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Abstract

We study the singular ordinary differential equation

dU

dt
=

1

ζ(U)
φs(U) + φns(U), (0.1)

where U ∈ R
N , the functions φs ∈ R

N and φns ∈ R
N are of class C2 and ζ is a real valued C2 function.

The equation is singular because ζ(U) can attain the value 0. We focus on the solutions of (0.1) that
belong to a small neighbourhood of a point Ū such that φs(Ū) = φns(Ū) = ~0 and ζ(Ū) = 0. We
investigate the existence of manifolds that are locally invariant for (0.1) and that contain orbits with
a prescribed asymptotic behaviour. Under suitable hypotheses on the set {U : ζ(U) = 0}, we extend
to the case of the singular ODE (0.1) the definitions of center manifold, center-stable manifold and of
uniformly stable manifold. We prove that the solutions of (0.1) lying on each of these manifolds are
regular: this is not trivial since we provide examples showing that, in general, a solution of (0.1) is not
continuously differentiable. Finally, we show a decomposition result for a center-stable manifold and for
the uniformly stable manifold.

An application of our analysis concerns the study of the viscous profiles with small total variation for a
class of mixed hyperbolic-parabolic systems in one space variable. Such a class includes the compressible
Navier Stokes equation.
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1 Introduction

In this work we study the singular ordinary differential equation

dU

dt
=

1

ζ(U)
φs(U) + φns(U). (1.1)

In the previous expression, U ∈ R
N and the functions φs and φns are C2 (continuously differentiable with

continuously differentiable derivatives) and take values in R
N . The function ζ is as well regular and it takes

real values. We say that the equation is singular because ζ(U) can attain the value 0.
Equation (1.1) is related to a class of problems studied in singular perturbation theory. Consider system

{

εdx/dt = f(x, y, ε)
dy/dt = g(x, y, ε),

(1.2)
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where x and y are vector valued functions and ε is a parameter. In singular perturbation theory one is
typically concerned with the limit ε→ 0 and with the corresponding behaviour of the solution (x, y). Note
that (1.1) can be viewed as as an extension of (1.2) because (1.2) can be written in the form (1.1): in this
case, the singularity ζ(U) in (1.1) is identically equal to ε and hence dζ/dt = 0.

Being the literature concerning (1.2) extremely wide, it would be difficult to give an overview here.
Consequently, we just refer to the notes by Jones [11] and to the rich bibliography contained therein. In
particular, [11] provides a nice overview of Fenichel’s papers [8, 9, 10]. These works provide several ideas
and techniques used in the present paper: in particular, in the following we introduce the notions of slow
dynamic and fast dynamic, which can be viewed as extensions of the notions of fast and slow time scale
discussed in Fenichel’s works. We refer to Remark 1.1 at the end of Section 1.1 for further comments on the
analogies between the present analysis and Fenichel’s.

The main novelty of the present work is that we consider the case when ζ is a nontrivial function of
the unknown U . In particular, this means that in general dζ/dt 6= 0 and hence that we have to face the
possibility that ζ

(

U(0)
)

6= 0, but ζ
(

U(t)
)

= 0 for a finite value of t. This is exactly what happens in the
examples (2.12) and (2.17) discussed in Section 2 here. Other examples are provided in a previous work
by the same authors [6], Section 2. Note that, in all these cases, there is a loss of regularity at the time
t0 at which ζ

(

(U(t)
)

reaches the value 0, t0 = min
{

t ∈ [0, +∞[: ζ
(

U(t)
)

= 0
}

. More precisely, the first
derivative dU/dt either has a discontinuity or blows up at t = t0.

Our goal here is to study the solutions of (1.1) that lie in a neighborhood of a point Ū such that

φs(Ū) = φns(Ū) = ~0, ζ(Ū ) = 0. (1.3)

We are concerned with the existence of invariant manifolds. More precisely, the problem is the following.
Consider first the non singular ODE

dU

dt
= f(U) (1.4)

and assume that the point Ū is an equilibrium, namely f(Ū) = ~0. In a neighbourhood of Ū one can define
a center and a center-stable manifold, which are both locally invariant for (1.4). We recall that, loosely
speaking, a center-stable manifold contains the orbits of (1.4) that either do not blow up or blow up more
slowly than eηt when t→ +∞. Here η is a small enough constant depending on the system. More precisely,
the orbits that lie on a center-stable manifold are those having the asymptotic behaviour described before
and solving a suitable system which, in a small neighbourhood of Ū , coincides with (1.4).

We are also interested in the uniformly stable manifold relative to E, which is defined as follows. Assume
there exists a manifold E containing Ū and entirely constituted by equilibria of (1.4). By uniformly stable
manifold we mean the slaving manifold that contains all the orbits that decay with exponential speed to
some point in E when t→ +∞. Note that the uniformly stable manifold does not coincide, in general, with
the classical stable manifold. Indeed, the stable manifold contains the orbits that decay exponentially fast
to the given equilibrium Ū , while on the uniformly stable manifold we only require that the limit belongs to
E. The existence of a center-stable and of the uniformly stable manifold can be obtained as consequence of
the Hadamard-Perron Theorem discussed in the book by Katok and Hasselblatt [13, Chapter 6, page 242].

In the present paper we prove that, under suitable hypotheses, one can extend the definitions of center,
center-stable and of uniformly stable manifold to the case of the singular ODE (1.1). The manifolds we
define are all locally invariant for (1.1) and satisfy the following property:

(P) If U is an orbit lying on the manifold and ζ
(

U(0)
)

6= 0, then ζ
(

U(t)
)

6= 0 for every t.

This, in particular, rules out the losses of regularity (blow up or discontinuity in the first derivative) mentioned
before.

We proceed as follows. First, we consider the non singular ODE

dU

dτ
= φs(U) + ζ(U)φns(U). (1.5)

2



Due to (1.3), the value Ū is an equilibrium for (1.5). Also, equation (1.5) is formally obtained from (1.1) via
the change of variable τ = τ(t), defined as the solution of the Cauchy problem















dτ

dt
=

1

ζ[U(t)]

τ(0) = 0.

(1.6)

However, the function τ(t) is well defined only if ζ[U(t)] 6= 0 for every t. In the present work we always
refer to the formulation (1.5) and we prove the existence of locally invariant manifolds satisfying property
(P). We then show that a posteriori the change of variable (1.6) is well defined and that system (1.5) is
equivalent to (1.1) on these manifolds.

We assume that

1. the set {U : ζ(U) = 0} is an hypersurface in R
N and the intersection between {U : ζ(U) = 0} and

Mc contains only equilibria. Here Mc is any center manifold of the equilibrium Ū of the system (1.5).

We then define a manifold of slow dynamics as a center manifold of the equilibrium point Ū of (1.5) (any
center manifold works). To simplify the exposition, in the following we fix a manifold of slow dynamics. To
define the manifold of fast dynamics we assume

2. there exists a one-dimensional manifold which is transversal to the hypersurface {U : ζ(U) = 0} and is
entirely constituted by equilibria of (1.5). In the following, we denote by E this manifold: note that,
by construction, E ⊆ Mc.

As a remark, we point out that we are not assuming that E contains all the equilibrium points of (4.1).
For example, in the case we discuss in Section 2.1.1 the set of equilibria is a three-dimensional manifold:
assumption 2 is anyhow satisfied because such a three-dimensional manifold contains a one-dimensional
submanifold transversal to {U : ζ(U) = 0}.

The manifold of fast dynamics is then defined as the uniformly stable manifold of (1.1) relative to the
manifold E. Namely, all the fast dynamics converge exponentially fast to some equilibrium in E.

We also assume that

3. the singular hypersurface {U : ζ(U) = 0} is invariant for (1.5).

As a consequence of the above assumptions, it turns out that equation (1.1) restricted on the manifold of
the slow dynamics is nonsingular and hence it can be extended to the hypersurface {U : ζ(U) = 0}. We
then assume that

4. the singular hypersurface {U : ζ(U) = 0} is invariant for the solutions of (1.1) that lie on the manifold
of the slow dynamics.

We can now define a center manifold of (1.1) as a center manifold of the equilibrium Ū of the system reduced
on the manifold of slow dynamics, see Theorem 4.1 (it turns out that Ū is indeed an equilibrium point for
that system). One can show that property (P) is satisfied on any center manifold and that the losses of
regularity are ruled out. Here by loss of regularity we mean the blows up or discontinuities in the first
derivative that were mentioned before and that may be exhibited by the solutions of (1.1) as shown by
examples (2.12) and (2.17) in Section 2.

To extend to the case of the singular ODE (1.1) the definition of center-stable and uniformly stable
manifold we need some more work. As mentioned before, due to assumption 2, there exists a manifold of
equilibria transversal to the singular hypersurface: we denoted this manifold by E. To define the uniformly
stable manifold of (1.1) relative to E we need to study the solutions of (1.1) which converges to a point
in E with exponential speed. Note that this speed can be either bounded or unbounded as ζ → 0, so we
are looking for a composition of both fast and slow dynamics. Roughly speaking, to define a center-stable
manifold we have to study orbits that are local solutions of (1.1) and that do not blow too fast when t→ +∞.
Therefore, we have to deal again with a composition of slow and fast dynamics.
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Figure 1: An illustration of Assumptions 1,. . . , 4 and of the statement of Theorem 1.1: the bold line represent
the manifold E, which is transversal to the singular hypersurface {U : ζ(U) = 0} and is entirely made by
equilibria: note that E ⊆ Mc. The dashed line represents the intersection between the center manifold Mc

and the singular hypersurface. Such an intersection is entirely made by equilibria by Assumption 1. Finally,
Ms is the uniformly stable manifold, containing orbits that converge exponentially fast to a point in E.

E

Mc

Ms

Ū

{U : ζ(U) = 0}

In both cases (uniformly stable and center-stable manifold) the analysis can be seen as an extension of
the exponential splitting methods for non singular ODEs like (1.4). However, as mentioned before what a
priori can go wrong is that in the change of time scale defined by the Cauchy problem (1.6) some regularity
is missing. The main result of this paper is the following (a more precise statement is given in Theorem 4.2):

Theorem 1.1. There is a sufficiently small constant δ > 0 such that the following holds. In the ball of
center Ū and of radius δ in R

N one can define two continuously differentiable manifolds Ms and Mcs which
are both locally invariant for (1.1) and enjoy the following properties.

• Ms, is the uniformly stable manifold of (1.1) relative to E, while Mcs is a center-stable manifold for
(1.1). In particular, Ms ⊆ Mcs.

• If U is a solution satisfying ζ
(

U(0)
)

6= 0 and lying on either Ms or Mcs, the Cauchy problem (1.6)
defines a diffeomorphism τ : [0, +∞[→ [0, +∞[. In other words, if we restrict to either Ms or Mcs,
then the formulations (1.1) and (1.5) are equivalent, provided that ζ

(

U(0)
)

6= 0. In particular, property
(P) is satisfied on both Ms and Mcs.

• If U(τ) is a solution lying on either Ms or Mcs, then it can be decomposed as

U(τ) = Uf(τ) + Usl(τ) + Up(τ), (1.7)

where Usl lies on the manifold of slow dynamics and Uf (τ) lies on a suitable invariant manifold of
exponentially decreasing orbits. The perturbation term Up(τ) is small in the sense that

|Up(τ)| ≤ kp

∣

∣ζ
(

U (0)
)∣

∣

∣

∣Uf (0)
∣

∣e−cτ/4

for suitable positive constants c, kp > 0.
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From the technical point of view, the key points in the proof of Theorem 1.1 are the following two. First,
we introduce a change of variables which allows us to write system (1.5) in a more convenient form. The
precise statement is given in Proposition 4.1.

The second main point in the proof of Theorem 1.1 is the analysis of a family of slaving manifolds for
system (1.5). This analysis relies on the presence of a splitting based on exponential decay estimates and
it is in the spirit of the above-mentioned Hadamard Perron Theorem. The main results here are Theorem
3.1 and Proposition 3.1. Loosely speaking, Proposition 3.1 tells us the following. Fix a manifold S, locally
invariant for (1.5) and entirely made by slow dynamics. Then there exists a slaving manifold containing
orbits that decay to an orbit in S exponentially fast, with respect to the τ variable. Also, Proposition 3.1
ensures that any solution U lying on the slaving manifold admits a decomposition like (1.7), namely

U(τ) = Uf (τ) + Usl(τ) + Up(τ)

where Usl lies on S and Uf(τ) is exponentially decreasing to ~0. The perturbation term Up(τ) is small and
vanishes when ζ(U) = 0, so on the singular hypersurface {U : ζ(U) = 0} there is no interaction, but
a complete decoupling. Notwithstanding that in the following we need only the case when ζ(U) = 0, in
the statement of Proposition 3.1 we actually consider slightly more general conditions ensuring that the
interaction term vanishes. From the technical point of view, the most complicated point in the analysis is
proof of the C1 regularity of the slaving manifold, since it involves studying the Frechét differentiability of
suitable maps between Banach spaces.

As a final remark, we point out that an application of our analysis concerns the study of the viscous
profiles with small total variation for a class of mixed hyperbolic-parabolic systems in one space dimension.
The connection between these viscous profiles and the singular ordinary differential equation (1.1) is discussed
in [5], where we also explain what we mean by viscous profiles and by mixed hyperbolic-parabolic systems
in this context. In [5] we also discuss a remark due to Fréderic Rousset [15] about the Lagrangian and
the Eulerian formulation of the Navier Stokes equation. Loosely speaking, the connection between viscous
profiles and singular ODEs like (1.1) is that the equation satisfied by the viscous profiles may be singular
when the system does not satisfy a condition of block linear degeneracy defined in [6]. In particular, this
happens in the case of the Navier Stokes equation written in Eulerian coordinates. As we see in Section
2.1.1, the analysis developed in the present paper applies to the study of the viscous profiles of the Navier
Stokes.

