
Failure of the chain rule in the non steady
two-dimensional setting

Stefano Bianchini and Paolo Bonicatto

Abstract In [CGSW17], the authors provide, via an abstract convex integration
method, a vast class of counterexamples to the chain rule problem for the divergence
operator applied to bounded, autonomous vector fields in b : Rd → Rd , d ≥ 3. By
the analysis of [BG16] the assumption d ≥ 3 is essential, as in the two dimensional
setting, under the further assumption b 6= 0 a.e., the Hamiltonian structure prevents
from constructing renormalization defects.
In this note, following the ideas of [BBG16], we complete the analysis, by consid-
ering the non-steady, two dimensional case: we show that it is possible to construct
a bounded, autonomous, divergence-free vector field b : R2 → R2 such that there
exists a non trivial, bounded distributional solution u to

∂tu+div(ub) = 0

for which the distribution ∂t
(
u2
)
+div

(
u2b
)

is not (representable by) a Radon mea-
sure.
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1 Introduction

In this paper we consider a variant of the classical problem of the chain rule for
the divergence of a bounded vector field. Specifically, the classical problem of the
chain rule reads as follows:

Problem 1. (Chain rule) Let d ≥ 2 and assume that it is given a bounded, Borel vec-
tor field b : Rd → Rd , a bounded, scalar function u : Rd → R and Radon measures
λ ,µ ∈M (Rd) such that

divb = λ , (1a)

div(ub) = µ, (1b)

in the sense of distributions on Rd . Characterize (compute) the distribution

ν := div(β (u)b),

where β : R→ R is a fixed C1 function.
In the smooth setting one can use the standard chain rule formula to get

ν = div(β (u)b) = β
′(u)div(ub)+(β (u)−uβ

′(u))divb
= β

′(u)µ +(β (u)−uβ
′(u))λ .

(2)

The extension of (2) to a non-smooth setting is far from being trivial and this is
exactly the aim of the chain rule problem.

As noted in [ADLM07], if one replaces “divergence” by “derivative”, the prob-
lem boils down to the one of writing a chain rule for weakly differentiable functions
(a theme that has been investigated in several papers, see e.g. [Vol67, ADM90] for
the BV setting). However, the “divergence” problem seems to be harder than the
“derivative” one, due to stronger cancellation effects.
Problem 1 arises naturally in the study of partial differential equations, like the
transport equation, the continuity equation or, more generally, hyperbolic con-
servations laws: indeed, they all can be written in the form div(uB) = c, where
B : R×Rd→R×Rd is vector field which has a space-time structure and c∈D ′(Rd)
is some distribution. For instance, considering Problem 1 for a particular choice of
B and β , one can establish uniqueness and comparison principles for weak solutions
of scalar conservation laws (in the spirit of Kružkov’s theory, see [Kru70]).

1.1 Positive results

If we assume Sobolev regularity on the vector field, i.e. b ∈W 1,p
loc (R

d) and u ∈
Lq

loc(R
d) with p,q dual exponents, the chain rule has been established in [DL89].

In this case, it turns out that ν can be computed in terms of λ and µ just as in the
classical (smooth) setting: it holds
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ν = (β (u)−uβ
′(u))λ +β

′(u)µ,

provided µ = div(ub) is absolutely continuous with respect to the Lebesgue measure
L d on Rd . This result has been extended in [ADLM07] to the case of a bounded
variation vector field b ∈ BVloc(Rd) and of a bounded density u ∈ L∞

loc(Rd). More
precisely, using the commutator estimate due to Ambrosio [Amb04], in [ADLM07]
it is first proved that the distribution ν = div(β (u)b) is a Radon measure which
satisfies ν� |λ |+ |µ|. Furthermore, the authors decompose λ ,µ,ν into three parts
(the absolutely continuous part λ a, the jump part λ j and the Cantor part λ c, as in
the standard BV setting) and treat them separately. They obtained that:

• the absolutely continuous part behaves as in the Sobolev case:

ν
a = (β (u)−uβ

′(u))λ a +β
′(u)µa, as measures on Rd .

• For the jump part, they use the results obtained in [ACM05] to prove that ν j can
be computed in terms of the traces u+ and u− of u on the (countably) rectifiable
set Σ where λ j and µ j are concentrated on.

• The Cantor part is harder and it is not characterized completely in [ADLM07],
but only up to an error term. More precisely, they proved

ν
c = (β (ũ)− ũβ

′(ũ))λ cxΩ\Su +β
′(ũ)µcxΩ\Su +σ

where ũ is the L1 approximately continuous representative of u, Su is the set
of points where the L1 approximate limit does not exist and σ is an error term
(which is a measure concentrated on Su, with σ � λ c +µc).

Further results in this directions have been obtained in [BG16], where the prob-
lem is completely solved in the case d = 2 with b of bounded variation, and in the
recent preprint [BB17] where the analysis is completed (in the BV setting) for every
d ≥ 2.

1.2 Negative results

If we assume no regularity on b and u apart from measurability and boundedness,
it can happen that λ and µ give no information about ν . This is related to the so-
called problem of (non) locality of the divergence operator: indeed, in [ABC13] the
authors constructed an example of a bounded vector field v (defined in R2) such that
divv 6= 0, divv ∈ L∞ and divv is supported on the set where v vanishes. Notice that
this phaenomenon cannot occur for distributional derivatives, as they enjoy locality
properties [AFP00, Prop. 3.73].
In the same spirit, in the recent work [CGSW17], using the abstract machinery of
convex integration, the authors construct several examples of vector fields b : Rd →
Rd and densities u : Rd → R such that λ = 0, µ = 0 but div(u2b) 6= 0 in the sense
of distributions in Rd for d ≥ 3. More precisely, they show the following
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Theorem 1 ([CGSW17]). Let d ≥ 3 and Ω ⊂ Rd a smooth domain. Let f be a
distribution such that the equation divw = f admits a bounded, continuous solution
w : Ω → Rd on Ω . Then there exists a bounded vector field b ∈ L∞(Ω ;Rd) and a
density u : Rd → R, with 0 <C−1 ≤ u≤C a.e. for some constant C > 0, such that

divb = 0
div(ub) = 0

div
(
u2b
)
= f

in the sense of distributions in Ω .

