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Abstract. A Theorem of Lyapunov states that the range R(µ) of a non–atomic vector
measure µ is compact and convex. In this paper we give a condition to detect the dimension
of the extremal faces of R(µ) in terms of the Radon–Nikodym derivative of µ with respect

to its total variation |µ|: namely R(µ) has an extremal face of dimension less or equal to k
if and only if the set (x1, . . . , xk+1) such that f(x1), . . . , f(xk+1) are linear dependent has

positive |µ|⊗(k+1)–measure. Decomposing the set X in a suitable way, we obtain R(µ) as
vector sum of sets which are strictly convex. This result allows us to study the problem of the
description of the range of µ if µ has atoms, achieving an extension of Lyapunov’s Theorem.
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Introduction

A well known Theorem of Lyapunov states that the range R(µ) of a non–atomic vector
measure µ on a measurable space (X,M) with values in Rn is compact and convex. We
recall that by definition R(µ) is the set {µ(E) : E ∈ M}.
In [6] Halkin proved a Lyapunov’s type Theorem introducing the measurable sets D+(p) =
{x ∈ X : f(x) · p > 0}, D0(p) = {x ∈ X : f(x) · p = 0} where p in a vector in Rn \ {0},
f(·) is the Radon–Nikodym derivative of µ with respect to its total variation |µ| and ” · ”
is the scalar product in Rn. These sets were used in [3] to obtain the following Theorem:

Theorem A. The following equivalence holds:

1) R(µ) is a n–dimensional strictly convex set;
2) For every p in Rn \ {0} the set {x ∈ X : f(x) · p = 0} is negligible;
3) det[f(x1), · · · , f(xn)] 6= 0 |µ|⊗n–a.e. on Xn.

Generalizing some results of [3] and [7], we extend the previous Theorem to the case of
extremal faces of dimension k, 1 ≤ k ≤ n− 1 (see section 1 for the definition of extremal
face). In fact we have:

Theorem B. These conditions are equivalent:

1) R(µ) has an extremal face of dimension less than or equal to k, 1 ≤ k ≤ n− 1;
2) There exists in Rn a k–dimensional subspace Sk such that |µ|(f−1(Sk)) > 0;
3) f(x1) ∧ · · · ∧ f(xk+1) is 0 on a set of |µ|⊗(k+1)–positive measure in Xk+1, where

” ∧ ” denotes the external product in Rn.

The last point means that the set (x1, . . . , xk+1) in Xk+1 such that f(x1), . . . , f(xk+1) are
linear dependent has positive |µ|⊗(k+1)–measure. This result is achieved in section 1.
In section 2 we present an application of these results to the decomposition of X into a
sum of measurable sets. It is well know that a zonoid, i.e. the range of a vector measure, is
decomposable. This means that it can be written as the vector sum of sets which are not
homothetic to itself: in fact, if {Yj}j∈N is any measurable partition ofX,X =

⋃∞
j=1 Yj , then

R(µ) is the vector sum of R(µ|Yj ). We decompose the space X into a sum of measurable
sets,

X = Xn ∪
( ⋃
i∈In−1

Xi
n−1

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
,

such that the range of µ restricted to Xi
k is a compact k–dimensional strictly convex set:

this means that its extremal faces are either points or the whole set R(µXi
k
).

We recall that a set H ∈ M is an atom of µ if |µ|(H) > 0 and for all A ∈ M such that
A ⊆ H, |µ|(A) is either 0 or |µ|(H). We call a measure non–atomic if it has no atoms,
atomic if there is at least an atom, purely atomic if every non–negligible set E is a union
of atoms of µ.
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In section 3 we study the range of an atomic real measure. It is well known that the set
{H ∈ M : H is an atom of µ} is countable. In the first part of this section we prove that
even for an atomic vector measureR(µ) is compact. However, in generalR(µ) is not convex
if µ is atomic: it is sufficient to consider a purely atomic positive measure with just one atom
H1. In this caseR(µ) = {0, µ(H1)}. Denoting with ai the measure of the atomHi, we show
that the range of a purely atomic real measure is the set K =