We recall that viscous profiles provide useful information when studying the parabolic approximation
of an hyperbolic system of conservation laws and that in several interesting situations one is concerned
with viscous profiles lying on a center, a center-stable or on the uniformly stable manifold. The literature
concerning these topics is extremely wide and here we just refer to the books by Dafermos [7] and by Serre
[17] and to the rich bibliography contained therein. For the applications of the viscous profiles to the study of
the parabolic approximation of an hyperbolic system, see for example Bianchini and Bressan [4] and Ancona
and Bianchini [2]. Concerning the analysis of viscous profiles, we only refer to Benzoni-Gavage, Rousset,
Serre and Zumbrun [3], to Liu [14], to Zumbrun [19], and to the references therein. For an alternative
approach to the analysis of the viscous profiles of the compressible Navier Stokes equation, see Wagner [18]
and the bibliography in there.

The exposition is organized as follows. In Section 1.1 we discuss a linear system: this allows us to
introduce in a simplified context the main ideas of the analysis done in Section 4. In Section 1.1 we also
outline the main steps of the extension of the analysis to the general nonlinear case by relying on the analogy
with the linear case.

In Section 2 we define our hypotheses and in Section 2.1.1 we show that they are satisfied by the viscous
profiles of the compressible Navier Stokes equation. Also, in Section 2.2 we discuss two examples showing
that, if our hypotheses are not satisfied, then the first derivative dU/dt of a solution U of (1.1) may blow up
in finite time.

In Section 3 we introduce preliminary results that are used in Section 4. In particular, in Section 3 we
focus on the analysis of the nonsingular ODE (1.4) and, by relying on suitable assumptions, we define a class
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of invariant manifolds (Theorem 3.1 and Proposition 3.1).
In Section 4 we get back to the singular ODE (1.1). In particular, in Section 4.2 we define the notions

of slow and fast dynamic and we extend the definition of center manifold to the case of the singular ODE
(1.1). In Section 4.3 we extend the notions of uniformly stable and center-stable manifold by applying the
analysis in Section 3: the main result here is Theorem 4.2. Finally, Section 4.4 is devoted to the proof of
Proposition 4.1, a technical result which reduces our system to a more convenient form.

1.1 The linear system

In the first part of this section we discuss the linear system
{

dV/dt = AsV/ζ +AnsV V ∈ R
d

dζ/dt = 0.
(1.8)

We are interested in the behavior for ζ → 0+ (the analysis of the limit ζ → 0− does not involve additional
difficulties). Note that, from the second line in (1.8) we deduce that ζ is a parameter and hence the problem
can be tackled by relying on by-now standard techniques in singular perturbation theory. Our goal here is
introducing in a simplified context the main steps of the analysis.

In the second part of this section we outline the extension to the general nonlinear case and we refer to
Section 4 for the detailed exposition. In view of this extension, we split the analysis of the linear case in four
main steps.

1. We introduce the change of variable τ = t ζ which transforms system (1.8) in

{

dV/dτ = AsV + ζAnsV
dζ/dτ = 0

(1.9)

In the following, we denote by n− the number of eigenvalues of As having strictly negative real part
(each of them counted according to its multiplicity) and by n+ the number of eigenvalues with strictly
positive real part. We denote by n0 the multiplicity of the eigenvalue 0 and, relying on Assumption 1
in the introduction, we assume that there are no purely imaginary eigenvalues. Also, if we write the
Jordan form of As, then in the block corresponding to the eigenvalue 0 all the entries are 0. Finally,
we denote by E the line

E :=
{

(V, ζ) : V = ~0
}

⊆ R
d+1, (1.10)

which satisfies Assumption 2.

2. We now let ζ → 0+: we are concerned with the behavior of the eigenvalues of the matrix As + ζAns.
Due to results concerning the perturbation of finite-dimensional linear operators (see for example the
book by Kato [12], page 64 and followings), these eigenvalues can be classified as follows:

(a) n− eigenvalues converge to the eigenvalues of As with strictly negative real part. We denote by
M−(ζ) the eigenspace of As + ζAns associated to these eigenvalues.

(b) n+ eigenvalues converge to the eigenvalues of As with strictly positive real part. We denote by
M+(ζ) the eigenspace of As + ζAns associated to these eigenvalues.

(c) the remaining n0 eigenvalues converge to 0 as ζ → 0+. We denote by M0(ζ) the eigenspace of
As + ζAns associated to these eigenvalues.

When ζ → 0+, the subspace M−(ζ) converges to M−(0), which is the eigenspace of As associated to
eigenvalues with strictly negative real part. The convergence occurs in the following sense: M−(ζ) is
the range of a linear application P−(ζ) ∈ L(Rd, R

d). As ζ → 0+, P−(ζ) converges to P−(0) and the
range of P−(0) is exactly M−(0). Similarly, when ζ → 0+, the subspaces M+(ζ) and M0(ζ) converge
respectively to M+(0) and M0(0), the eigenspaces of As associated to the eigenvalues with strictly
positive and zero real part. We refer again to Kato [12] for a complete discussion.
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If V ∈M0(ζ), then (1.9) is equivalent to

{

dV 0/dτ = ζ
[

L0AnsR0 + ζO(1)
]

V 0

dζ/dτ = 0,

where R0 and L0 are two matrices that do not depend on ζ. The matrix R0 has dimension N ×n0 and
its columns constitute a basis of M0(0). The matrix L0 is n0×N -dimensional and satisfies L0R0 = In0

.
Also, V 0 = L0V and O(1) denotes an n0 × n0-dimensional matrix, which possibly depends on ζ but
remains bounded as ζ → 0+ (its exact expression is not relevant here). Going back to the original
variable t, one gets

{

dV 0/dt =
[

L0AnsR0 + ζO(1)
]

V 0

dζ/dt = 0,
(1.11)

and hence V 0 can be regarded as a slow dynamic, because it satisfies the non singular ODE (1.11). In
view of the future extension to the general nonlinear case, we point out that the set

Msl :=
{

(V, ζ) : V ∈M0(ζ)
}

⊆ R
d+1 (1.12)

is a center manifold of system (1.9).

3. We now consider the case when V belongs to M−(ζ). We then have that (1.9) is equivalent to

{

dV −/dτ =
[

A−
s + ζO(1)

]

V −

dζ/dτ = 0

where V − ∈ R
n
− and A−

s is a n− × n−-dimensional matrix which does not depend on ζ and whose
eigenvalues have all strictly negative real part. In the previous equation, the entries of the vector V − are
the coordinates of V with respect to a basis of M−(ζ) and O(1) denotes a n−×n−-dimensional matrix
which possibly depends on ζ but remains bounded as ζ → 0+ (its exact expression is not important
here). If ζ is sufficiently small, then all the eigenvalues of the matrix

[

As+ζO(1)
]

have strictly negative

real part and hence the solution V −(τ) converges exponentially fast to ~0. More precisely, one has

|V −(τ)| ≤ e−cτ/2|V −(0)|,

where c > 0 satisfies −c > λ for every λ eigenvalue of As. Going back to the original variable t, the
function V −(t) satisfies

|V −(t)| ≤ e−ct/2ζ|V −(0)|.

and hence the speed of exponential decay gets faster and faster as ζ → 0+. In this sense, we can regard
V − as a fast dynamic.

In view of the future extension to the general nonlinear case, we point out that the set

Mf :=
{

(V, ζ) : V ∈M−(ζ)
}

⊆ R
d+1 (1.13)

is the uniformly stable manifold of system (1.9) relative to the manifold E defined as in (1.10). In the
previous expression, ζ varies in a sufficiently small neighborhood of 0.

4. By applying the above-mentioned techniques from [12], one gets that the eigenvalues of L0AnsR0 +
ζO(1) can be divided into 3 groups:

(a) eigenvalues that converge to the eigenvalues of L0AnsR0 with strictly negative real part. We
denote by M0−(ζ) the corresponding eigenspace.

(b) eigenvalues that converge to the eigenvalues of L0AnsR0 with strictly positive real part. We
denote by M0+(ζ) the corresponding eigenspace.
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(c) eigenvalues that converge to the eigenvalues of L0AnsR0 with zero part. We denote by M00(ζ)
the corresponding eigenspace.

If V (t) ∈M0−(ζ), then V (t) converges exponentially fast to the equilibrium ~0 when t→ +∞, but the
speed of exponential decay does not blow up as ζ → 0+.

In view of the future extension to the general nonlinear case we point out that the set

Ms :=
{

(V, ζ) : V ∈M−(ζ) ⊕M0−(ζ)
}

(1.14)

can be regarded as an uniformly stable space of (1.8) since every orbit lying on M s decays exponentially
fast to an equilibrium (~0, ζ). Also, the speed of exponential decay is uniformly bounded from below by
a constant which does not depend on ζ.

Conversely, the set
M00 :=

{

(V, ζ) : V ∈M00(ζ)
}

(1.15)

can be regarded as a center manifold of the original equation (1.8). Note that, by construction, the
manifold M00 is entirely contained in the manifold of the slow dynamics Msl, which is defined as
in (1.12). As a consequence, if the function (V (t), ζ(t)) lies on M00, then it satisfies the nonsingular
equation (1.11).

In Section 4 we extend the previous considerations from the linear system (1.8) to the general nonlinear
case (1.1). We proceed in four steps, which can be respectively viewed as the extensions of steps 1,. . . ,4
above.

1. We introduce the change of variables τ(t) defined by the Cauchy problem (1.6), which transforms
system (1.1) into (1.5). However, in the nonlinear case the change of variable is not a priori well
defined since the function ζ[U(t)] could in principle attain the value 0. We proceed as follows: as in
the linear case we carry on the analysis by referring to system (1.5) and then we show that a posteriori
the change of variables (1.6) is well defined.

2. In Section 4.2 we define a manifold of the slow dynamics as a center manifold of (1.5), thus extending
definition (1.12). By relying on Assumption 2 we can show that, as in the linear case, system (1.1)
restricted to the manifold of the slow dynamics is actually nonsingular. Moreover, by using Assumption
4 one can prove that on the manifold of the slow dynamics the change of variable (1.6) is well defined
and hence that (1.1) and (1.5) are equivalent.

3. In Section 4.2 we also extend the definition of fast dynamic given by (1.13). Let E be the one-
dimensional manifold transversal to the hypersurface {U : ζ(U) = 0} and containing only equilibria.
The existence of E is provided by Assumption 1. The manifold of the fast dynamic is then the uniformly
stable manifold of the system (1.5) relative to the manifold E.

4. As pointed out in Step 2 above, system (1.6) restricted to the manifold of the slow dynamics is actually
nonsingular and hence we can define a center manifold M00 of the equilibrium point Ū . In this way
we obtain an extension of the definition (1.15).

The extension of the definition of uniformly stable manifold (1.14), done in Section 4.3, is more technical
and requires additional work. In particular, this is when the analysis in Section 3 comes into play. The
main result here is Theorem 4.2, which provides the existence of a uniformly stable manifold Ms. One
of the most delicate point in the analysis is showing that on Ms the change of variables (1.6) is well
defined and hence that system (1.5) is equivalent to system (1.1). The manifold Ms contains orbits
that decay exponentially fast (in the t variable) to an equilibrium point in E and hence can be viewed
as an extension of the object defined in (1.14). In the linear case (1.14), any orbit lying on Ms can be
decomposed as

(V, ζ) = (Vf , 0) + (Vs, ζ),

where Vf ∈ M−(ζ) and hence Vf is exponentially decreasing in both the τ and the t variable. Con-
versely, (Vs, ζ) lies on the manifold of the slow dynamics (1.12) and Vs, which belongs to ∈ M0−(ζ),
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is exponentially decreasing in the t variable only. By relying on the analysis in Section 3 we get that
this decomposition result can be extended to the general nonlinear case, provided that we add a per-
turbation term taking into account possible interactions due to the nonlinearity: this is property 5 in
the statement of Theorem 4.2. In particular, we show that the perturbation term is small with respect
to the other two, in the sense specified by equation (4.12).

Also, Theorem 4.2 describe how the notion of center-stable manifold can be extended to the case of
the singular equation (1.5) by defining a manifold Mcs which contains orbit that do not experience a
fast blow up as t → 0+. We show that on Mcs system (1.5) is equivalent to system (1.1) and that a
decomposition result similar to the previous one holds.

Remark 1.1. We are now able to provide more details concerning the main analogies between our analysis
and Fenichel’s (see [8, 9, 10] and the lecture notes by Jones [11]). Indeed, despite some technical differences,
we can single out three main ideas due to Fenichel and used in the present work.

1. As previously mentioned, the notions of slow and fast dynamic can be viewed as extensions of the
notions of slow and fast time scale respectively. In particular, Step 2 above should be related to
Fenichel’s First Invariant Manifold Theorem (see Jones [11, page 49]).

2. A key point in Fenichel’s analysis is the study of the interaction of slow and fast time scales via the
construction of suitable slaving manifolds (see Jones [11, Chapters 2 and 3]). As the above outline
shows, this idea is used several times in the present paper, in particular the manifold of the fast
dynamics itself is defined as a slaving manifold.

3. Last, Proposition 4.1 can be viewed as an extension of Fenichel’s Normal Form (see Jones [11, page
82]). Indeed, in both cases the idea is introducing a local change of variables that “straightens” the
manifolds under consideration and allows to write the equations in a more convenient form.

As we mentioned at the beginning of Section 1, the main difference between our analysis and Fenichel’s is
that we are concerned with the case when dζ/dt 6= 0. Hence, a priori we may have that ζ(U) 6= 0 at t = 0,
but ζ reaches the singular hypersurface {U : ζ(U) = 0} in finite time. Part of the analysis in Section 4
is devoted to show that, under the assumptions discussed in Section 2, this behavior does not occur if we
restrict to solutions U lying on suitable invariant manifolds.

2 Hypotheses and examples

In this section we define the hypotheses we assume in the work and we discuss some examples.
More precisely, in Section 2.1 we state our assumptions, which can be divided into two groups: Hypotheses

1, 2, 3, allow to avoid some technical complications, but could be actually omitted at the price of much heavier
notations. On the other side, Hypotheses 4, 5, 6, 7, 8 are much more important and they are used throughout
Section 4. Note, however, that in Section 3 we are not directly concerned with the singular ODE (1.1) and
that we do not use Hypotheses 4, 5, 6, 7, 8.