1.3 The two-dimensional case

The aim of this note is to address the two-dimensional case, i.e. d = 2. Notice
that the assumption d ≥ 3 is essential in [CGSW17], in view of the result of [BG16].
More precisely, in [BG16], the authors proved that if d = 2, b is bounded and of class
BV and u : Rd → R, with 0 < C−1 ≤ u ≤C a.e. for some constant C > 0, are such
that

divb = 0
div(ub) = 0

then the Chain rule property holds, i.e. we have necessarily div
(
u2b
)
= 0. Actually,

the same conclusion is true if the assumption b ∈ BV is replaced by b 6= 0 a.e. in Ω .
However, still remaining in the planar setting, in view of the results obtained in
[BBG16], it seems reasonable to consider the chain rule also in the non steady set-
ting, i.e. assuming that the vector field has a (special) space-time structure (and
letting the divergence operator acting also on the time variable). More precisely, we
are led to consider the following variant of Problem 1:
Problem 2. (Non steady chain rule) Let T > 0 be fixed and assume that it is given
a bounded, Borel vector field b : Rd → Rd , a bounded, scalar function u : (0,T )×
Rd → R and Radon measures λ and µ such that

divb = λ ,

∂tu+div(ub) = µ,

in the sense of distributions on (0,T )×Rd . Characterize (compute) the distribution

ν := ∂tβ (u)+div(β (u)b),

where β : R→ R is a fixed C1 function.
In this note we want to show the following
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Theorem 2. There exists an autonomous, compactly supported vector field b : R2→
R2, b ∈ L∞(R2), and a bounded, scalar function u : (0,T )×R2→ R, such that

divb = 0,

∂tu+div(ub) = 0,

in D ′((0,T )×R2) but the distribution

∂t
(
u2)+div

(
u2b
)
/∈M ((0,T )×R2)

i.e. it is not (representable by) a Radon measure.

2 Preliminaries

In order to fix the notation, we collect in this section some preliminary results we
will be using in the rest of the paper.

2.1 A particular change of variables

As in [ABC14, § 2.16], we will denote by I the interval [0,L], by L 1 the
Lebesgue measure on I and, in general, λ will be an arbitrary measure on I, which
is singular with respect to L 1 and has A as the set of its atoms (points with positive
measure). We set L̂ := (L 1 +λ )(I) and Î := [0, L̂]. We denote by L̂ 1 the Lebesgue
measure restricted to Î. We denote by σ̂ the multifunction from I to Î that to every
s ∈ I associates the interval

σ̂(s) := [σ̂−(s), σ̂+(s)]

where
σ̂−(s) := (L +λ )

(
[0,s)

)
, σ̂+(s) := (L +λ )

(
[0,s]

)
.

It is immediate to see that σ̂ is surjective on I, strictly increasing, and uni-valued
for every s /∈ A , because σ− and σ+ are strictly increasing, and σ−(s) = σ+(s)
whenever s /∈A . Moreover it is obvious that the map is expanding, i.e.

s2− s1 ≤ ŝ2− ŝ1 (5)

for every s1,s2 ∈ I with s1 < s2, and every ŝ1 ∈ σ̂(s1), ŝ2 ∈ σ̂(s2). Accordingly σ is
surjective from Î onto I, uni-valued and 1-Lipschitz (because of (5)); furthermore,
it is constant on the interval σ(s) for every s ∈ A and strictly increasing at every
point outside σ(A ).

We recall the following
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Lemma 1 ([ABC14, Lemma 2.17]). Let F a L 1-null set in I which supports the
measure λ and F̂ := σ̂(F). Then

1. it holds σ#L̂
1 = L 1 +λ ;

2. the derivative of σ agrees with 1Î\F̂ a.e. in Î.

2.2 Solutions to singular, one-dimensional transport equations

In the following we will be dealing with 1d-transport equations involving singu-
lar terms, i.e. equations of the form

∂t
(
v(1+L 1×λ )

)
+∂sv = 0, (6)

where v : [0,T ]× I→R is a function of t,s and λ is a singular measure on I. Clearly,
equation (6) has to be understood in the sense of distributions on (0,T )× I: we say
that v is a solution to (6) if for every φ ∈C∞

c
(
(0,T )× I

)
it holds

ˆ T

0

ˆ
I
v(t,s)

(
φt(t,s)+φs(t,s)

)
dsdt =−

ˆ T

0

ˆ
I
φt(t,s)dλ (s)dt.

It is very well known that such equations present a severe phenomenon of non-
uniqueness (for the associated initial value problem). In order to clarify what we
mean, we begin by discussing an example.

Assume for simplicity that I = R and λ is the Dirac mass at 0, so that we are
considering the equation

∂t
(
v(L 1×δ0)

)
+∂sv = 0 in D ′((0,T )×R). (7)

If v represents the density of a distribution of particles, then equation (7) is saying
that each particle moves at constant speed 1 from left to right, except when it reaches
the point 0, where it may stop for any given amount of time. Therefore, if v0 is an
arbitary, bounded initial datum (for simplicity, suppose its support is contained in
(−∞,0)), then a solution of (7) with initial condition v(0,s) = v0(s) is the function
v : [0,+∞)×R→ R defined by

v(t,s) =

{
v0(s− t) s 6= 0
0 s = 0

,

which physically means that no particle stops at 0. Another solution can be con-
structed by stopping all particles at 0, i.e.
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ṽ(t,s) =


v0(s− t) s < 0
0 s = 0ˆ 0

−t
u0(τ)dτ s > 0

.