{
x =

∑∞
i=1 aisi, si ∈ {0, 1}

}
,

and that the maximal gap in K is sup
{
|ai| −

∑
|aj |<|ai| |aj |, i ∈ N

}
. With these results

we obtain a first extension of Lyapunov’s Theorem to atomic real measures, simply filling
the gaps in K with the non–atomic part of the measure µ, namely µ|X\(∪Hi):

|µ|(X \ (∪Hi)) ≥ sup
i≥1

(
|µ|(Hi)−

∑
j:|µ|(Hj)<|µ|(Hi)

|µ|(Hj)
)

(∗).

In section 4 we apply the previous results to an atomic vector measure. We prove that
R(µ) is convex if and only if R(µ) contains the 1–dimensional extremal faces of its convex
envelope. Since we also prove that the decomposition of X given in section 2 is still valid,
even if µ is atomic, we just need to check condition (∗) on each set Xi

1, achieving an
extension of Lyapunov’s Theorem.

1. Extremal faces of the range of a vector measure

We recall some properties of extremal faces of a convex set D ⊆ Rn. These results can
be found in [10].
A subset D1 ⊆ D is called extremal face if we have:

∀y ∈ D1, y1, y2 ∈ D and y =
(y1 + y2)

2
=⇒ y1, y2 ∈ D1.

By a cone we mean a convex subset C of Rn such that if x ∈ C implies λx ∈ C for every
positive λ; we call C a generating cone if C ∪ (−C) = Rn. Let ΠC = C ∩ (−C). In the
following by cone we will mean a generating cone.
Any cone C induces a pseudo-order relation in Rn: we say x ≤C y if y− x ∈ C. Note that
it is possible to have x and −x in C: this happens if and only if x ∈ ΠC .
The following result is well known:

Proposition 1.1. Suppose that D is a convex and compact subset of Rn. Then D1 ⊆ D
is an extremal face if and only if there exists a generating cone C such that

D1 =
{
y1 ∈ D : y1 ≥C y ∀y ∈ D

}
.

We say that D1 is defined by the order relation induced by C. The properties of
extremal faces of convex sets were used by Olech in [7] to characterize extremal subsets of
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decomposable families of functions.
Let X be a set, M a σ–algebra of subsets of X, ν a positive non–atomic measure on
(X,M). A family K of functions in L1(X;Rn) is called decomposable if for each pair
u, v ∈ K and any measurable χ : X → {0, 1} we have χu+ (1− χ)v ∈ K. We say that a
subset K1 of K is an extremal face in K if there exists a generating cone C such that

K1 =
{
u ∈ K : u(x)− v(x) ∈ C ν–a.e. ∀v ∈ K, x ∈ X

}
.

As it is shown in [7], the set D = {
∫
X
u(x) dν : u ∈ K} is convex and the following result

holds:

Proposition 1.2. K1 is an extremal face in K if and only if the set D1 = {
∫
X
u(x) dν :

u ∈ K1} is extremal in D = {
∫
X
v(x) dν : v ∈ K}. Moreover D1 is the extremal face of D

defined by the order relation induced by C.

In section 1 and 2 we consider a non–atomic vector measure µ on (X,M) with values

in Rn and let f = dµ
d|µ| be the density of µ with respect to its total variation |µ|; we will

denote by |µ|⊗n the n–product measure of |µ| on Xn. Unless the contrary is expressly
stated, for A, B in X by A ⊆ B we mean that B \ A is |µ|–negligible. The application of
the previous results to the decomposable set K = {fχA : A ∈ M} and ν = |µ| gives the
following result:

Proposition 1.3. Let M1 a subset of M. The set F defined as F =
{
µ(B) : B ∈ M1 ⊆

M
}
is an extremal face of R(µ) =

{
µ(A) : A ∈ M

}
if and only if there exists a cone C

such that:
M1 =

{
E ∈ M : fχE − fχA ∈ C |µ|–a.e. ∀A ∈ M, on X

}
.