Moreover, in Section 2.2 we discuss three counterexamples. They show that, if our hypotheses are
violated, then the results discussed in the following sections do not hold. In particular, there might be
solutions of (1.1) that are not continuously differentiable.

Finally, in Section 2.1.1 we verify that the conditions introduced in Section 2.1 are satisfied by the viscous
profiles of the compressible Navier Stokes equation written in Eulerian coordinates.

2.1 Hypotheses

Set
F (U) = φs(U) + ζ(U)φns(U), (2.1)

where φs, φns and ζ are the same as in (1.1). Then (1.5) can be written as

dU

dτ
= F (U) (2.2)

9



To simplify the exposition, we assume the following:

Hypothesis 1. The initial datum U(0) of (2.2) satisfies ζ
(

U(0)
)

> 0.

The case ζ
(

U(0)
)

< 0 does not involve additional difficulties. The main difference is that, if ζ
(

U(0)
)

< 0,
then the change of variable defined by (1.6) has negative derivative. As a consequence, when t → +∞ the
function τ(t) → −∞. Loosely speaking, the statements given in the present paper can be extended to the
case ζ

(

U(0)
)

< 0 in the following way. All the statements concerning the fast dynamics and referring to the
stable space or to stable-like manifolds have to be replaced by analogous statements concerning the unstable
space or unstable-like manifolds. However, we will not consider the case ζ

(

U(0)
)

< 0 explicitly.
Before stating the other hypotheses, we recall that we want to study (1.1) and (2.2) in the neighbourhood

of an equilibrium point Ū such that F (Ū) = ~0 and ζ(Ū ) = 0. It is not restrictive to take Ū = ~0. Namely, in
the following we assume

F (~0) = ~0 ζ(~0) = 0. (2.3)

Also, we can assume the following. Fix a positive constant δ > 0 and consider a smooth cut-off function
ρ(U) satisfying

ρ(U) =

{

1 |U | ≤ δ
0 |U | ≥ 2δ.

In the following, instead of studying system (2.2) we focus on

dU

dτ
= ρ(U)F (U).

However, to simplify the notations instead of writing each time ρ(U)F (U) we assume that Hypothesis 2
holds.

Hypothesis 2. The function F satisfies the following condition: if |U | ≥ 2δ then F (U) = ~0.

The exact size of the constant δ will be discussed in the following.
Note that Hypothesis 2 is not restrictive if the goal is to study the solutions of (2.2) that remain confined

in a neighbourhood of the origin of size δ. Loosely speaking, the analysis developed in Sections 3 and 4 can be
extended to the orbits of systems that violate Hypothesis 2 as far as these orbits remain in a neighbourhood
of the origin with size δ. In particular, the manifold described in Sections 3 and 4 are no more invariant if
Hypothesis 2 is violated: they are just locally invariant.

Also, we can assume with no loss of generality that all the eigenvalues of DF (~0) have non positive real
part. Indeed, this condition is satisfied provided that we restrict to orbits lying on a center-stable manifold
for (2.2). As mentioned in the introduction, the existence of a center-stable manifold can be obtained as a
consequence of the Hadamard Perron Theorem, which is discussed in the book by Katok and Hasselblatt
[13, Chapter 6, page 242]. Also, note that if ζ

(

U(0)
)

< 0 then it is not restrictive to assume that all the

eigenvalues of DF (~0) have non negative real part: this can be obtained considering the solutions that lie on
a center unstable manifold.

Hypothesis 3. The Jacobian DF (~0) admits only eigenvalues with non positive real part.

Also, we assume the following non degeneracy condition:

Hypothesis 4. The gradient ∇ζ satisfies ∇ζ(~0) 6= ~0.

Let S be the singular set
S :=

{

U : ζ(U) = 0
}

. (2.4)

Hypothesis 4 implies, via the Implicit Function Theorem, that in a small enough neighbourhood of ~0 the set
S is actually an hypersurface

Hypothesis 5. Let Mc be any center manifold of the equilibrium point ~0 for system (2.2). If |U | ≤ δ and
U belongs to the intersection Mc ∩ S , then U is an equilibrium for (2.2), namely F (U) = ~0 .

10



Concerning equilibria, we also assume the following

Hypothesis 6. There exists a manifold Meq containing ~0, transversal to S and entirely made by equilibria
of (2.2).

Let neq be the dimension of Meq. We recall that the hypersurface S and Meq are transversal if the
intersection S∩Meq is locally a manifold having dimension neq −1. Note that, by construction, Meq ⊆ Mc.
Also, we point out that we are not assuming that Meq is the manifold of equilibria, namely there may be
equilibria that do not belong to Meq. We are just assuming that any point in Meq is an equilibrium for (2.2).

Hypothesis 7. For every U ∈ S,
∇ζ(U) · F (U) = 0. (2.5)

Because of Hypothesis 7 and of the regularity of the functions ζ and F , the function

G(U) =
∇ζ(U) · F (U)

ζ(U)

can be extended and defined by continuity on the hypersurface S.

Hypothesis 8. Let U ∈ S be an equilibrium for (2.2), namely ζ(U) = 0 and F (U) = ~0. Then

G(U) = 0. (2.6)

In Section 1.1 we introduce the notion of slow and fast dynamics. Hypotheses 7 and 8 and can be
then reformulated by saying that the set S is invariant for the manifold of the slow and of the fast dy-
namics respectively. The reason why we impose this condition is because we want that requirement (P) in
the introduction is satisfied and that the Cauchy problem (1.6) defines a smooth change of variables τ(t),
τ : [0,+∞[→ [0,+∞[. In Section 2.2 we discuss Examples (2.12) and (2.17) showing that, if either Hypoth-
esis 7 or Hypothesis 8 is violated, then there may be functions U solving (2.2) such that ζ(U) is nonzero at
t = 0 but ζ

(

U(t)
)

= 0 for a finite value of t. Also, in both Examples (2.12) and (2.17) the solution U is not
smooth and the Cauchy problem (1.6) does not define a regular change of variables

Remark 2.1. Consider system (1.1) and assume that f(U) is a regular, real valued function such that
f(~0) > 0. Clearly, (1.1) is equivalent to

dU

dt
=

1

ζ(U)f(U)
φs(U)f(U) + φns(U) (2.7)

and ζ(U)f(U) → 0+ if and only if ζ(U) → 0+, at least in a sufficiently small neighbourhood of U = ~0. By
direct check, one can verify that Hypotheses 1 . . . 8 are verified by the pair (ζ, F ) if and only if they are
verified by the pair (ζf, Ff).

Remark 2.2. As we will see in Section 4, Hypothesis 5 can be reformulated by saying that the slow dynamics
intersecting the singular manifold {U : ζ(U) = 0} are equilibria for system (2.2). Heuristically, this means
that we require that the limit as ζ

(

U(0)
)

→ 0+ of a solution of (1.1) is a solution of the limit system. In
other words, we want to rule out the possibility of a relaxation effect.

2.1.1 The case of the compressible Navier Stokes in Eulerian coordinates

In this section we show that Hypotheses 1, 3, . . . , 8 are satisfied by the ODE for the viscous profiles of the
compressible Navier Stokes equation written in Eulerian coordinates. Also, Hypothesis 2 is not restrictive if
the goal is to study the viscous profiles entirely contained in a small neighbourhood of an equilibrium point.

The case of the Navier Stokes written in Lagrangian coordinates was already discussed in several paper,
see for example Rousset [16]. When the equation is formulated by using Lagrangian coordinates, the ODE
satisfied by the viscous profiles is not singular.
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The compressible Navier Stokes written in Eulerian coordinates is















ρt + (ρv)x = 0

(ρv)t +
(

ρv2 + p
)

x
=
(

νvx

)

x
(

ρe+ ρ
v2

2

)

t
+
(

v
[1

2
ρv2 + ρe+ p

])

x
=
(

kθx + νvvx

)

x
.

(2.8)

Here, the unknowns are ρ(t, x), v(t, x) and θ(t, x). The function ρ represents the density of the fluid, v is
the velocity of the particles in the fluid and θ is the absolute temperature. The function p = p(ρ, θ) > 0 is
the pressure and satisfies pρ > 0, while e represent the internal energy. In the case of a polytropic gas, the
following relation holds: θ = e(γ− 1)/R, R being the universal gas constant and γ a constant specific of the
gas. Finally, ν(ρ) > 0 and k(ρ) > 0 represent the viscosity and the heat conduction coefficients respectively.

After some manipulations (see [5] for details), one gets that the equation satisfied by the steady solutions
of the compressible Navier Stokes can be written in the form

dU

dx
=

1

ζ(U)
F (U)

provided that U =
(

ρ, v, θ, ~z
)T

, ζ(U) = v and

F (U) =







At
21~z/a11

v ~z

b−1
[

A22v − A21A
T
21/a11

]

~z






(2.9)

The equation satisfied by the traveling waves of the compressible Navier Stokes equation in one space variable
is similar, the only difference being that the singular value is v = σ, where σ is the speed of the traveling
wave.

In (2.9),

A21(ρ, v, θ, ~z) =
1

θ

(

pρ

0

)

(2.10)

and At
21 denotes its transpose, while ~z =

(

vx, θx

)t
. The function a11 is real valued and strictly positive if ρ

is bounded away from 0, which we always assume in the following. The matrix b has dimension 2 × 2 and
all its eigenvalues have strictly positive real part (the exact expression is not important here). Finally,

A22(ρ, v, θ, ~z) =
1

θ

(

ρv − ν′ρx pθ

pθ − νvx/θ ρveθ/θ − k′ρx/θ

)

. (2.11)

Note that any point Ū = (ρ̄, v = 0, θ̄, ~z = ~0) satisfies F (Ū) = ~0, ζ(Ū) = 0. Also, the matrix A22 depends on
ρx but, plugging ρx = −AT

21~z/(a11v) into (2.11), one gets that A22v evaluated at a point (ρ, v = 0, θ, ~z = ~0)
is the null matrix. Thus, the Jacobian DF satisfies

DF (ρ̄, 0, θ̄,~0) =













0 −AT
21/a11

~0 02

~0 −b−1A21A
T
21/a11













,

where 02 denotes the 2 × 2 null matrix. Since A21A
T
21/a11 admits only eigenvalues with non negative real

part, then DF admits only eigenvalues with non positive real part and hence Hypothesis 3 is satisfied.
Hypothesis 4 is satisfied since ζ(U) = v, while to verify that Hypotheses 5, . . . , 8 are satisfied we first

point out that the center space of DF is

{

(ρ, v, θ, ~z) : AT
21(ρ̄, 0, θ̄,~0)~z = 0

}
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Hence, any center manifold Mc has dimension 4 since AT
21 is given by (2.10) and pρ > 0. Also, Mc is

transversal to the singular hyperplane S = {v = 0} and hence the intersection S ∩ Mc has dimension 3.
Note that, by the Implicit Function Theorem, the set

{

(ρ, v, θ, ~z) : v = 0, AT
21(ρ, 0, θ, ~z)~z = 0

}

is locally a three-dimensional manifold included in S ∩Mc. Since this manifold and S ∩Mc have the same
dimension, they must locally coincide and hence Hypothesis 5 is satisfied.

We can verify Hypothesis 6 by defining

Meq =
{

(ρ, v, θ, ~z) : ρ = ρ̄, θ = θ̄, ~z = ~0
}

.

Since ∇ζ(U) · F (U) = vz1, z1 being the first component of ~z, then Hypothesis 7 is satisfied. To verify
Hypothesis 8, we observe that by relying on (2.10) one deduces that when v = 0 the equilibria of F must
satisfy p2

ρz1 = 0, which implies z1 = 0.
In conclusion, we have that the analysis developed in the present paper applies to the study of the viscous

profiles with small total variation of the Navier Stokes equation written in Eulerian coordinates.

2.2 Examples

2.2.1 Example (2.12)

Example (2.12) deals with a system which satisfies Hypotheses 1, 3 . . . 6, but does not satisfy Hypothesis 7.
We exhibit a solution of this system which has a blow up in the first derivative and hence it is not contin-
uously differentiable. The loss of regularity experienced in Example (2.12) regards a solution U such that
ζ[U(0)] 6= 0, but ζ(U) reaches the value 0 for a finite value of t.

Consider the system
{

du1/dt = −u2/u1

du2/dt = −u2,
(2.12)

which can be written in the form (1.1) provided that U =
(

u1, u2

)T
, ζ(U) = u1 and

φs(U) =

(

−u2

0

)

φns(U) =

(

0
−u2

)

.

In this case, the function F (U) defined by (2.1) is

F (U) =

(

−u2

−u2u1

)

.

By direct check, one can verify that Hypotheses 1 . . . 6 and Hypothesis 8 are satisfied by (2.12). On the
other side, Hypothesis 7 is not verified in this case. Indeed, the singular hypersurface S defined by (2.4) is
in this case the line {u1 = 0} and

∇ζ · F = −u2

is in general different from 0 on S.
The solution of (2.12) can be explicitly computed and it is given by











u1(t) =
√

u1(0) + u2(0)
(

e−t − 1
)

u2(t) = u2(0)e−t

(2.13)

Choosing u2(0) > u1(0) > 0, one has that the solution u1(t) can reach the value 0 for a finite t. Note that
at that point t the first derivative du1/dt blows up: thus, the solution (2.13) of (2.12) is not C1.

13



2.2.2 Example (2.14)

Example (2.2.2) deals with system (2.14), which is apparently very similar to (2.12). However, in the case of
(2.14) Hypotheses 1, 3 . . . 8 are all verified. We show the solutions of (2.14) are regular. Also, if ζ[U(0)] 6= 0
then ζ[U(t)] 6= 0 for all values of t.

Consider system
{

du1/dt = −u2

du2/dt = −u2/u1,
(2.14)

which can be written in the form (1.1) provided U =
(

u1, u2

)T
, ζ(U) = u1 and

φs(U) =

(

0
−u2

)

φns(U) =

(

−u2

0

)

.

Then the function F (U) defined by (2.1) is

F (U) =

(

−u2u1

−u2

)

.