More in general, for every α > 0 one can construct a solution for which the particles
arrive at 0, stay there exactly for time α and then leave (see Figure 1):

uα(t,s) :=


u0(s− t) s < 0ˆ −t+α

−t
u0(τ)dτ s = 0

u0(s− t +α) s > 0.

t

s

α

Fig. 1 A particular solution to equation (7): the particles at the initial time are of two different
colors (yellow and green): they start moving following characteristic lines, arrive at 0 and stay
there for a prescribed time α before leaving.

More precisely, we recall the following result, which is used in the proof of
[ABC14, Lemma 4.5].

Lemma 2. Let λ be a non trivial measure on [0,L], singular w.r.t. to L 1x[0,L]. Let
furthermore K ⊂ (0,L) be a closed, L 1-negligible set, with λ (K) > 0. Then the
problem {

∂t
(
v(1+L 1×λ )

)
+∂sv = 0

v(0, ·) = 1K(·)
(8)

admits a non trivial bounded solution.
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We recall here the main steps of the proof, as it will be useful in the following.

Proof. Clearly, the function v(t,s) := 1K(s) is a stationary solution of (8). Following
[ABC14], we construct a second solution by exploiting the change of variable s =
σ(ŝ) defined in 2.1. We thus define

v(t,s) :=

w(t, σ̂(s)) for s /∈A 
σ̂(s)

w(t, ŝ)dŝ, for s ∈A ,
(9)

where we recall A is the set of atoms of λ and w : [0,T )× [0,L]→R is the (unique)
bounded, distributional solution of{

∂tw+∂sw = 0
w(0, ·) = 1σ̂(K)(·).

(10)

To see that (9) actually solves Problem 8 we proceed as follows: first observe that
(8) can be explicitly written as

ˆ T

0

ˆ L

0

(
∂tφ +1I\F ∂sφ

)
vd(L 1 +λ )dt =

ˆ L

0
φ(0, ·)1Kd(L 1 +λ ). (11)

By changing variable s=σ(ŝ), i.e. setting v̂(t, ŝ) := v(t,σ(ŝ)) and φ̂(t, ŝ) := φ(t,σ(ŝ))
and using Lemma 1, we can rewrite (11) as

ˆ T

0

ˆ L̂

0

(
∂t φ̂ +∂ŝφ̂

)
v̂ dŝdt =

ˆ L̂

0
φ̂(0, ·)1σ̂(K)dŝ.

Since on the complement of σ̂(A ) it holds v̂ = w, to conclude we only need to show
that ˆ

σ̂(A )

(
∂t φ̂ +∂ŝφ̂

)
v̂dŝ =

ˆ
σ̂(J)

(
∂t φ̂ +∂ŝφ̂

)
wdŝ.

Indeed,
ˆ

σ̂(A )
(∂t φ̂ +∂ŝφ̂)v̂dŝ = ∑

a∈A

ˆ
σ̂(a)

(∂t φ̂ +∂ŝφ̂)v̂dŝ

= ∑
a∈A

∂tφ(t,s)
ˆ

σ̂(a)
v̂dŝ

= ∑
a∈A

∂tφ(t,s)
ˆ

σ̂(a)
w =

ˆ
σ̂(A )

(∂t φ̂ +∂ŝφ̂)wdŝ,

since ∂ŝφ̂(t, ŝ) = 0 and ∂t φ̂(t, ŝ) = ∂tφ(t,s) for all ŝ ∈ σ̂(s) and by direct definition
of v̂. To conclude the proof it is enough to show that the solution v̂ does not coincide
with the stationary one, and for this a possible strategy is to show that the maximum
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M(t) of the support of v(t, ·) is strictly increasing at t = 0 (see [ABC14, Lemma
4.5])).

2.3 Structure of level sets of Lipschitz functions and Weak Sard
Property

Since we will need some results on the structure of level sets of Lipschitz func-
tions defined in the plane, we recall them here. Suppose that Ω ⊂ R2 is an open,
simply connected domain and H : Ω → R is a compactly supported Lipschitz func-
tion. For any h ∈ R, let Eh := H−1(h). We recall the following deep

Theorem 3 ([ABC13, Theorem 2.5]). Then the following statements hold for L 1-
a.e. h ∈ H(Ω):

(1) H 1(Eh) < ∞ and Eh is countable H 1-rectifiable (in what follows, we will say
Eh is regular);

(2) for H 1-a.e. x ∈ Eh the function H is differentiable at x with ∇H(x) 6= 0;
(3) Conn?(Eh) is countable and every C ∈ Conn?(Eh) is a closed simple curve;
(4) H 1(Eh \E?

h ) = 0.

Let us now define the critical set S of H as the set of all x ∈ Ω where H is
not differentiable or ∇H(x) = 0. We will be interested in the following Weak Sard
Property, introduced in [ABC14, Section 2.13]:

H#
(
L 2xS∩E?

)
⊥L 1,

where the set E? is the union of all connected components with positive length
of all level sets of H. The relevance of the Weak Sard Property in the framework
of transport and continuity equation has been completely understood in [ABC14],
to whom we refer the reader for further details. Here we simply point out that it
is possible to prove that in some sense the Weak Sard Property is satisfied by a
generic Lipschitz function (in Baire’s category sense), as the class of all Lipschitz
functions H : Ω → R satisfying the Weak Sard Property is residual in the Banach
space of Lipschitz functions Lip(Ω) (see [ABC13, Thm. 4]). However, an explicit
construction of a Lipschitz function f without the Weak Sard property was proposed
in [ABC13] and we will recall it in the Section 3, as it will be the building block of
our counterexample.

