability we assume that �i(u) > 0.The equation for travelling pro�les is the Retarded Fun
tional Di�erential Equation (RFDE)(4.34) ��u0(�) + f�u(�)�� f�u(� � 1)� = 0:In [1℄ it is shown the existen
e of a 
enter manifold Ci of dimension n+ 2 in C1([�1; 0℄;Rn), whi
h 
anbe parametrized by u, vi = ui;x = hli(�u); uxi, �i (see [2℄):(u; vi; �i) 7! ���;u; vi; �i� 2 C1�[�1; 0℄;Rn); �(0) = u; �0i(0) = vi:In parti
ular, sin
e for (u0; vi = 0; �i) we obtain the equilibrium u � u0, from the map (u; vi; �i) 7!�(�; u; vi; �i) one 
an dedu
e the two fun
tions(4.35) ux = ddx�(0;u; vi; �i) := vi~ri(u; vi; �i); vi(�1) = �li(�u); ddx�(�1;u; vi; �i)� := vi~pi�u; vi; �i�:The fun
tion ~ri gives dire
tion of the derivative ux on
e we know the i-th 
omponent vi = ui;x, whilevi~pi gives the value of the i-th 
omponent of the derivative at � = �1, i.e. ui;x(�1).The equation for vi 
an be obtained from (4.34): in fa
t, di�erentiating w.r.t. x and taking the s
alarprodu
t with li(�u), it follows��ivi;x + ~�i�u; vi; �i�vi � ~�i�u(�1); vipi; �i�vipi(u; vi; �i) = 0;where u(�1) 
an be 
omputed from ��ivi + f(u)� f(u(�1)) = 0;and where ~�i is given by(4.36) ~�i(u; vi; �i) = 
li(�u); A(u)~ri(u; vi; �i)�:Thus we obtain that on the manifold Ci the RFDE (4.34) takes the form of the system of ODE(4.37) 8><>: ux = vi~ri(u; vi; �i)vi;x = vi�~�i(u; vi; �i)� ~�i�u(�1); vipi; �i�pi�=�i�i;x = 0Sin
e Ci is tangent in u(x) � �u to the manifold (see [2℄)Mi = �u+ vie�iri(�u)�; �i�i(�u) = 1� e��i�i ; � 2 (�1; 0℄� 2 C1�(�1; 0℄;R2�;we dedu
e that(4.38) ~ri��u; 0; �i(�u)� = ri(�u); ~�i��u; 0; �i(�u)� = �i(�u):Using the fa
t that in all points u(x) � u suÆ
iently 
lose to �u the 
enter manifold Ci is also tangent tothe set Mi = �u+ vie�iri(u)�; �i�i(u) = 1� e��i�i ; � 2 (�1; 0℄� 2 C1�(�1; 0℄;R2�;in [2℄ it is shown that(4.39) pi�u; 0; �i� = e��i ;



18 STEFANO BIANCHINIwhere �i is given by the dispersion relation �i�i(u) = 1� e��i�i :Let �i be the fun
tion(4.40) �i(u; vi; �i) := 1�i �~�i(u; vi; �i)� ~�i�u(�1); vipi; �i�pi(u; vi; �i)�:Using (4.38) and hli(�u); ~ri;�i = 0, we obtain that(4.41) �i��u; 0; �i(�u)� = 0;and(4.42) ���i �i��u; 0; �i(�u)� = ��pi��i = 1�i(�u) �2i e��i(1 + �i)e��i � 1 �����i=0 = � 2�i(�u) :We 
an thus apply the results of se
tion 3. In parti
ular, we have proved the existen
e of travellingpro�les for all small admissible sho
ks of the limiting hyperboli
 equationut + f(u)x = 0;generalizing the result of [1℄ to general 
ux fun
tions f .Referen
es[1℄ S. Benzoni-Gavage. Semidis
rete sho
k pro�les for hyperboli
 systems of 
onservation laws. Physi
a D, 115:109{123,1998.[2℄ S. Bian
hini. BV solutions to semidis
rete s
hemes. preprint IAC-CNR.[3℄ S. Bian
hini and A. Bressan. Vanishing vis
osity solutions of nonlinear hyperboli
 systems. preprint SISSA.[4℄ S. Bian
hini and A. Bressan. A 
enter manifold te
hnique for tra
ing vis
ous travelling waves. Comm. Pure Appl.Analysis, 1(2):161{190, 2002.[5℄ A. Bressan. Hyperboli
 systems of 
onservation laws. Oxford Univ. Press, 2000.[6℄ C. Dafermos. Hyperboli
 
onservation laws in 
ontinuous physi
s. Springer, 2000.[7℄ P.D. Lax. Hyperboli
 systems of 
onservation laws ii. Comm. Pure Appl. Math., 10:537{566, 1957.[8℄ T.-P. Liu. Admissible solutions of hyperboli
 
onservation laws, volume 240. Memoir A.M.S., 1981.[9℄ A. Majda and R. L. Pego. Stable vis
osity matri
es for systems of 
onservation laws. J. Di�. Eq., 56:229{262, 1985.[10℄ A. E. Tzavaras. Wave intera
tions and variation estimates for self similar zero vis
osity limits in systems of 
onservationlaws. Ar
h. Rational Me
h. Anal., 135:1{60, 1996.[11℄ W.-A. Yong and K. Zumbrun. Existen
e of relaxation sho
k pro�les for hyperboli
 
onservation laws. SIAM J. Appl.Math., 60(5):1565{1575, 2000.Istituto per le Appli
azioni del Cal
olo "M. Pi
one" - CNR, Viale del Poli
lini
o 137, 00161 Roma (ITALY)E-mail address: bian
hin�ia
.rm.
nr.itURL: http://www.ia
.rm.
nr.it/~bian
hin/