By direct check, one can verify that Hypotheses 1 . . . 8 are all verified in this case.
To study system (2.14) we can proceed as follows. From (2.14) we have

du1/dt

u1
= −

u2

u1
= du2/dt

and hence

ln

[

u1(t)

u1(0)

]

= u2(t) − u2(0).

Eventually, we obtain
u1(t) = u1(0)eu2(t)−u2(0). (2.15)

Choose u1(0) > 0. To prove that u1(t) 6= 0 for all t it is enough to show that u2(t) is well defined (and in
particular finite) for every t > 0. In the following we also prove that u2(t) is also C∞ for every t ≥ 0. This
guarantees that no loss of regularity occurs.

Plugging (2.15) into the second line of (2.14) we get

du2/dt = −
u2

u1(0)
eu2(0)−u2(t). (2.16)

Note that u2 = 0 is an equilibrium for (2.16). Also, if u2(0) < 0 then du2/dt ≥ 0 and hence u2(0) ≤ u2(t) < 0
for every t. Conversely, if u2(0) > 0 then du2/dt ≤ 0 and hence 0 ≤ u2(t) < u2(0) for every t. In both cases,
we get that u2(t) is well defined and regular for every t ≥ 0.

2.2.3 Example (2.17)

With Example (2.2.3) we discuss a system which satisfies Hypotheses 1, 3 . . . 7, but does not satisfy
Hypothesis 8. As in Example (2.12), we exhibit a solution for which ζ[U(0)] 6= 0, but ζ(U) reaches the value
0 for a finite value of t. When this happens, a loss of regularity occurs.

We consider system






du1/dt = −u3

du2/dt = −u2/u1

du3/dt = −u3,
(2.17)

which takes the form (1.1) provided that we set U =
(

u1, u2, u3

)T

, ζ(U) = u1 and

φs(U) =





0
−u2

0



 φns(U) =





−u3

0
−u3



 .
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The function F (U) defined by (2.1) is then

F (U) =





−u3u1

−u2

−u3u1



 .

By direct check, one can verify that Hypotheses 1 . . . 7 are verified by (2.17). On the other side, Hypothesis
8 is not satisfied in this case. Indeed, the hypersurface S = {U : ζ(U) = 0} is the plane {u1 = 0}. Thus,
the set of points such that ζ(U) = 0 and F (U) = ~0 is {u1 = u2 = 0} and

∇ζ ·DF ·
(

∇ζ
)T

= −u3

is in general different from zero on this line.
An explicit solution of (2.17) can be obtained as follows. From the third and the first equation we get

respectively

u3(t) = u3(0)e−t

u1(t) = u1(0) − u3(0) + u3(0)e−t.

Assume that u3(0) = Au1(0) for some constant A whose exact value is determined in the following. The
equation satisfied by u2 becomes

du2

dt
= −

u2

Au1(0)e−t + u1(0)(1 −A)
.

Thus, we obtain
d

dt

[

ln
(

u2(t)
)]

=
1

u1(0)(A− 1)

d

dt

[

ln
(

u1(0)(1 −A)et +Au1(0)
)]

and hence

u2(t) = B
[

(1 −A)et +A
]

1

(A− 1)u1(0)

for a suitable constant B. If (A− 1)u1(0) > 1, then the first derivative du2/dt blows up at t = ln(A/A− 1).
Note that this is exactly the value of t at which u1(t) attains 0.

In general, for every u1(0) > 0 if 1/(A − 1)u1(0) is not a natural number, then the solution is not in
Cm for m = [1/(A − 1)u1(0)] + 1. Here [1/(A − 1)u1(0)] denotes the entire part. Thus, we have a loss of
regularity in higher derivatives.

3 Uniformly stable manifolds

In the present section we investigate the existence and the structure of suitably invariant manifolds for
system (2.2). The precise statement is given in Proposition 3.1.

This is the most technical section of the paper and its goal is furnishing the tools that are then applied
in Section 4 to the analysis of the singular ODE (1.1). From the technical point of view, the main result in
here is Theorem 3.1, which allows to prove Proposition 3.1. By relying on Proposition 3.1, in Section 4 we
extend to the general nonlinear case the results discussed in Section 1.1 in the linear case.

In this section we rely on Hypotheses 2 and 3, but we do not use Hypotheses 1, 4,. . . , 8. Conversely, in
Section 4 we use all the hypotheses introduced in Section 2.1.
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3.1 Notations and preliminary results

3.1.1 Fréchet differentiability of the fixed point of a family of maps

In the following we rely on the Implicit Function Theorem to study the regularity of the fixed points of a
family of maps depending on a parameter. For the convenience of the reader we now discuss the abstract
framework we use in Section 3.3 and we state in Lemma 3.1 the precise regularity result we need. For the
definition of Fréchet differential and for a discussion about differential calculus in infinite dimensional Banach
spaces, we refer to the book by Ambrosetti and Prodi [1].

In Section 3.3 we are in the following situation: let X be a closed subset with non empty interior in a
Banach space X̃ and let Y be an open subset of another Banach space Ỹ . We are concerned with a given
map T : X×Y → X̃ and we prove that, for every y ∈ Y , T (·, y) takes values in X and is a strict contraction,
namely there exists some constant k < 1 such that

‖T (x1, y) − T (x2, y)‖X̃ ≤ k‖x1 − x2‖X̃ ∀x1, x2 ∈ X.

By relying on the Contraction Mapping Theorem, we define a function x : Y → X which maps y into the
fixed point of T (·, y).

Lemma 3.1 deals with the regularity of the function x(y). Before stating it, we introduce some notations:
we assume that, for any point (x̄, ȳ) in the interior of X × Y , the function T (·, ȳ) is Fréchet differentiable
at x̄ and we denote by Tx(x̄, ȳ) ∈ L(X̃, X̃) its differential. We also assume that the map T (x̄, ·) is Fréchet
differentiable at ȳ and we denote by Ty(x̄, ȳ) ∈ L(Ỹ , X̃) its differential.

We can now state the regularity result we need in the following.

Lemma 3.1. Assume that the map x(y) is Lipschitz continuous and that the point (x̄, ȳ) is in the interior
of X × Y and satisfies x̄ = x(ȳ). Also, assume that T (x̄, ·) is Fréchet differentiable at ȳ, that the map
T (·, y) is Fréchet differentiable at x for (x, y) in a neighbourhood of (x̄, ȳ) and that the differential Tx(x, y)
is continuous in there. Then the function x is Fréchet differentiable at ȳ and the differential is

[

I − Tx

(

x̄, ȳ
)

]−1

◦ Ty

(

x̄, ȳ
)

, (3.1)

where I denotes the identity.

Note that the map
[

I − Tx

[

x(ȳ), ȳ
]

]

is invertible because T (·, ȳ) is a strict contraction on X .

Remark 3.1. As a matter of fact, in the following we get the Lipschitz continuity of the map x as a
consequence of this condition: for every y1, y2 ∈ Y ,

‖T
(

x(y1), y1
)

− T
(

x(y1), y2
)

‖X ≤ L‖y1 − y2‖Y . (3.2)

This is enough to conclude because

‖x(y1) − x(y2)‖X = ‖T
(

x(y1), y1
)

− T
(

x(y2), y2
)

‖X

≤ ‖T
(

x(y1), y1
)

− T
(

x(y1), y2
)

‖X + ‖T
(

x(y1), y2
)

− T
(

x(y2), y2
)

‖X

≤ L‖y1 − y2‖Y + k‖x(y1) − x(y2)‖X .

Since k < 1, we get that x(y) is Lipschitz continuous.

3.1.2 First change of variables

Consider system (2.2). Let V − be the eigenspace of the Jacobian DF (~0) associated to eigenvalues with
strictly negative real part. Also, let V 0 be the eigenspace associated to the eigenvalues with 0 real part.
Also, fix V0, a center manifold of (2.2) around the equilibrium ~0. Finally, let V− be the stable manifold.
The manifolds V0 and V− are tangent at the origin to V 0 and V − respectively. Note that R

N = V 0 ⊕ V −

because DF (~0) admits only eigenvalues with non positive real part. Due to the Local Invertibility Theorem,
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in a sufficiently small neighbourhood of the origin we can define a local diffeomorphism Υ in such that the
following conditions are satisfied. Let Ũ = Υ(U), then Ũ = (X̃−, X̃0), where X̃0 has the same dimension as
V 0 and X̃− has the same dimension as V −. The stable manifold of (3.3) is the subspace {X̃0 ≡ ~0}, while
the subspace {X̃− ≡ ~0} is a center manifold. By construction,

dŨ

dτ
= f̃(Ū), (3.3)

where f̃(Ũ) = DΥ
(

Υ−1(Ū)
)

F
(

Υ−1(Ū)
)

. In the following, we assume that the constant δ in (2.2) is small
enough to have that the local diffeomorphism Υ is defined in the ball of radius 2δ and center at the origin.
Also, to simplify the notations we do not write Ũ , X̃− and X̄0, but just U , X− and X0.

3.1.3 A priori estimates

We rewrite system (3.3) as
{

dX−/dτ = f−(X−, X0)
dX0/dτ = f0(X−, X0)

(3.4)

The subspaces {X− = ~0} and {X0 = ~0} are locally invariant for (3.4) since they represent respectively a
center and the stable manifold. Thus, f−(~0, X0) ≡ ~0 for every X0 and f0(X−, ~0) ≡ 0 for every X− and

f−(X−, X0) = A−(X−, X0)X− f0(X−, X0) = Â0(X−, X0)X0 (3.5)

for suitable matrices A− and A0. By construction, A−(~0, ~0) admits only eigenvalues with strictly negative
real part and Â0(~0, ~0) has only eigenvalues with zero real part. As a consequence, the following holds. Let
n− denote the dimension of X− and fix a constant c > 0 satisfying Reλ < −c for every λ eigenvalue of
A−(~0, ~0). Then there exists a constant C− > 0 such that

∀X− ∈ R
n
− , |eA−(~0,~0)tX−| ≤ C−e

−ct|X−|. (3.6)

Also, if δ is small enough and |X−(0)| < δ, then the solution of the Cauchy problem

{

dX−/dτ = f−(X−, ~0)
X−(τ = 0) = X−(0)

satisfies
|X−(τ)| ≤ C−e

−cτ/2|X−(0)|,

where c > 0 is as before a constant such that Reλ < −c for every λ eigenvalue of A−(~0, ~0).
Plugging (3.5) in (3.4) we get

{

dX−/dτ = A−(X−, X0)X−

dX0/dτ = Â0(X−, X0)X0.
(3.7)

In view of the applications discussed in Section 4 it is convenient to take into account the following
situation. Assume that there exists a continuously differentiable manifold Z0 containing the stable manifold
{X0 = ~0} and satisfying

f0(X−, X0) = ~0 ∀ (X−, X0) ∈ Z0. (3.8)

Actually, this assumption is not restrictive, in the sense explained in Remark 3.2 at the end of Section 3.1.3.
Applying, if needed, a local diffeomorphism, we can assume that X0 = (ζ, u0) and that Z0 = {ζ = ~0}.

Since the stable manifold is entirely contained in Z0, such a diffeomorphism does not produce any change
on X−, but only on X0. In the following we assume that the constant δ in Hypothesis 2 is small enough to
have that the local diffeomorphism is defined in the ball of radius 2δ and center at the origin.

Consider the system restricted on the center manifold {X− = ~0}: since the subspace {ζ = ~0} is entirely
made by equilibria, then we get that the equation

dX0/dτ = Â0(~0, X0)X0
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becomes
{

dζ/dτ = B̂(~0, ζ, u0)ζ

du0/dτ = Ĉ(~0, ζ, u0)ζ,
(3.9)

where B̂ and Ĉ are suitable matrices. Note that, by construction, B̂(~0, ~0, ~0) admits only eigenvalues with
zero real part. Fix a constant ε such that Reλ < −ε < 0 for any λ eigenvalue of A−(~0, ~0): also, we impose
ε < c, where c is the same as in (3.6). Assuming that the constant δ in Hypothesis 2 is sufficiently small we
can assume that every solution ζ of (3.9) satisfies

|ζ(τ)| ≤ O(1)eε|τ ||ζ(0)| (3.10)

for some suitable constant O(1). Since in (3.9) the matrix Ĉ is uniformly bounded, we get that

|u0(τ) − u0(0)| ≤ O(1)eε|τ ||ζ(0)| (3.11)

for a constant O(1) (possibly different from the one in (3.10)). We introduce the following notation: given
a point X0 = (ζ, u0) on the center manifold we call Y 0 the point

Y 0 = (~0, u0). (3.12)

Clearly Y 0 depends on X0, but to simplify the notations we won’t express this dependence explicitly.
Combining (3.10) and (3.11) we then obtain

|X0(τ) − Y 0(0)| ≤ k0e
ε|τ ||ζ(0)| (3.13)

for a suitable constant k0.
Finally, note that, since both A− and Â are zero when |(X−, X0)| ≥ 2δ, then any non constant solution

of (3.7) satisfies
|X0(τ)| ≤ 2δ |X−(τ)| ≤ 2δ ∀ τ. (3.14)

Remark 3.2. The hypothesis that there exists a manifold of zeroes Z0 is not restrictive. Indeed, assume
that the set of the zeroes of f0 coincides with the stable manifold {X0 = ~0}. In this case, we can set ζ = X0,
there is no component u0 and, given X0, the element Y 0 is just X0 itself. This notation ensures that the
estimate (3.13) still holds. As it will be clear in the the following, the only fact about Z0 we use in the proof
of Proposition 3.1 is estimate (3.13). As a consequence, Proposition 3.1 can be extended to the case that Z0

is just the stable manifold.
In other words, the presence of a manifold of zeroes wider then the stable manifold is not strictly necessary

for the existence of the uniformly stable manifold introduced in Theorem 3.1. However, it allows to get a
sharper estimate in (3.22).

3.1.4 Linear change of variables

In the statement of the following lemma we denote by nc the dimension of X0, and hence we have that
N = nc + n−. The proof is standard, so we omit it.