2.4 Local disintegration of Lebesgue measure and of the equation
div(ub) = µ

From now onwards, let b : Ω → R2 a bounded, Borel, divergence-free vec-
tor field. From div(b) = 0 in Ω we deduce that there exists a Lipschitz potential
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H : Ω → R such that

∇
⊥H(x) = b(x), for L 2-a.e. x ∈Ω .

Using Theorem 3 on the Lipschitz function H, we can define the negligible set N1
such that Eh is regular in Ω whenever h /∈ N1; moreover, let N2 denote the negligi-
ble set on which the measure (H#L

2)sing is concentrated, where (H#L
2)sing is the

singular part of (H#L
2) with respect to L 1. Then we set

N := N1∪N2 and E∗ := ∪h/∈NE∗h (12)

For any x ∈ E let Cx denote the connected component of E such that x ∈ Cx. By
definition of E for any x∈ E the corresponding connected component Cx has strictly
positive length. We recall the following Lemma which studies the disintegration of
the measure L 2xΩ w.r.t. the map H:

Lemma 3 ([ABC14, Lemma 2.8]). There exist Borel families of measures σh,κh,
h ∈ R, such that

L 2xΩ =

ˆ (
chH

1xEh +σh
)

dh+
ˆ

κh dζ (h), (13)

where

1. ch ∈ L1(H 1xE?
h
), ch > 0 a.e.; moreover, by Coarea formula, we have ch =

1/|∇H| a.e. (w.r.t. H 1xE?
h
);

2. σh is concentrated on E?
h ∩{∇H = 0} and σh ⊥H 1 for L 1-a.e. h /∈ N;

3. κh is concentrated on E?
h ∩{∇H = 0};

4. ζ := H#L
2xB\E? is concentrated on N (hence ζ ⊥L 1).

2.4.1 Reduction of the equation on the level sets.

We now show how it is possible to reduce an equation of the form div(ub) = µ ,
where u is a bounded Borel function on R2 and µ is a Radon measure on R2, into a
family of 1d problems on the level sets of H. For all the following Lemmas we refer
the reader to [BBG16].

The first step is the disintegration of the equation:

Lemma 4 ([BBG16, Lemma 3.5]). Suppose that µ is a Radon measure on R2 and
u ∈ L∞(R2). Then the equation

div(ub) = µ (14)

holds in D ′(Ω) if and only if:

• the disintegration of µ with respect to H has the form
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µ =

ˆ
µh dh+

ˆ
νh dζ (h), (15)

where ζ is defined in Point (4) of Lemma 3;
• for L 1-a.e. h ∈ R it holds

div
(
uchbH 1xEh

)
+div(ubσh) = µh; (16)

• for ζ -a.e. h ∈ R
div(ubκh) = νh. (17)

2.4.2 Reduction on the connected components.

The next step is to reduce further the analysis of the equation (16) on the nontriv-
ial connected components of the level sets. In view of Lemma 4 in what follows we
always assume that h /∈ N (see (12)).

Lemma 5 ([BBG16, Lemma 3.7]). The equation (16) holds iff

• for any nontrivial connected component C of Eh it holds

div
(
uchbH 1xC

)
+div(ubσhxC) = µhxC; (18)

• it holds
div(ubσhxEh\E?

h
) = µhxEh\E?

h
. (19)

Now we can split further and obtain the following

Lemma 6 ([BBG16, Lemma 3.8]). Equation (18) holds iff

div
(
uchbH 1xC

)
= µhxC, (20a)

div(ubσhxC) = 0. (20b)

2.4.3 Reduction of the equation on connected components in parametric form

Finally, we would like to discuss the parametric version of the equation (20a). Let
γ : I → R2 be an injective Lipschitz parametrization of C, where I = R/`Z or I =
(0, `) (for some ` > 0) is the domain of γ . The existence of such a parameterization
is granted by [ABC13, Thm. 2.5 (iv)].

Lemma 7 ([BBG16, Lemma 3.9]). Equation (20a) holds iff for any admissible
parametrization γ of C

∂sûh = µ̂h (21)

where γ#µ̂h = µhxC, ûh = u◦ γ .
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2.5 Local disintegration of a balance law

We now pass to consider a general balance law associated to the Hamiltonian
vector field b, i.e. ∂tu+ div(ub) = ν , being ν a Radon measure on (0,T )×Ω and
u ∈ L∞((0,T )×Ω). A reduction on the connected components of the Hamiltonian
H can be performed, similarly to what we have done for equation div(ub) = µ to
above. In some sense, we are presenting now the time-dependent version of Lemmas
4-5-6-7.

Lemma 8. A function u ∈ L∞([0,T ]×Ω) is a solution to the problem{
ut +div(ub) = ν ,

u(0, ·) = u0(·),
in D ′((0,T )×Ω) (22)

if and only if

• ûh(t,s) := u(t,γh(s)) solves{
∂t ûh +∂sûh = ν̂h

ûh(0, ·) = û0h(·),
in D ′((0,T )× I)

• it holds
div(ubσh) = 0

for L 1-a.e. h, where γh : I → R2 is an admissible parametrization of a connected
component C of the level set Eh of the Hamiltonian H and ν̂h is a measure such that
ν̂h = (γ−1

h )#ν .

Proof. Multiplying equation in (22) by a function ψ ∈C∞
c ([0,T )) and formally in-

tegrating by parts we get

utψ+div(uψb)=ψν ⇒ div
(ˆ T

0
uψ dt b

)
=

ˆ T

0
uψt dt−ψ(0)u0+

(ˆ T

0
ψ dt

)
ν ,

which can be written in the form

div(wb) = µ, (23)

where w :=
´ T

0 uψ dt and

µ :=
(ˆ T

0
uψt dt−ψ(0)v0

)
L 2 +

(ˆ T

0
ψ dt

)
ν .