Lemma 3.2. For every M > 0, there exists a linear change of variables R
nc → R

nc such that the function
X0 written by using the new coordinates satisfies

dX0/dτ = Â(X−, X0)X0, (3.15)

for a suitable matrix such that
Â0(~0, ~0) = Ā0 +N0, (3.16)

where Ā0 and N0 enjoy the following properties:

|eĀ0tX0| ≤ |X0| ∀t > 0, X0 ∈ R
nc (3.17)

and

|N0X0| ≤
1

M
|X0|, X0 ∈ R

nc . (3.18)
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We specify in the following how we chose the constant M .

Remark 3.3. If we apply the linear change of coordinates introduced in Lemma 3.2, then it is no more true
that X0 = (ζ, u0) where {ζ = ~0} is the manifold Z0 of equilbria for f0. However, estimate (3.13) still holds,
provided that we change if needed the value of the constant k0 and we take, instead of X0(τ), Y 0 and ζ(0),
their images trough the linear change of variables.

3.2 Uniformly stable manifold of an orbit

We are now ready to state the main result of this section.

Theorem 3.1. Let Hypotheses 2 and 3 hold. If the constant δ in Hypothesis 2 is sufficiently small, then the
following holds.

Fix an orbit Y 0(τ) =
(

~0, X0(τ)
)

of

{

dX−/dτ = A−(X−, X0)X−

dX0/dτ = Â0(X−, X0)X0 (3.19)

that lies on the center manifold and satisfies |X0(0)| < δ. Then we can define a uniformly stable manifold
relative to Y 0(τ). This manifold is defined in the ball of radius δ and center at the origin, is parameterized by
{X0 = ~0} and is tangent to this subspace at the origin. Also, it is locally invariant for (3.19), meaning that
if the initial datum lies on the manifold, then

(

X−(τ), X0(τ)
)

belongs to the uniformly stable manifold for
|τ | sufficiently small. Every orbit lying on the uniformly stable manifold relative to Y 0(τ) can be decomposed
as

X(τ) = Y 0(τ) + Y −(τ) + Up(τ), (3.20)

where the components Y − =
(

X−(τ),~0
)

and Up(τ) satisfy respectively

|X−(τ)| ≤ k−|X
−(0)|e−cτ/2 (3.21)

and
|Up(τ)| ≤ kp|ζ(0)| |X−(0)|e−cτ/4. (3.22)

In (3.21) and (3.22), c, k− and kp are suitable constants. In particular, c is the same as in (3.6).

In (3.22), ζ is the component of X0 = (ζ, u0) according to the decomposition introduced in Section 3.1.2.

3.3 Proof of Theorem 3.1

This section is devoted to the proof of Theorem 3.1, which is divided in several steps: in Section 3.3.1
we introduce the spaces of functions we use in the proof. In Section 3.3.2 we are concerned with the
component Y −(τ) in (3.20). In Section 3.3.3 we deal with the “perturbation” term Up(τ) in (3.20). Both
the components Y −(τ) and Up(τ) are obtained as fixed points of suitable contractions: in Section 3.3.4 we
study their regularity by relying on Lemma 3.1. Finally, in Section 3.3.5 we conclude the proof of Theorem
3.1 by putting together all the considerations carried on in Sections 3.3.1. 3.3.2, 3.3.3 and 3.3.4.

We have to introduce some notations. Let (~0, X0(τ)) be a given orbit as in the statement of Theorem 3.1,
then we denote by X0 = X0(0) and by Y 0 the corresponding projection, defined as in (3.12). Also, if we
write X0 = (ζ(0), u0(0)) then we set

ζ = ζ(0). (3.23)

By definition, X0(τ) is a solution of the Cauchy problem

{

dX0/dτ = Â0(~0, X0)

X0(0) = X0 (3.24)
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3.3.1 Definition of the functional spaces

Let n− denote the dimension of X−. Also, nc denotes the dimension of X0, as in the statement of Lemma
3.2.

In the following we use the following Banach spaces of functions:

Y− =
{

X− ∈ C0
(

[0, +∞[, R
n
−

)

: ‖X−‖− < +∞
}

(3.25)

and
Y0 =

{

X0 ∈ C0
(

[0, +∞[, R
nc

)

: ‖X0‖0 < +∞
}

, (3.26)

where the norms ‖ · ‖− and ‖ · ‖0 are defined as follows:

‖X−‖− = sup
τ

{

ecτ/2|X−(τ)|
}

‖X0‖0 = sup
τ

{

e−ε|τ ||X0(τ)|
}

(3.27)

The constants c and ε are the same as in (3.6) and (3.13) respectively. Also, we consider the following closed
subsets of Y − and Y 0:

Y−
δ =

{

X− ∈ C0
(

[0, +∞[, R
n
−

)

: ‖X−‖− ≤ k−δ.
}

Y0
δ =

{

X0 ∈ C0
(

[0, +∞[, R
nc

)

: ‖X0‖0 ≤ k0δ.
}

(3.28)
We specify in the following how to determine the exact value of the constant k−, while the constant k0 is
the same as in (3.13). Also, note that the spaces Y−

δ and Y0
δ are equipped with the same norms ‖ · ‖− and

‖ · ‖0 as Y− and Y0 respectively.
We will also need the space of functions defined as follows. Let c be as (3.6) and let a ∈ [0, c[. Consider

the space

Yp
a =

{

(U−, U0) ∈ C0
(

[0, +∞[, R
nc+n

−

)

: ‖X−‖pert < +∞
}

(3.29)

which depends on a because it is equipped with the norm

‖(U−, U0)‖pert = sup
τ

{

e(c+a)τ/4
[

|(U−(τ)| + |U0(τ)|)
]}

.

Also, we will use the closed subset

Yp
δa =

{

(U−, U0) ∈ C0
(

[0, +∞[, R
nc+n

−

)

: ‖(U−, U0)‖pert ≤ kpδ
2
}

, (3.30)

which is equipped with the same norm as Yp. We specify in the following how to determine the values of
the constants kp and a.

3.3.2 Analysis of the stable component

This step is devoted to the definition of the component Y −(τ) = (X−(τ), ~0) in (3.20). Fix a vectorX− ∈ R
n
−

satisfying |X−| < δ.
We define X−(τ) as the solution of the Cauchy problem

{

dX−/dτ = A−(X−, Y 0)X−

X−(0) = X−,
(3.31)

where Y 0 is given by (3.12). It is known that, for any fixed Y 0 and X−, X− can be obtained as the fixed
point of the application

T− : Y−
δ → Y−

δ

defined by

T−(X−)[τ ] = eĀ−τX− +

∫ τ

0

eĀ−(τ−s)
[

A−
(

X−(s), Y 0
)

− Ā−
]

X−(s)ds (3.32)
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where Ā− = A−(~0, ~0). The space Y−
δ is defined in (3.28). More precisely, if the constant k− in (3.28) satisfies

k− ≤ C− and the constant δ is (3.28) is sufficiently small, then the map T− takes values in Y−
δ and is indeed

a contraction. Also, the fixed point satisfies

|X−(τ)| ≤ k−|X
−|e−cτ/2 (3.33)

We are now interested in the differentiability of the fixed point with respect to Y 0 and X−. To study it, we
recall that the set Z0 ∈ R

N is given by Z0 = {(X−, ~0, u0)}. We then regard T− as an application

T− : Z0 × Y−
δ → Y−

and we verify that the hypotheses of Lemma 3.1 are satisfied. The space Y− is defined by (3.25). The
Frechét differential of T− with respect to (X−, Y 0) is a linear map T − ∈ L(Z0, Y

−) which takes the value

T −(h−, h0)[τ ] = eĀ−τh− +

∫ τ

0

eĀ−(τ−s)
[

DY 0A−
(

X−(s), Y 0
)

[h0]
]

X−(s)ds

if evaluated at the point (h−, h0) ∈ Z0. In the previous expression, DY 0A−
(

X−(s), Y 0
)

[h0] denotes the

differential with respect Y 0 of the function A−
(

X−(s), Y 0
)

, the differential being applied to the vector h0.

If X− = ~0 then, no matter what Y 0 is, the differential T − maps (h−, h0) into the function eĀ−τh−.
The Frechét differential of T− with respect to X− is a linear map S− ∈ L(Y−, Y−) which takes the value

S−(h−)[τ ] =

∫ τ

0

eĀ−(τ−s)
{[

A−
(

X−(s), Y 0
)

− Ā−
]

h−(s) +
[

DX−A−
(

X−(s), Y 0
)

[h−(s)]
]

X−(s)
}

ds

if evaluated at the point h− ∈ Y−. In the previous expression, DX−A−
(

X−(s), Y 0
)

[h−(s)] denotes the

differential with respect X− of the function A−
(

X−(s), Y 0
)

, the differential being applied to the vector
h−(s).

Both T − and S− are continuous if viewed as maps from Z0×Yδ to L(Z0, Y
−) and L(Y−, Y−) respectively.

Thus, the hypotheses of Lemma 3.1 are verified and hence the application

Z0 → Y−
δ

which associates to (X−, Y 0) the fixed point of (3.32) is continuously differentiable (in the sense of Frechét).
When both X− = ~0 and Y 0 = ~0 the Frechét differential is the functional that maps (h−, h0) ∈ Z0 to the

function eĀ−τh−.

3.3.3 Analysis of the component of perturbation

This step is devoted to the definition the component Up(τ) in (3.20). First, we apply the change of variables
introduced in Lemma 3.2 and we get that the matrix Â(X−, X0) in (2.2) satisfies

Â(~0, ~0) = Ā0 +N0,

where Ā0 and N0 enjoy (3.17) and (3.18) respectively. By relying on Remark 3.3, we can still use the
estimate (3.13).

We impose that X(τ) = Y 0(τ)+Y st(τ)+Up(τ) is a solution of (3.7). We then write Up(τ) =
(

U−, U0)T

and, subtracting (3.24) and (3.31) from (3.7), we get































dU−/dτ = Ā−U− +
[

A−(X− + U−, X0 + U0) −A−(~0, ~0)
]

U−

+
[

A−(X− + U−, X0 + U0) − A−(X−, Y 0)
]

X−

dU0/dτ = Ā0U0 +N0U0 +
[

Â0(X− + U−, X0 + U0) − Â0(~0, ~0)
]

U0

+
[

Â0(X− + U−, X0 + U0) − Â0(~0, X0)
]

X0.

(3.34)
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Here, Ā− = A−(~0,~0).
Let Yp

δa be the metric space (3.30) and consider the application Tp, defined for (U−, U0) ∈ Yp
δa as follows:

T 1
p (U−, U0)[τ ] =

∫ τ

0

eĀ−(τ−s)
{

[

A−
(

X−(s) + U−(s), X0(s) + U0(s)
)

−A−
(

X−(s), Y 0
)]

X−(s)

+
[

A−
(

X−(s) + U−(s), X0(s) + U0(s)
)

−A−
(

~0, ~0
)]

U−(s)
}

ds

T 2
p (U−, U0)[τ ] =

∫ τ

+∞

eĀ0(τ−s)
{[

N0 + Â0
(

X−(s) + U−(s), X0(s) + U0(s)
)

− Â0
(

~0, ~0
)

]

U0(s)

+
[

Â0
(

X−(s) + U−(s), X0(s) + U0(s)
)

− Â0(~0, X0(s)
)

]

X0(s)
}

ds.

(3.35)

In the previous expression, X− is the solution of (3.31) and X0 is the solution of (3.24). We want to show
that Tp maps Yp

δa into itself, provided that δ is sufficiently small. We have

|T 1
p (U−, U0)[τ ]| ≤

∫ τ

0

C−e
−c(τ−s)

{

L
[

|U−(s)| + |U0(s)| + |X0(s) − Y 0|
]

|X−(s)|

+ L
[

|X−(s)| + |U−(s)| + |X0(s)| + |U0(s)|
]

|U−(s)|
}

ds

≤ C−e
−cτ

∫ τ

0

ecsL
[

2kpδ
2e−s(c+a)/4 + k0|ζ|e

εs
]

k−|X
−|e−cs/2

+ C−e
−cτ

∫ τ

0

ecsL
[

k−|X
−|e−cs/2 + 2kpδ

2e−s(c+a)/4 + 2δ
]

kpδ
2e−s(c+a)/4ds

≤
[ 8

c− a
C−Lkpk−δ

]

δ2e−τ(3c+a)/4 +
2

c+ 2ε
LC−k0k−δ

2e−τ(2c−4ε)/4 +
[ 4

c− a
LC−k−kpδ

]

δ2e−τ(3c+a)/4

+
[ 4

c− a
LC−kpδ

2
]

kpδ
2e−τ(c+a)/2 +

[ 8

3c− a
δ
]

LC−kpδ
2e−τ(c+a)/4.

(3.36)

In the previous expression, C− is the same constant as in (3.6) and L is a Lipschitz constant for A−(X−, X0).
The estimate (3.36) is obtained by using (3.13), (3.14), (3.33) and the fact that, since it belongs to Yp

δa, then
(U−, U0) satisfies

|U−(τ)|, |U0(τ)| ≤ kpδ
2e−τ(c+a)/4. (3.37)

Also, the term ζ is the same as in (3.23) and we rely on the fact that |X−|, |ζ| < δ.
We then use estimates (3.17), (3.18), (3.33), (3.37) and (3.14) to get

|T 2
p (U−, U0)[τ ]| ≤

∫ τ

+∞

|N0U0(s)| + L
[

|X−(s)| + |U−(s)| + |X0(s)| + |U0(s)|
]

|U0(s)|ds

+

∫ τ

+∞

L
[

|X−(s)| + |U−(s)| + |U0(s)|
]

|X0(s)|ds

≤

∫ τ

+∞

1

M
|U0(s)|ds+ L

∫ τ

+∞

[

k−|X
−|e−cs/2 + 2kpδ

2e−s(c+a)/4 + 2δ
]

kpδ
2e−s(c+a)/4ds

+ Lk−

∫ τ

+∞

|X−|e−cs/22δds+ L

∫ τ

+∞

2kpδ
2e−s(c+a)/42δds

≤
4

M(c+ a)
kpδ

2e−τ(c+a)/4 +
4Lk−δ

3c+ a
kpδ

2e−τ(3c+a)/4 +
4Lkpδ

2

c+ a
kpδ

2e−τ(c+a)/2 +
8Lδ

c+ a
kpδ

2e−τ(c+a)/4

+
4

c
k−Lδ

2e−cτ/2 +
16Lδ

c+ a
kpδ

2e−τ(c+a)/4

(3.38)

In the previous expression L denotes a Lipschitz constant of Â0(X−, X0). By combining (3.36) and (3.38)
we get the following. Assume that the constant kp in (3.30) is sufficiently large (namely, kp ≥ 4Lk−/c).
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Then for every a ≤ c − 4ε we can choose δ and M in such a way that Tp take values into Yp
δa. Also,

estimates similar to (3.36) and (3.38) ensure that one can choose the constants in such a way that Tp is a
strict contraction. As a remark, we point out that, the bigger is a, the smaller is δ.

We set a = 12ε and we choose δ in such a way that T p is a contraction from Yp
δ12ε to itself. The constant

ε is the same as in (3.10). However, in the following we regard T p as a map Yp
δ0 → Yp

δ0, where Yp
δ0 is the

space (3.30) obtained setting a = 0. In this way, we obtain that T p is a contraction on Yp
δ0, but, due to our

choice of δ, the fixed point automatically satisfies the sharper estimate

|U−(τ)|, |U0(τ)| ≤ kpδ
2e−τ(c+12ε)/4. (3.39)

Also, in the definition of the space Yp
δ0 one can take δ2 = |ζ| |X−| and hence

|U−(τ)|, |U0(τ)| ≤ kpe
−τ(c+12ε)/4|ζ| |X−|, (3.40)

where X− is defined by (3.31). Also, to simplify the notations in the previous expression we denote by ζ the

point obtained applying the change of coordinates introduced in Lemma 3.2 to the vector (ζ, ~0) defined by
(3.23).

3.3.4 Frechét differentiability of the component of perturbation

We are now concerned with the Frechét differentiability of the fixed point of the map Tp defined by (3.35).
Since Tp(U

−, U0) depends on X− and X0, we regard Tp as a map

T : Yp
δ0 × Y → Yp

δ0. (3.41)

In the previous expression, Y = Y− × Y0, where Y− and Y0 are defined by (3.25) and (3.26) respectively.
Note that by construction they satisfy X− ∈ Y− and X0 ∈ Y0.

The proof of the differentiability relies on Lemma 3.1 (taking Y = Y and X = Yp
δ0). We thus verify that

the hypotheses of Lemma 3.1 are satisfied.
To simplify the exposition, we write (3.35) as

T 1
p (U−, U0)[τ ] =

∫ τ

0

eĀ−(τ−s)
{

F
(

X−(s), U−(s), X0(s), U0(s)
)

X−(s)

+G
(

X−(s) + U−(s), X0(s) + U0(s)
)

U−(s)
}

ds

T 2
p (U−, U0)[τ ] =

∫ τ

+∞

eĀ0(τ−s)
{[

N0 +H
(

X−(s) + U−(s), X0(s) + U0(s)
)]

U0(s)

+ L
(

X−(s) + U−(s), X0(s), U0(s)
)

X0(s)
}

ds,

(3.42)

where the functions F , G, H and L satisfy

F
(

X−(s), ~0, X0(s), ~0
)

≡ 0 G
(

~0, ~0
)

≡ ~0 H
(

~0, ~0
)

≡ ~0 L
(

~0, X0, ~0
)

≡ ~0. (3.43)

Note that X0(s) ≡ Y 0 is an equilibrium for (3.24).
Relying on (3.39), one can show that the condition (3.2) is verified here, so applying Remark 3.1 we get

that the fixed point (U−, U0) is Lipschitz continuous with respect to (X0, X−).
Concerning the Frechét differentiability of Tp with respect to (X0, X−), we proceed as follows. Fix

an element (U0, U−, X0, X−) ∈ Yp
δ0 × Y satisfying the estimates (3.13), (3.14), (3.33) and (3.39). The

Frechét differential of Tp with respect to (X−, X0) computed at the point (U0, U−, X0, X−) is a linear
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map T ∈ L(Y, Yp
0 ). The image of the element (h−, h0) ∈ Y = Y− × Y0 is given by

T 1
p (h−, h0)[τ ] =

∫ τ

0

eĀ−(τ−s)
{

F
(

X−(s), U−(s), X0(s), U0(s)
)

h−(s)

+
[

DX−F
(

X−(s), U−(s), X0(s), U0(s)
)

h−(s)
]

X−(s)

+
[

DX−G
(

X−(s) + U−(s), X0(s) + U0(s)
)

h−(s)
]

U−(s)

+
[

DX0F
(

X−(s), U−(s), X0(s), U0(s)
)

h0(s)
]

X−(s)

+
[

DX0G
(

X−(s) + U−(s), X0(s) + U0(s)
)

h0(s)
]

U−(s)
}

ds

T 2
p (h−, h0)[τ ] =

∫ τ

+∞

eĀ0(τ−s)
{[

DX−H
(

X−(s) + U−(s), X0(s) + U0(s)
)

h−(s)
]

U0(s)

+
[

DX−L
(

X−(s) + U−(s), X0(s), U0(s)
)

h−(s)
]

X0(s)

+
[

DX0H
(

X−(s) + U−(s), X0(s) + U0(s)
)

h0(s)
]

U0(s)

+ L
(

X−(s) + U−(s), X0(s), U0(s)
)

h0(s)

+
[

DX0L
(

X−(s) + U−(s), X0(s), U0(s)
)

h0(s)
]

X0(s)
}

ds.

(3.44)

In the previous expression,
[

DX−F
(

X−(s), U−(s), X0(s), U0(s)
)

h−(s)
]

denotes the differential of the
matrix valued function F with respect to the variable X−. The differential is computed at the point
(

X−(s), U−(s), X0(s), U0(s)
)

and is applied to the vector h−(s). To prove that indeed
(

T 1(h−, h0), T 2(h−, h0)
)

∈ Yp
0

one uses the estimate (3.39) and the identity L(~0, X0, ~0) ≡ ~0.
We now discuss the Frechét differentiability of Tp with respect to (U0, U−). Fix an element (U0, U−, X0, X−) ∈ Yp

δ0 × Y .
The Frechét differential of Tp with respect to (U0, U−), evaluated at the point (U0, U−, X0, X−), is a linear
map S ∈ L(Yp

0 , Y
p
0 ) and the image of the element (h−, h0) ∈ Yp

0 is given by

S1(h−, h0)[τ ] =

∫ τ

0

eĀ−(τ−s)
{[

DU−F
(

X−(s), U−(s), X0(s), U0(s)
)

h−(s)
]

X−(s)

+G
(

X−(s) + U−(s), X0(s) + U0(s)
)

h−(s)

+
[

DU−G
(

X−(s) + U−(s), X0(s) + U0(s)
)

h−(s)
]

U−(s)

+
[

DU0F
(

X−(s), U−(s), X0(s), U0(s)
)

h0(s)
]

X−(s)

+
[

DU0G
(

X−(s), U−(s), X0(s) + U0(s)
)

h0(s)
]

U−(s)
}

ds

S2(U−, U0)[τ ] =

∫ τ

+∞

eĀ0(τ−s)
{[

DU−H
(

X−(s) + U−(s), X0(s) + U0(s)
)

h−(s)
]

U0(s)

+
[

DU−L
(

X−(s) + U−(s), X0(s), U0(s)
)

h−(s)
]

X0(s)

+N0h0(s) +H
(

X−(s), U−(s), X0(s) + U0(s)
)

h0(s)

+
[

DU0H
(

X−(s) + U−(s), X0(s) + U0(s)
)

h0(s)
]

U0(s)

+
[

DU0L
(

X−(s) + U−(s), X0(s), U0(s)
)

h0(s)
]

X0(s)
}

ds.

(3.45)

One can verify that, if (U0, U−, X0, X−) ∈ Yp
δ0 × Y , then indeed S(h−, h0) ∈ Yp

0 . Also, S is continuous as
a map from Xp × Y in L(Yp

0 , Y
p
0 ).

This shows that the hypotheses of Lemma 3.1 are all verified.
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3.3.5 Conclusion

Applying Lemma 3.1, we get that the map
Y → Yp

δ0 (3.46)

that associates to (X−, X0) the fixed point of (3.34) is Frechét differentiable and that its differential
evaluated at the point X−(τ) ≡ 0 and X0(τ) ≡ ~0 is the functional that associates to (h−, h0) ∈ Y the
functions U−(τ) ≡ ~0, U0(τ) ≡ ~0. We then perform the linear change of variables which is the inverse of the
change of variables introduced in Lemma 3.2. In this way, we go back to the original variables. To simplify

the notations, we still denote by
(

U−(τ), U0(τ)
)

the functions obtained applying the change of variables.

To define the map that parameterizes the uniformly stable manifold we proceed as follows: the orbit
X0(τ) is fixed. For every X ∈ R

n
− , there exists a unique solution of (3.31). Also, in Section 3.3.2 we showed

that the map
X → X−(τ) (3.47)

is continuously differentiable in the sense of Frechét. As a consequence, the map obtained composing (3.47)
and (3.46) is Frechét differentiable. Note that such a map associates to X− the functions (X−, U−, U0).
The function φ that parameterizes the uniformly stable manifold is then defined by setting

φ(X) =
(

X−(0), X0(0) + U0(0)
)

.

Due to the previous considerations, φ is continuously differentiable and the manifold is tangent to the stable
space

{

(X−, ~0) : X− ∈ R
−
}

at the origin. Finally, estimate (3.22) is a consequence of (3.40).
This concludes the proof of Theorem 3.1.

3.4 Uniformly stable manifolds

Let V0 be a given center manifold for (2.2) and assume that Hypotheses 2 and 3 in Section 2 are satisfied. In
Theorem 3.1 we consider a fixed orbit lying on V0 and we construct the uniformly stable manifold relative
to that orbit. In this section we discuss what happens if, instead of having a single orbit, we have a whole
invariant manifold.

More precisely, let S0 be an invariant manifold for (3.7) and assume that S0 is entirely contained in the
center manifold {X− = ~0}. Also, denote by S0 the tangent space to S0 at the origin. Choosing a sufficiently
small constant in Hypothesis 2, we can assume that S0 is parameterized by S0. By construction, S0 is
contained in {X− = ~0}. Also, as in Section 3.1.3 assume that Z0 = {(X−, ~0, u0) : ζ = ~0} is a manifold of
zeroes for the function f0 in (3.4).

As a consequence of Theorem 3.1, we get the following result:

Proposition 3.1. Let Hypotheses 2 and 3 hold. Let S0 be an invariant manifold for (3.7) and assume that
it is entirely contained in the center manifold {X− = ~0}. If the constant δ in Hypothesis 2 is sufficiently
small, then the following holds.

There exists a continuously differentiable manifold Mus
S0

which is defined in the ball of radius δ and center
at the origin. Also, Mus

S0
satisfies the following properties:

1. Mus
S0

is locally invariant for (3.7), meaning that if the initial datum lies on the manifold, then the

solution
(

(X−(τ), X0(τ)
)

of (3.7) lies on Mus
S0

for |τ | sufficiently small.

2. Mus
S0

is parameterized by S0 × V − and it is tangent to this space at the origin. Here, S0 is the tangent

space to S0 at the origin and V − = {(X−, ~0) : X0 = ~0}.

3. Any orbit Y (τ) lying on Mus
S0

can be decomposed as

Y (τ) = Y 0(τ) + Y −(τ) + Y p(τ), (3.48)

where Y 0(τ) =
(

~0, ζ0(τ), u0(τ)
)

is an orbit lying on S0. The component Y −(τ) =
(

X−(τ), ~0, ~0
)

lies
on the stable manifold and the perturbation term Y p(τ) satisfies

|Y p(τ)| ≤ C|ζ0(0)| |Y −(0)|e−cτ/4, (3.49)
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for some positive constant C. The constant c > 0 in (3.49) is the same as in (3.6).

In the following we call Mus
S0

the uniformly stable manifold relative to S0.

Proof. Let
(

~0, X0(τ)
)

and
(

X−(τ), ~0
)

be two orbits of (3.7) lying on the center manifold {X− = ~0} and on

the stable manifold respectively. We then have X0(τ) ∈ Y0
δ , X−(τ) ∈ Y−

δ , where the metric spaces Y0
δ and

Y−
δ are defined by (3.28). As in Section 3.3, we use the notation Y = Y−

δ × Y0
δ . Consider the map

Φ : Y → Y × Yp
δ0

which associates to X−(τ) and X0(τ) the function
(

X−(τ), X0(τ), U−(τ), U0(τ)
)

, where (U−, U0) is the
perturbation term constructed in Section 3.3.3. We recall that Yp

δ0 is the set obtained setting a = 0 in (3.30).
As shown in Section 3.3.4, the map Φ is continuously differentiable in the sense of Frechét. Also, let

f− : {X0 = ~0} × {X− = ~0} → Y−
δ

be the map that associates to (X−, ζ, u0) ∈ Z0 the unique solution of the Cauchy problem (3.31) (we recall

that Y 0 = (~0, u0) in (3.49)). The map f− is continuously differentiable in the sense of Frechét, as it is shown
in Section 3.3.2. Also, let

f0 : {X− = ~0} → Y0
δ

be the map that associates to (X0, ~0) the unique solution of the Cauchy problem (3.24). The map f0 is also
continuously differentiable in the sense of Frechét. Finally, let

g0 : S0 → V 0

be a continuously differentiable parameterization of S0. We define the map

ψ : S0 × V 0 → Y × Yp
δ0

setting

ψ(X0, X−) = Φ

(

f−
(

X−, g(X0)
)

, f0 ◦ g0(X0)

)

. (3.50)

The map ψ is then continuously differentiable in the sense of Frechét. By construction, ψ(X0, X−) is an
element in the form

(

X−(τ), X0(τ), U−(τ), U0(τ)
)

and, setting

Y (τ) =
(

X−(τ) + U−(τ), X0(τ) + U0(τ)
)

,

we get that Y (τ) can be decomposed as in (3.48). Also, the perturbation term
(

U0, U−
)

automatically
satisfies (3.49). We then define the map

ψ0 : S0 × V − → R
nc+n

−

parameterizing Mus
S0

by setting

ψ0(X
0, X−) =

(

X−(0), X0(0) + U0(0)
)

= Y (0),

where X0(τ), X−(τ) and U0(τ) are given by (3.50).
The map ψ0 is continuously differentiable, being the composition of maps that are continuously differen-

tiable in the sense of Frechét. Also, by construction the manifold Mus
S0

is invariant for (3.7). To prove that
the manifold Mus

S0
is tangent to S0 × V − at the origin it is enough to observe that the Frechét differential

of f− at X− = ~0 is the functional h− 7→ eĀ−τh−, while the Frechét differential of f0 at X0 = ~0 is the

functional h0 7→ eĀ0τh0.
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4 Invariant manifolds for a singular ODE

In the present section we focus on the analysis of the singular ODE (1.1) and we use the tools introduced in
Section 3 to extend to the general nonlinear case the analysis done in Section 1.1 in the linear case.