Applying Lemma 4 and Lemma 6 to (23), we obtain that continuity equation is
equivalent to

div
(
wchbH 1xEh

)
= µh (24)

and
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div(ubσh) = 0 (25)

for L 1-a.e. h, where the measure µh can be computed explicitly, using Coarea For-
mula and disintegration Theorem

µh =

(ˆ T

0
uψt dt−ψ(0)v0

)
H 1xEh +

(ˆ T

0
ψ dt

)
νh.

Thanks to Lemma 7, equation (24) is equivalent to

∂sû = µ̂h,

in D ′(I). Now being γh Lipschitz and injective, we have

(γ−1
h )#

(
H 1xEh

)
= |γ ′h|L 1,

and this allows us to compute explicitly

µ̂h = (γ−1
h )#µh

= (γ−1
h )#

(ˆ T

0
uψt dt chH

1xEh−
ˆ
R2

ψ(0)v0chdH 1xEh +

ˆ T

0
ψ dt νh

)
=

ˆ T

0
v(τ,γ(s))ψτ(τ)dτ−ψ(0)u0(γh(s))ch(γ(s))+

(ˆ T

0
ψ(τ)dτ

)
ν̂h,

(26)

where
ν̂h = (γ−1

h )#ν .

Formally, (26) means

µ̂h =−
ˆ T

0
∂t û+ ν̂h.

To sum up, we have obtained that Problem (22) is equivalent to{
∂t ûh +∂sûh = ν̂h,

ûh(0, ·) = û0h(·),

and
div(ubσh) = 0

in D ′((0,T )× I) for L 1-a.e. h ∈ R. We explicitly notice that the last relation is
always satisfied, as b = 0 on the critical set (where σh is concentrated).
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2.6 Anzellotti traces for measure divergence L∞ vector fields

Let now ρ ∈ L∞(Rd) and v ∈ L∞(Rd ;Rd). We consider the vector field V := ρv
and we assume that its distributional divergence divV is represented by some Radon
measure, so that V is a so called measure divergence vector field. There are well
known results that allows to give a meaning and to characterize the trace of such
vector fields over rectifiable sets. We list here the main ones and we refer for more
details to [Anz83, DL07, ACM05].

Definition 1. Given a bounded, open domain with C1 boundary U ⊂Rd , the (Anzel-
lotti) normal trace of V over ∂U is the distribution defined by

〈
Tr(V,U) ·n,ψ

〉
:=

ˆ
U

ψ(x)d(divV)(x)+
ˆ

U
V ·∇ψ(x)dL d(x)

for every compactly supported smooth test function ψ ∈C∞
c (Rd).

We have the following Proposition, which says that the trace of a measure diver-
gence vector field is not an arbitray distribution, but is is induced by integration of
a bounded function defined on ∂U .

Proposition 1. There exists a unique g ∈ L∞
loc(∂U ;H d−1x∂U ) such that

〈
Tr(V,U) ·n,φ

〉
=

ˆ
∂U

gφ H d−1, ∀φ ∈C∞
c (Rd).

One can also define the traces of V on a oriented hypersurface of class C1, say
Σ . Indeed, choosing an open C1 domain U bU such that Σ ⊂ ∂U and the unit outer
normals agree νU = νΣ we can define

Tr−(V,Σ) ·n := Tr(V,U).

Analogously, choosing an open C1 domain U ′ such that Σ ⊂ ∂U ′ and νU ′ = −νΣ

we define
Tr+(V,Σ) ·n :=−Tr(V,U ′) ·n.

We remark that one can replace C1 regularity with Lipschitz, so that it is pos-
sible to give the definition of normal trace of a measure divergence vector field on
countable Hd−1-rectifiable sets.

We collect here other important results on Anzellotti’s weak traces:

Proposition 2. If V is a bounded, measure divergence vector field, then:

• divV�H d−1 as measures in Rd;
• for any oriented, C1 hypersurface Σ it holds

divVxΣ =
(
Tr+(V,Σ) ·n−Tr−((V,Σ) ·n

)
H d−1xΣ .
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Finally, an interesting case is when we assume more regularity on the vector
field, for instance v ∈ BVloc(Rd ;Rd). In this situation, one has the usual definition
of the trace of v over ∂U as BV function. We recall that the trace of BV functions v
for open sets U ⊂ Rd of class C1 is a measure which is absolutely continuous w.r.t.
H d−1x∂U . We conclude this section by recalling the following chain rule for traces,
proved when v ∈ BV in [ADLM07] (see also [ACM05] for the case of vector fields
of bounded deformation).

Theorem 4 (Change of variables for traces). Let U ⊂ Rd be an open domain of
class C1 and let v ∈ BVloc(Rd ;Rd) and β ∈ Lip(R). Then if V = ρv is a measure
divergence vector field, then also β (ρ)v is a measure divergence vector field and,
moreover, it holds

Tr±(β (ρ)v,U) ·n = β

(
Tr±(ρv,U) ·n
Tr±(v,U) ·n

)
Tr±(v,U) ·n, H d−1 -a.e. on ∂U,

where the ratio is arbitrarily defined at points where the trace Tr(v,U) vanishes.

3 The construction of the Hamiltonian

In this section, we construct a suitable Lipschitz function H : R2 → R that will
be the building block of our counterexample. The construction presented in this
paragraph goes back to [ABC13].

3.1 A function that does not have Weak Sard Property

Let (an)n∈N,(bn)n∈N be decreasing sequences of positive numbers with asymp-
totic behaviour given by

an ∼ bn ∼
1

n22n .