The exposition is organized as follows: we proceed by following Steps 1,. . . ,4 that are outlined in the
second part of Section 1.1. In Section 4.1 we introduce the same change of variables as in Step 1 and then
we introduce a further change of variables which allows to write system (2.2) in a nicer form. The details
concerning this change of variables are actually carried on in Section 4.4. In Section 4.2 we define the
manifolds of the slow and the fast dynamics and hence we follow Steps 3 and 4 respectively. Finally, in
Section 4.3 we focus on Step 4 and we extend to the general nonlinear case the definition of uniformly stable
space given in (1.14). We also extend to the case of the singular ODE (1.1) the definition of center-stable
manifold.

4.1 Changes of variables

Let us introduce the change of variables τ(t) defined by the Cauchy problem (1.6), which transforms sys-
tem (1.1) into (1.5). However, in the nonlinear case the change of variable is not a priori well defined since
the function ζ[U(t)] could in principle attain the value 0. Hence we proceed as follows: as in the linear
case we carry on the analysis by referring to system (1.5) and then we show that a posteriori the change of
variables (1.6) is well defined.

In this section we also introduce Proposition 4.1, which loosely speaking states that in a small enough
neighborhood of ~0 we can define a further change of variables which allows to write system (2.2) in a nicer
form. Before giving the precise statement we have to introduce some notations. Let N denote the dimension
of U . Also, n− is the number of eigenvalues of DF (~0) with strictly negative real part, while (n0 + 1) is the
number of eigenvalues of DF (~0) with zero real part. Each eigenvalue is counted according to its multiplicity.
Due to Hypothesis 3, N = n− + n0 + 1.

Proposition 4.1. Let Hypotheses 1 . . . 8 hold. If the constant δ in Hypothesis 2 is sufficiently small, then
in the ball with radius δ and center at the origin we can define a continuously differentiable diffeomorphism
Υ satisfying the following properties. Write Υ(U) = Ũ as a column vector:

Ũ =





ζ
u0

u−



 ,

where ζ ∈ R, u0 ∈ R
n0 and u− ∈ R

n
− . If U satisfies (2.2), then Ũ satisfies



























dζ/dτ = G10(ζ, u0)u0ζ
2 +G1−(ζ, u0, u−)u−ζ

du0/dτ =
{

G01(ζ, u0) +
[

G0−(ζ, u0, u−) −G0−(ζ, u0, ~0)
]

}

ζu0

du−/dτ = Gs(ζ, u0, u−)u−

(4.1)

In the previous expression, G10 is a row vector belonging to R
n0 , G1− is a row vector in R

n
− , the matrices

G01 and G0− belong to M
n0×n0 and the matrix Gs belongs to M

n
−
×n

− .
A center manifold of system (4.1) is the subspace {(ζ, u0, ~0) : u− = ~0}, the stable manifold is the

subspace {(0, ~0, u−) : ζ = 0, u0 = ~0}. Let Mus
E be the uniformly stable manifold relative to the manifold

E = {(ζ, ~0, ~0) : u0 = ~0, u− = ~0}, which is entirely constituted by equilibria. Then Mus
E = {(ζ, ~0, u−) : u0 = ~0}.

In the statement of Proposition 4.1 by uniformly stable manifold relative to E we mean the manifold
defined by Proposition 3.1. Also, note that by construction all the eigenvalues of the matrix Gs(0, ~0, ~0) have
strictly negative real part.
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4.2 Slow and fast dynamics

Let E denote, as before, the manifold of equilibria {(ζ, ~0, ~0) : u0 = ~0, u− = ~0}.

Definition 4.1. A manifold of slow dynamics is a center manifold of (4.1). In the following we fix the
manifold of the slow dynamics {u− = ~0} and we denote it by M0.

The manifold of fast dynamics of system (4.1) is the uniformly stable manifold relative to E, namely the
subspace {u0 = ~0}.

Note that both these manifolds are invariant for system (4.1). Also, for every point (ζ, ~0, u−) belonging

to the manifold of fast dynamics, denote by
(

ζ(τ), ~0, u−(τ)
)

the solution of (4.1) such that

(

ζ(0), ~0, u−(0)
)

= (ζ, ~0, u−).

Combining (3.48) and (3.49) we get that this solution decays exponentially fast to an equilibrium point.
Namely, there exists ζ∞ such that

lim
τ→+∞

ecτ/4|u−(τ)| = 0 = lim
τ→+∞

ecτ/4|ζ(τ) − ζ∞|,

where the positive constant c satisfies Reλ < −c for every λ eigenvalue of Gs(0, ~0, ~0).
We now consider system (4.1) restricted on the manifold of slow dynamics, namely







dζ/dτ = ζ2G10(ζ, u0)u0

du0/dτ = G01(ζ, u0)u0ζ
u− ≡ 0.

(4.2)

If one goes back to the original variable t obtains







dζ/dt = ζG10(ζ, u0)u0

du0/dt = G01(ζ, u0)u0

u− ≡ 0,
(4.3)

namely an equation with no singularity. Note that (4.2) and (4.3) are equivalent. Indeed, by the uniqueness
of the solution of a Cauchy problem associated to (4.3), the following holds. If ζ(0) > 0 then ζ(t) > 0 for
every t. Thus, the Cauchy problem (1.6) admits a global solution τ : [0, +∞[→ [0, +∞[ whose derivative is
always different from 0. Thus, τ(t) defines a change of variables and (4.2) is equivalent to (4.3).

One of our original goals is to study the solutions of (1.1) that lie on a center manifold. Let M00 be a
center manifold for (4.3) of the equilibrium point (0, ~0, ~0). Then M00 is a center manifold of







































dζ

dt
= ζG10(ζ, u0)u0 +G1−(ζ, u0, u−)u−

du0

dt
=
{

G01(ζ, u0) +
[

G01(ζ, u0, u−) −G0−(ζ, u0, ~0)
]

}

u0

du−
dt

=
1

ζ
Gs(ζ, u0, u−)u−

(4.4)

We collect these results in the following theorem.

Theorem 4.1. Assume that Hypotheses 1 . . . 8 are satisfied. There exists an invariant center manifold
M00 of the equilibrium point (0, ~0, ~0) of system (4.4). The manifold M00 is contained in the manifold of
the slow dynamics, equation (4.4) restricted to M00 is non singular and every solution satisfies the following
property: if ζ(0) > 0, then ζ(t) > 0 for every t.
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Remark 4.1. Hypothesis 8 ensures that the manifold {U : ζ(U) = 0} is invariant with respect to the slow
dynamics. This hypothesis is not necessary to define an invariant center manifold M00 contained in the
manifold of the slow dynamics. However, it is necessary if we want that (4.2) is equivalent to (4.3), namely
that the change of variables defined by (1.6) is well defined. To see this, we can proceed as follows.

Given equation (2.2), we proceed as in the proof of Lemma 4.2 and we use Hypotheses 1 . . . 7 but we do
not use Hypothesis 8. The system we eventually get, restricted on the subspace {u− = ~0}, is







dζ/dτ = ζg1(ζ, u0, ~0)
du0/dτ = G01(ζ, u0)u0ζ
u− ≡ 0

(4.5)

where g1 is the same function as in (4.20) and satisfies

g1(z, ~0, ~0) = 0 ∀ z.

Going back to the original variable t, (4.5) becomes






dζ/dτ = g1(ζ, u0, ~0)
du0/dτ = G01(ζ, u0)u0

u− ≡ 0
(4.6)

Thus, even if we do not assume Hypothesis 8, the ODE (1.1) restricted on the manifold of the slow dynamics
{u− = ~0} is non singular. Also, one can define an invariant center manifold M00 which contains only slow
dynamics.

Note, however, that if Hypothesis 8 is not satisfied it may happen that for a solution U lying on M00

ζ
(

U(0)
)

> 0 but ζ(U) touches 0 in finite time. An example is the following.
Consider the equation







du1/dt = −u2

du2/dt = u2
2(1 − u2)

du3/dt = −u3/u1

and set

ζ(U) = u1 F (U) =

(

− u1u2, u1u
2
2(1 − u2), −u3

)T

.

Then Hypotheses 1, 3 . . . 7 are satisfied, but Hypothesis 8 is violated. The manifold of slow dynamics is the
subspace {u3 = 0} and it coincides with the center manifold M00. Restrict to this subspace and consider
the equation

du2/dt = u2
2(1 − u2).

If 0 < u2(0) < 1, then 0 < u2(t) < 1 for every t. Also, du2/dt > 0 for every t and hence u2(0) < u2(t) < 1
for every t. Since

du1/dt = −u2,

then by a comparison argument u1(t) ≤ u1(0) − u2(0)t for every t > 0. In other words, if u1(0) > 0 then
u1(t) attains the value 0 for some t ≤ u1(0)/u2(0).

4.3 Applications of the uniformly stable manifold to the analysis of a singular

ordinary differential equation

First, we recall a result we need in the following.

Lemma 4.1. Let ζ(τ) be a real valued, continuous and bounded function satisfying ζ(τ) > 0 for every
τ ∈ [0, +∞[. Let t(τ) be the maximal solution of the forward Cauchy problem

{

dt/dτ = ζ(τ)
t(0) = 0.

(4.7)

Then t(τ) is defined on the whole interval [0, +∞[. Also, the following statements are equivalent:
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1. t(τ) is a continuously differentiable diffeomorphism t : [0, +∞[→ [0, +∞[.

2.

∫ +∞

0

ζ(τ)dτ = +∞.

Condition 2 guarantees, in particular, that the inverse map τ(t) is defined on the whole interval [0, +∞[
and that it is continuously differentiable there. Also, note that ζ(t) = ζ

(

τ(t)
)

is automatically strictly bigger
than 0 for every t.

Before stating the main result in this section we introduce some notations. As before, c > 0 denotes a
positive constant satisfying Reλ < −c for any λ which is either an eigenvalue of Gs(0, ~0, ~0) or an eigenvalue
with strictly negative real part of of G01(0, ~0). We denote by V 0− the subspace

V 0− = {(0, ~ξ, ~0)},

where ~ξ ∈ R
n0 belongs to the eigenspace of G10(0, ~0) associated to the eigenvalues with strictly negative real

part. Also,
V 00− = {(0, ~ξ, ~0)},

where ~ξ ∈ R
n0 belongs to the eigenspace of G10(0, ~0) associated to the eigenvalues with non positive real

part. Clearly, V 0− ⊆ V 00−. We denote by V −− the stable manifold, namely

V −− = {(0, ~0, u−) : u− ∈ R
n
−},

Finally, as in Section 4.2 we denote by E the manifold of equilibria {(ζ, ~0, ~0) : ζ ∈ R}.
We are now read to state our main result.

Theorem 4.2. Let Hypotheses 1 . . . 8 hold. If the constant δ in Hypothesis 2 is sufficiently small, then in
the ball with radius δ and center at the origin one can define two manifolds, Ms and Mcs, satisfying the
following properties:

1. both Ms and Mcs are locally invariant for (4.1), namely, if the initial datum lies on the manifold,
then the solution

(

(ζ(τ), u0(τ), u−(τ)
)

of (4.1) also lies on the manifold for |τ | sufficiently small.

2. Ms is contained in Mcs.

3. Ms is parameterized by E ⊕ V 0− ⊕ V −− and it is tangent to this subspace at the origin. Also, Mcs is
parameterized by E ⊕ V 00− ⊕ V −− and it is tangent to this subspace at the origin.

4. Let U(τ) =
(

ζ(τ), u0(τ), u−(τ)
)

be an orbit lying either on Ms or on Mcs and satisfying ζ(0) > 0.

Then the maximal solution of the forward Cauchy problem
{

dt/dτ = ζ(τ)
t(0) = 0

(4.8)

defines a continuously differentiable diffeomorphism t : [0, +∞[→ [0, +∞[. Let τ(t) denotes its inverse.
Then the function U(t) = U

(

τ(t)
)

is a solution of (1.1) and satisfies ζ(t) > 0 for every t ≥ 0.

5. Any orbit lying on Ms can be decomposed as

U(τ) = U−(τ) + Usl(τ) + Up(τ), (4.9)

where U−(τ) satisfies
|U−(τ)| ≤ k−e

−cτ/2|U−(0)| (4.10)

for a suitable constant k−. Conversely, the component Usl(τ) =
(

ζsl(τ), usl
0 (τ), ~0

)

lies on the manifold
of the slow dynamics. Also, if we use the variable t defined as the maximal solution of the Cauchy
problem (4.8), we have that there exists a point (ζ∞, ~0) such that

lim
t→+∞

(

|ζ(t) − ζ∞| + |u0(t)|
)

ect/2 = 0. (4.11)
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Finally, the perturbation term is small in the sense that

|Up(τ)| ≤ kp|ζ
sl(0)||U−(0)|e−cτ/4 (4.12)

for a suitable constant kp > 0.