Hence, the following quantities

â :=
∞

∑
n=0

2n+2an, b̂ :=
∞

∑
n=0

2n+1bn

are finite. Chosen a real number δ > 0, we set

c0 := δ + â, d0 := δ + b̂.
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3.1.1 The construction of the set

We consider the set C0, which is the closed rectangle with width c0 and height
d0. Then we define C1 to be the union of 4 closed rectangles with sizes

c1 :=
c0

2
−2a0, d1 :=

d0

2
−b0

like in Figure 2.

a0a0 c1

b0

d1

d0
2

c0
2

Fig. 2 The sets C0 (black) and C1 (red).

If we iterate the above construction, we obtain a sequence of nested sets: more
precisely, if Cn is the union of 4n pairwise disjoint, closed rectangles with width cn
and height dn, then Cn+1 is the union of 4n+1 pairwise disjoint closed rectangles
with width

cn+1 :=
cn

2
−2an, dn+1 :=

dn

2
−bn.

It is easy to see that from this recursion we have

2ncn = c0−
n−1

∑
m=0

2m+2am↘ δ and 2ndn = d0−
n−1

∑
m=0

2m+2bm↘ δ
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which implies that cn,dn are always strictly positive and satisfy

cn ∼ dn ∼
δ

2n .

If C denotes the intersection of the closed sets Cn we have

L 2(C) = lim
n

L 2(Cn) = lim
n

4ndncn = δ
2.

3.1.2 Construction of the function

We now turn to the construction of a suitable sequence of Lipschitz and piecewise
smooth functions fn : R2→ R. The function f0 is defined by its level sets, drawn in
Figure 3a.

Let sn be the oscillation of the function fn on the component of Cn; it is clear
from the picture that

sn+1 =
sn

4
, (27)

hence sn = 4−ns0 = 4−nd0.

3.1.3 L∞ gradient estimates

We can now estimate the gradient of the functions fn. It is easy to see that the
supremum of |∇ fn| in the set Cn is attained in the set E defined in Figure 3a. Choos-
ing the axes as in Figure 3b we can write an explicit formula for fn; in particular,
the line that passes through the points (−an,bn) and (an,

dn
2 −bn) has equation

x2 = bn +
1

4an
(x1 +an)(dn−4bn).

Then if we pick a τ ∈ (0,bn) we impose the similarity of the triangles, hence

τbn

bn
=

x2

bn +
1

4an
(x1 +an)(dn−4bn)

hence we get

τ =
4anx2

(dn−4bn)x1 +andn
.

Therefore, the function fn has the following explicit formula in E:

fn(x1,x2) = (1− τ)t + τ

(
t +

sn

4

)
= t +

sn

4
τ = t +

ansnx2

(dn−4bn)x1 +andn
.

A direct computation shows that
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a0a0 c1

b0

d1

d0
2

c0
2

(a) Level sets of the function f0.

x2

x1

bn

dn
4

dn
2 −bn

−an an

fn = t + sn
4

fn = t

(b) Estimate of |∇ fn|: the level sets of fn in the set E.

Fig. 3 Level sets of the function f0 and estimates for |∇ fn|.
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∇ fn(x) =
1

andn +(dn−4bn)x1
(−(dn−4bn)( fn(x)− t),ansn) .

Taking into account that x1 ≥ −an and that dn− 4bn > 0 (due to the asymptotic
behaviour) we can estimate from below the denominator:

andn +(dn−4bn)x1 ≥ 4anbn.

On the other hand, we clearly have | fn− t| ≤ sn and thus we obtain the following
estimate:

‖∇ fn‖L∞(Cn) ≤
(dn−4bn)sn +ansn

4anbn
= O(n42−n). (28)

Now let us define the function hn := fn − fn−1. Clearly, by definition of fn, the
support of hn lies in Cn; moreover,

‖∇hn‖∞ ≤ ‖∇ fn‖L∞(Cn)+‖∇ fn−1‖L∞(Cn−1) ∼ n42−n. (29)

Since the distance of a point in Cn from R2 \Cn is of order cn ∼ 2−n, by the Mean
Value Theorem

‖hn‖L∞ ∼ n44−n.

For every x ∈ R2 set

f (x) := lim
n→+∞

fn(x) = f0(x)+
∞

∑
n=1

hn(x).

We sum up the properties of the function f in the following

Theorem 5 ([ABC13, Prop. 4.7]). If C is the set above and f is the function built
in the previous sections, then:

(i) f is differentiable at every x ∈C with ∇ f (x) = 0;
(ii) L 1( f (C)) = d0;

(iii) f](L 2xC) = mL 1x f (C), where m = δ 2/d0; in particular, f does not satisfy the
Weak Sard Property.

Proof. (i) The estimates (28) and (29) yield

‖∇ f‖L∞(Cn) = O(n42−n)

which means that the Lipschitz constant of f on each component of Cn is of order
O(n42−n); being C contained in the interior of Cn, it follows that for every x ∈C

limsup
y→x

| f (x)− f (y)|
|y− x|

= O(n42−n).

Letting n→+∞ we obtain the assertion, i.e. f is differentiable at x with ∇ f (x) =
0.
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(ii) The range f (C) is the intersection of all f (Cn), and f (Cn) agrees with fn(Cn), and
therefore it is the union of 4n pairwise disjoint, closed intervals each of length sn
(defined as the oscillation of fn in Cn). Thus from (27),

L 1( f (C)) = lim
n

L 1( fn(Cn)) = lim
n

4nsn = d0.

(iii) We must show that the measures µ := f#(L
2xS) and λ := mL 1x f (C) are the

same. Since both µ and λ are supported on the compact set f (C), we apply
Lemma 4.6 in [ABC13] to the partitions Fn given by the sets R′ := f (R∩C)
where R is a component of Cn, and deduce that it suffices to prove µ(R′) = λ (R′)
for every such R′. Since C can be written as a disjoint union of 4n translated
copies of R∩C, we have

µ(R′) = L 2(R∩C) = 4−nL 2(C) = 4−n
δ

2.

On the other hand, as already observed, f (C) can be written as a disjoint union
of 4n translated copies of R′, and then

λ (R′) = mL 1(R′) = 4−nmL 1( f (C)) = 4−nmd0 = 4−n
δ

2.

3.1.4 Further remarks on the Hamiltonian without Weak Sard Property

The Lipschitz function constructed in 3.1 will be denoted as fc0,d0,δ , since
c0,d0,δ are free parameters in the construction. Recall also that osc fc0,d0,δ = d0
so that, up to a translation, we can suppose directly that

fc0,d0,δ (R
2) = (0,d0).

The critical set S of fc0,d0,δ has area L 2(S) = δ 2 and, as shown in Theorem 5

( fc0,d0,δ )#(L
2xC) =

δ 2

d0
L 1x f (C).

Therefore, we can apply Disintegration Theorem to the probability measure 1
δ 2 L 2xC

w.r.t. the map fc0,d0,δ . We thus write

1
δ 2 L 2xC =

1
d0

ˆ
νh dh

where h 7→ νh is a measurable measure-valued map, νh being a probability measure
concentrated on f−1

c0,d0,δ
(h)∩C for L 1-a.e. h ∈ R. We can actually say more, char-

acterizing completely the measure νh. In particular, we want to show that for a.e. h
the intersection

f−1
c0,d0,δ

(h)∩C

is a single point. We have indeed
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f−1
c0,d0,δ

(h)∩C =
⋂
n

(
f−1
c0,d0,δ

(h)∩Cn
)

and for every h it is possible to prove that f−1
c0,d0,δ

(h)∩Cn is a sequence of nested
intervals whose measure goes to 0 as n→ +∞. For instance, if h ∈ (d0/2n,d0), we
have that

f−1(h)∩Cn =

(
an−1,

cn−1

2
−an−1

)
×{d0}.

The lenght of the interval is clearly cn−1
2 − 2an−1 = cn ' δ · 2−n → 0 as n→ +∞.

This shows that f−1(h)∩C = {xh} for every h ∈ (0,d0) = f ([0,c0]× [0,d0]). So νh
has to be δxh . Finally notice that we can write

L 2xC =

ˆ
δxhmdh.

3.1.5 Scaling the Hamiltonian f1,1,δ

Set now H1 := f1,1,δ whose range is (0,1). The disintegration now looks like

L 2xC = δ
2
ˆ

δxh dh = |S|
ˆ

δxh dh

which will be written from now onwards as

L 2xC =

ˆ
chδxh dh,

where we have set for L 1-a.e. h the coefficient ch := |S|. The map h 7→ ch is thus
constant and it simply represents the density of f](L 2xC) along the level sets. We
will see that this map plays a significant role in the construction: we will suitably
modify it, in order to obtain a piecewise constant map which is integrable but not
square-integrable. To do this, we perform some scaling transformations: for fixed
n ∈ N and α ∈ R we first scale the domain of H1 with the following linear map:

Qn : (x,y) 7→
(

x,
y
2n

)
The area of the critical set was |S| = δ 2 =

´ 1
0 ch dh, while after the operation the

area becomes

detQn · |S|=
|S|
2n

hence we set

c′h :=
|S|
2n .

Now we rescale the range (0,1) 7→ (0,2−nα) via a map Rn,α : R→ R so that if we
impose
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|S|
2n =

ˆ 2−nα

0
c′′h dh

we have to set accordingly

c′′h :=
|S|
2n 2nα =

|S|
2n(1−α)

Finally, we define the translation operator Tn,α which acts both in the domain
and in the target in the following way: if a function is defined in the square [0,1]×[
0, 1

2n

]
⊂ R2 with range

[
0, 1

2nα

]
then under the action of Tn,α the domain becomes

the rectangle [0,1]×
[ 1

2n ,
1

2n−1

]
while the range turns to the interval

[ 1
2nα ,

1
2nα−1

]
. We

call the resulting function Tn,α ◦Rn,α ◦Qn,α ◦H1 := Hn,α and we define now

Hα(x,y) := ∑
n∈N

Hn,α(x,y), (x,y)∈D :=
⋃

n∈N

(
[0,1]×

[ 1
2n ,

1
2n−1

])
= [0,1]×[0,1].

In other words, we have “patched together” the rescaled Hamiltonians, one above
the other, with ranges that are adiacent intervals. Notice that the function is well
defined, as the domains of the different Hn,α are disjoint, so that for any (x,y) ∈ D
the sum is locally finite (actually it reduces to a single term).

3.1.6 Properties of Hα

Some remarks about the properties of Hα are now in order.

• For α > 0, the function Hα is bounded. Indeed, its range is

Hα(D) =
⋃

n∈N

[
2−nα ,2−nα+1]

whose measure is

L 2(Hα(D)) = ∑
n

1
2nα

=: `α <+∞,

for α > 0.
• For any α ∈ R, the area of the critical set of Hα is always finite:

ˆ `α

0
c′′h dh = ∑

n

|S|
2n(1−α)

× 1
2nα

= ∑
n

|S|
2n = |S|<+∞.

• On the contrary, we have that

ˆ `α

0
(c′′h)

2 dh = ∑
n

|S|2

22n(1−α)
× 1

2nα
= ∑

n

|S|2

2n(2−α)
.
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In particular, if we take α ≥ 2 we have that

ˆ `α

0
(c′′h)

2 dh =+∞.

In other words, for α ≥ 2, the function h 7→ c′′h belongs to L1([0, `α ])\L2([0, `α ])
(it behaves essentially like n1[0,n−2] in [0,1]).