6. Any orbit U(τ) lying on Mcs can be decomposed as

U(τ) = U−(τ) + Usl(τ) + Up(τ), (4.13)

where U− and Up satisfy |U−(τ)| ≤ k−e
−cτ/2|U−(0)| and |Up(τ)| ≤ kp|ζ

sl(0)||U−(0)|e−cτ/4 re-
spectively. Here k− and kp denote the same constants as in (4.10) and (4.12). The component

Usl(τ) =
(

ζsl(τ), usl(τ), ~0
)

lies on the manifold of the slow dynamics. More precisely, the follow-
ing holds. Consider the maximal solution of the Cauchy problem

{

dt/dτ = ζsl(τ)
t(0) = 0

and set ζsl(t) = ζsl
(

τ(t)
)

and usl(t) = usl
(

τ(t)
)

. Then
(

ζsl(t), usl(t)
)

is a solution lying on a center-
stable manifold of







dζ/dt = ζG10(ζ, u0)u0

du0/dt = G01(ζ, u0)u0

u− ≡ 0.

Note that, strictly speaking, in (4.9) and in (4.13) the component U− does not lie on the manifold of
the fast dynamics. Indeed, as we will see in the proof, U− is a solution of (3.31) and hence does not lie
on {(0, ~0, u−)}. However, loosely speaking it can be regarded as a fast dynamic because of its exponential
decay.

Proof. We first define Ms.
Consider system (4.1) restricted on the manifold of the slow dynamics. Due to the analysis in Section

4.2 the variables t and τ are then equivalent. Using the variable t, we get






dζ/dt = ζG10(ζ, u0)u0

du0/dt = G01(ζ, u0)u0

u− ≡ 0.
(4.14)

The manifold E = {(ζ, ~0, ~0) : ζ ∈ R} is then entirely constituted by equilibria. Applying Proposition 3.1
to system (4.14) with S0 = E, we then obtain Mus

E , the uniformly stable manifold relative to E, which is
parameterized by E ⊕ V 0−. Note that so far we have used only the variable t: Mus

E is a uniformly stable

manifold for (4.14) with respect to the variable t and by construction it is included in {u− = ~0}, a center
manifold for (4.1) with respect to the variable τ . The manifold Ms is then obtained by using the variable τ
and applying Proposition 3.1 to system (4.1) with S0 = Mus

E . Also, the set

Z0 = {(0, u0, u−) : u0 ∈ R
n0 , u− ∈ R

n
−}

satisfies (3.8). Properties 1, 3 and estimates (4.10) and (4.12) in the statement of Theorem 4.2 are then
automatically satisfied, so we are left to prove estimate (4.11) and property 4.

To show that estimate (4.11) holds we apply Lemma 4.1. By using (4.9) we get

ζ(τ) = ζsl(τ) + ζp(τ),

where Usl(τ) =
(

ζsl(τ), usl
0 (τ), ~0

)

lies on the manifold of the slow dynamics and ζp is the first component

of the perturbation term Up. Let t̃ be defined as the maximal solution of

{

dt̃/dτ = ζsl(τ)
t̃(0) = 0,
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Then there exits (ζ∞, ~0) such that

lim
t̃→+∞

(

|ζsl(t̃) − ζ∞| + |usl
0 (t̃)|

)

ect̃/2 = 0. (4.15)

Since |ζp(τ)| ≤ kpδ
2e−cτ/4, then for every τ

|t̃(τ) − t(τ)| ≤ O(1)δ2

where t(τ) is defined by (4.8). Since also |usl
0 (τ) − u0(τ)| ≤ kpδ

2e−cτ/4, we conclude that (4.11) implies
(4.15).

Concering the proof of property 4, we apply Lemma 4.1. Since Usl(τ) =
(

ζsl(τ), usl
0 (τ), ~0

)

lies on the
manifold of the slow dynamics, then by the analysis in Section 4.2 it satisfies condition 1 in the statement
of Lemma 4.1 and hence

∫ +∞

0

ζsl(τ)dτ = +∞.

Since |ζp(τ)| ≤ δ2e−cτ/4, then
∫ +∞

0

(

ζsl + ζp
)

(τ)dτ = +∞.

Applying again Lemma 4.1 we get property 4.
To define the manifold Mcs we proceed as follows. Consider M cs, a center-stable manifold for (4.14).

This manifold is parameterized by E ⊕ V 00− and it is tangent to this space at the origin. The manifold
Mcs is defined by applying Proposition 3.1 to system (4.1) with S0 = M cs and by using that the set
Z0 = {(0, u0, u−) : u0 ∈ R

n0 , u− ∈ R
n
−} satisfies (3.8). Proceeding as before one gets that properties 1, 3,

4 and 6 are satisfied.
To verify property 2, we first observe thatMus

E ⊆M cs. To obtain Ms and Mcs we applied Proposition 3.1
to S0 = Mus

E and S0 = M cs respectively. Going back to the proof of Proposition 3.1 one can observe that the
way we constructed the uniformly stable manifold with respect to S0 is we associated to any orbit lying on
S0 the manifold constructed in Theorem 3.1. Thus from the inclusion Mus

E ⊆M cs we infer Ms ⊆ Mcs.

4.4 Proof of Proposition 4.1

4.4.1 A preliminary result

Before proving Proposition 4.1, we have to introduce a preliminary result, Lemma 4.2.
Let Υ be a continuously differentiable local diffeomorphism. To simplify the exposition, we also assume

that Υ(~0) = ~0. Let Ũ := Υ(U) and

F̃ (Ũ) := DΥ
(

Υ̃−1(Ũ)
)

F
(

Υ−1(Ũ)
)

(4.16)

As pointed out in Section 3.1.2, if the function U(τ) satisfies (2.2), then Ũ(τ) is a solution of the ODE (3.3).
Also, given a real valued function ζ(Ũ), let

ζ̃(Ũ) := ζ
[

Υ−1(Ũ)
]

. (4.17)

By direct check, one can verify that the following holds true.

Lemma 4.2. Assume that Hypotheses 1, 3 . . . 8 are satisfied by F and ζ. Also, assume that Hypothesis 2 is
satisfied for some δ. Then Hypotheses 1, 3 . . . 8 are verified by F̃ and ζ̃ and there exists δ̃, possibly smaller
than δ, such that Hypothesis 2 is as well satisfied.
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4.4.2 Proof of Proposition 4.1: first part

We are now ready to prove Proposition 4.1. The proof actually relies on standard techniques, but we give it
for completeness. We proceed in several steps.

• Step 1: let U = (u1 . . . uN)T be the components of U . Due to Hypothesis 4, ∇ζ(~0) 6= ~0. Just to fix the
ideas, we can assume

∂ζ

∂u1
(~0) 6= 0.

By a smooth local change of variables we can assume that ζ(U) = u1. By Lemma 4.2, Hypotheses 1 . . . 8
are satisfied by the ODE written using the new variable. To simplify the exposition, we write U and
ζ instead of Ū and ζ̄.

• Step 2: due to Hypothesis 6, there exists a manifold Meq which is entirely constituted by equilibria
and which is transversal to the manifold S, namely to {u1 = 0}. Via a smooth local change of variables
we can assume that the one-dimensional subspace

E := {ū2 = · · · = ūN = 0} (4.18)

is entirely contained in Meq. Hypotheses 1 . . . 8 are satisfied in the new variables due to Lemma 4.2.

• Step 3: let E be as in (4.18) and denote by V c the eigenspace of DF (~0) associated to eigenvalues
with 0 real part. Also, let V −− be the eigenspace associated to eigenvalues with strictly negative
real part. The dimension of V c and of V −− is n0 + 1 and n− respectively. Thanks to Hypothesis 3,
N = n0 + 1 + n−. The vector (1, 0 . . . 0) belongs to V c because E ⊆ V c. Also, we can assume, via a
linear change of variables, that

V c = {un0+2 = . . . uN = 0} V s = {ζ = 0, u2 = . . . un0+1 = 0}.

Fix a center manifold Mc of the equilibrium point ~0 of system (2.2), then Mc is parameterized by
V c and it is tangent to this space at the origin ~0. Also, let Mus

E be the uniformly stable manifold of
system (2.2) relative to the manifold of equilibria E defined by (4.18): this manifold is paramerized
by V s ⊕ E and it is tangent to this space at the origin. By a local smooth change of variables we can
assume that actually

Mc = {un0+2 = . . . uN = 0} Mus
E = {u2 = . . . un0+1 = 0}.

Note that the Hypotheses 1 . . . 8 are satisfied because of Lemma 4.2.

• Step 4: consider the decomposition

U =





ζ
u0

u−



 F (U) =





f1(ζ, u0, u−)
F0(ζ, u0, u−)
F−(ζ, u0, u−),



 (4.19)

where ζ, f1 ∈ R, u0, F0 ∈ R
n0 and u−, F− ∈ R

n
− . In the new coordinates, the center manifold Mc

is the subspace {u− = ~0} and the uniformly stable manifold Mus
E is {u0 = ~0}.

The center manifold {u− = ~0} is invariant for the ODE (2.2) and hence F−(ζ, u0, ~0) = ~0 for every ζ
and u0. By regularity,

F−(ζ, u0, u−) = Gs(ζ, u0, u−)u−

for a suitable matrix Gs ∈ M
n
−
×n

− . Also, the uniformly stable manifold is invariant and hence
proceeding as before we get that

F0(ζ, u0, u−) = Gc(ζ, u0, u−)u0
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for a suitable matrix Gc ∈ M
n0×n0 . Finally, Hypothesis 7 implies that

f1(0, u0, u−) = 0

and hence by regularity f1(ζ, u0, u−) = g1(ζ, u0, u−)ζ. Consider the decomposition

Gc(ζ, u0, u−) = Gc(ζ, u0, ~0) +
[

Gc(ζ, u0, u−) −Gc(ζ, u0, ~0)
]

.

Due to Hypothesis 5, the subspace {ζ = 0, u− = ~0} is entirely constituted by equilibria and hence

Gc(0, u0, ~0) = ~0.

By regularity, Gc(ζ, u0, ~0) = G01(ζ, u0)ζ for a suitable matrix G01 ∈ M
n0×n0 . Putting all the previous

considerations together, we get that system (2.2) can be written as























dζ/dτ = g1(ζ, u0, u−)ζ

du0/dτ =
{

G01(ζ, u0)ζ +
[

Gc(ζ, u0, u−) −Gc(ζ, u0, ~0)
]

}

u0

du−/dτ = Gs(ζ, u0, u−)u−

(4.20)

Consider the decomposition

g1(ζ, u0, u−) = g1(ζ, u0, ~0) +
[

g1(ζ, u0, u−) − g1(ζ, u0, ~0)
]

By constructionGs(0, ~0, ~0) admits only eigenvalues with strictly negative real part, thusGs(ζ, u0, u−)u− = ~0
implies u− = ~0. Thus, the set {U : ζ(U) = 0, F (U) = ~0} is the subspace {ζ = 0, u− = ~0}. By
Hypothesis 8, we have

g1(0, u0, ~0) = 0.

By regularity, we thus have

g1(ζ, u0, ~0) = g11(ζ, u0)ζ
[

g1(ζ, u0, u−) − g1(ζ, u0, ~0)
]

= G1−(ζ, u0, u−)u−

for a suitable row vector G1−(ζ, u0, u−) ∈ R
n
− . Also, since the manifold {u0 = ~0, u− = ~0} is entirely

constituted by equilibria, then g11(ζ, ~0) = 0 for every ζ and hence

g11(ζ, u0) = G10(ζ, u0)u0

for a suitable vector G10 ∈ R
n0 . In other words, (4.20) reduces to























dζ/dτ = ζ2G10(ζ, u0)u0 + ζG1−(ζ, u0, u−)u−

du0/dτ =
{

G01(ζ, u0)ζ +
[

Gc(ζ, u0, u−) −Gc(ζ, u0, ~0)
]

}

u0

du−/dτ = Gs(ζ, u0, u−)u−

(4.21)

• Step 5: we introduce a refined change of variables. Consider system (4.20) restricted on the invariant
subspace {ζ = 0}. One obtains











du0/dτ =
[

Gc(0, u0, u−) −Gc(0, u0, ~0)
]

u0

du−/dτ = Gs(0, u0, u−)u−
(4.22)

The subspace {u− = ~0} is entirely constituted by equilibria. Also, given a point (u0, u−) belonging to a
small enough neighbourhood of ~0, then the solution of (4.22) starting at (u0, u−) decays exponentially
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fast to a point in the subspace {u− = ~0}. This is a consequence of the fact that Gs(0, ~0, ~0) admits
only eigenvalues with strictly negative real part.

We can define a change of variables Ũ = Υ4(U) such that in the new variables Ũ the following holds. For
every ũ0(0) ∈ R

n0 and for every ũ−(0) ∈ R
n
− , the solution of (4.22) starting at the point

(

ũ0(0), ũ−(0)
)

converges exponentially fast to the point
(

ū0(0), ~0
)

. In other words, the set {ū0 = ū0(0)} is the stable

manifold of system (4.22) around the equilibrium point
(

ũ0(0), ~0
)

. Let F̃ (Ū) be defined as in (4.16),

with Υ̃ = Υ4. Then

F (Ũ) =







ζ̃2G̃10(ζ̃ , ũ0)ũ0 + ζ̃G̃1−(ζ̃ , ũ0, ũ−)ũ−
{

G̃01(ζ̃ , ũ0)ζ̃ +
[

G̃c(ζ̃ , ũ0, ũ−) − G̃c(ζ̃ , ũ0, ~0)
]

}

ũ0

Gs(ζ̃ , ũ0, ũ−)ũ−







Because of the way we chose Υ4, when ζ̃ = 0 then dũ0/dτ = 0 and hence

[

G̃c(0, ũ0, ũ−) − G̃c(0, ũ0, ~0)
]

ũ0 = ~0.

By regularity,

[

G̃c(ζ̃ , ũ0, ũ−) − G̃c(ζ̃, ũ0, ~0)
]

=
[

G̃0−(ζ̃, ũ0, ũ−) − G̃0−(ζ̃ , ũ0, ~0)
]

ζ̃

for a suitable function G̃0− ∈ M
n0×n0 .

• Step 6: to conclude the proof of Proposition 4.1 we define the local diffeomorphism Υ as the composition
of all the local diffeomorphisms defined at the previous steps.
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