4 The counterexample

We now fix α > 2 and we consider the corresponding Hamiltonian Hα con-
structed in paragraph above and we set b := ∇Hα . By construction, setting σh :=
c′′hδxh , we have that Hα satisfies the following

L 2 =

ˆ
R

(
1
|∇H|

H 1xEh +σh

)
dh. (30)

For typographical reasons, we will write from now onward simply ch instead of
c′′h .

By applying Lemma 8 to Hα we get at once the following

Proposition 3. The problem {
∂tu+div(ub) = 0
u(0, ·) = u0(·)

(31)

is equivalent to 
∂t ûh +∂sûh + ch∂t ûL 1⊗δsh = 0
û0(s) = u0h

∂s
(
ûhchL

1⊗δsh

)
= 0

(32)

for L 1-a.e. h.

Remark 1. Notice that, by splitting

u = m1S +u1Sc

the equation can be written as

∂t(u1Sc)+∂t(m1S)+div(m1Sb)︸ ︷︷ ︸
=0

+div(u1Sc b) = 0

because b = 0 on S by construction. Hence, taking into account that b = 0 on the
critical set, Proposition 3 is actually establishing that
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∂t(u1Sc)+div(u1Scb) =−∂t(m1S)

u(0, ·) = u0(·)

is equivalent to{
∂t ûh +∂sûh + ch∂tm̂hL

1⊗δsh = 0
û0(s) = u0h

for L 1-a.e. h.

Now we consider the Cauchy problem for the transport equation associated to b
with initial condition u0 := 1S:{

∂tu+div(ub) = 0
u(0, ·) = 1S(·)

.

We disintegrate the equation on the level sets and we obtain, denoting for typo-
graphic simplicity by vh(t,s) := ûh(t,s), we have{

∂tvh +∂svh =−ch∂t(vhL
1×δsh)

vh(0, ·) = ch1{sh}(·)
.

i.e. {
∂t
(
vh(1+L 1× chδsh)

)
+∂svh = 0

vh(0, ·) = ch1{sh}(·)
, (33)

which is exactly of the form 8. Applying Lemma 2, we have that the function

vh(t,s) :=

ch1σ̂(sh)(σ̂(s)− t) s 6= sh 
σ̂(sh)

ch1σ̂(sh)(ŝ− t)dŝ s = sh

is a non-stationary solution to (33). Some easy computations show that

vh(t,sh) =

 
σ̂(sh)

1σ̂(sh)(ŝ− t)dŝ =
1
ch

ˆ sh+ch

sh

ch1[sh,sh+ch](ŝ− t)dŝ

=

ˆ sh+ch−t

sh−t
1[sh,sh+ch](τ)dτ

=

{
ch− t t < ch

0 t > ch

In particular, we have that for a.e. h ∈ R and for every t ∈ (0,T ) it holds

∂tvh(t,sh) =−1[0,ch](t).

Hence, for this particular solution, the 1D equation on the level set Eh is explicit:
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∂tvh +∂svh = ch1[0,ch],

which can be written also in the divergence form

divt,s(vh(1,1)) = ch1[0,ch]. (34)

From (34), we deduce immediately that, for a.e. h ∈ R, the vector field vh(1,1)
is a bounded, divergence-measure vector field in (0,T )×Rs. Applying Point 2 of
Proposition 2 we can write for a.e. t ∈ (0,T )

v−h (t)− v+h (t) = +ch1[0,ch](t) (35)

where v±h are the (L∞ functions representing) Anzellotti traces on the surface Σh :=
{s = sh}, defined as

v±h :=
Tr±
(
vh(1,1),Σh

)
Tr±
(
(1,1),Σh

) = Tr±
(
vh(1,1),Σh

)
.

We observe that by construction v−h = 0 a.e., hence (35) reduces to

−v+h = ch1[0,ch].

Taking now β (τ) = τ2 and applying the Chain rule for Anzellotti traces (4) (being
the vector field v = (1,1) clearly of bounded variation) we obtain that for a.e. h ∈R
the vector field wh(1,1) := v2

h(1,1) is still a divergence-measure vector field and it
holds

w−h = 0, w+
h =+c2

h1[0,ch],

i.e.
w−h −w+

h =−c2
h1[0,ch]

so that, applying again Point 2 of Proposition 2, we can write

divt,s(wh(1,1))xΣh = (∂t ŵ+∂sŵ)xΣh =−c2
h1[0,ch].

which in turn can be written as (recall m̂h = chvh1sh )

∂t ŵh +∂sŵh =−ch∂t(m̂hL
1×δsh), for a.e. h ∈ R.

Integrating and using Remark (1), we obtain the equation satisfied by u2:

∂t(u2)+div(u2b) = T,

being T the distribution defined by

T :=−∂t(u21S). (36)

We conclude with the following
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Proposition 4. The distribution T defined in (36) is not representable by a Radon
measure.

Proof. By contradiction, assume that T is induced by some measure ξ : being the
divergence of the bounded, measure-divergence vector field w(1,b), we would nec-
essarily have ξ �H d . On the other hand, it is immediate to see, directly from the
construction of the Hamiltonian, that for any φ ∈C∞

c ,‖φ‖∞ ≤ 1 we have

ˆ
[0,T ]×R2

φdξ =

ˆ T

0

ˆ
S

u2
φtdtdx =

ˆ
R

ˆ T

0
u(t,xh)c2

hφt(t,xh)dt dh

which diverges being ch /∈ L2(R). Thus

sup
{
〈T,φ〉 : φ ∈C∞

c ((0,T )×R2),‖φ‖∞ ≤ 1
}
=+∞

which shows that T cannot be a distribution of order 0, hence it is not representable
by a measure.
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