Moreover, F is the extremal face of R(µ) defined by the order relation induced by C.

We give now a new characterization of the above set M1. By f−1(D) we denote the
inverse image through f of a subset D of Rn.

Theorem 1.4. Let F be an extremal face for R(µ) and C the corresponding cone so that
F =

{
y1 ∈ R(µ) : y1 ≥C y, ∀y ∈ R(µ)

}
. Then the following conditions are equivalent:

a) µ(E) belongs to F ;
b) E satisfies the condition:

f−1(C \ΠC) ⊆ E ⊆ f−1(C). (1)

Proof. Assume that µ(E) ∈ F for some E ∈ M. By Proposition 1.3 for every A ∈ M we
have fχE − fχA ∈ C |µ|–a.e.. If we choose A = ∅, then fχE ∈ C so that E ⊆ f−1(C).
If A is the whole set X, then fχE − f = −fχ(X\E) ∈ C. Thus X \ E ⊆ f−1(−C), or
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equivalentlyX\f−1(−C) = f−1(C\ΠC) ⊆ E, sinceX = f−1(Rn) = f−1((−C)∪(C\ΠC)).
Conversely assume that (1) holds and consider ϕ(x) = f(x)χE(x)−f(x)χA(x) for A ∈ M.
If x is in E, then ϕ(x) may be 0 or f(x), thus ϕ(x) ∈ C. If x is not in E, then ϕ(x) may
equal −f(x) or 0. But by definition f(x) is not in C \ ΠC , implying that f(x) is in −C
because C is generating. Thus in any case ϕ(x) ∈ C. �
Remark. With the notation of Proposition 1.3, Theorem 1.4 yields that

M1 =
{
E ∈ M : f−1(C \ΠC) ⊆ E ⊆ f−1(C)

}
.

We denote by Sk ⊆ Rn a linear subspace of dimension k and by Ωk the family of these
subspaces. We say that an extremal face F of a convex set K has dimension k if the
smallest affine set that contains it has linear dimension k: in particular the dimension of
a convex set K is the linear dimension of the smallest affine set containing it. It is easy to
see that if C is the cone related to F as in Theorem 1.4, then ΠC has at least dimension k.
We say that the cone CF , corresponding to F , is minimal if ΠCF has the same dimension
of F and CF is generating. We recall that if C is a generating cone and “·” is the usual
scalar product in Rn, then there exists an orthonormal family of vectors p1, . . . , pk such
that

C =
{
y ∈ Rn : y · p1 > 0

}
∪

∪
{
y ∈ Rn : y · p1 = 0, y · p2 > 0

}
∪ · · · ∪

∪
{
y ∈ Rn : y · p1 = 0, . . . , y · pk−1 = 0, y · pk > 0

}
∪ΠC ,

(2)

where ΠC is defined as before:

ΠC = C ∩ (−C) =
{
y ∈ Rn : y · pi = 0, i = 1, . . . , k

}
.

Conversely if a cone is defined as in (2), it is clearly generating.

Lemma 1.5. The minimal cone CF corresponding to an extremal face F of K exists.

Proof. Let C be the cone corresponding to F as in Proposition 1.1; we can assume that
C has the form (2). The only case to study is when the dimension of ΠC is greater than
the dimension of F : let us suppose that the dimension of F is k and the dimension of ΠC

is k + k1 for some k1 > 0. Let Sk(F ) ⊆ ΠC be the minimal subspace of Rn such that its

translate contains F . Consider an orthonormal base {qi}k1
i=1 in the orthogonal complement

of Sk(F ) in ΠC , and define

CF =
{
y ∈ Rn : y · p1 > 0

}
∪ · · · ∪

∪
{
y ∈ Rn : y · p1 = 0, . . . , y · pn−k−k1 > 0

}
∪

∪
{
y ∈ Rn : y · p1 = 0, . . . , y · pn−k−k1 = 0, y · q1 > 0

}
∪ · · · ∪

∪
{
y ∈ Rn : y · p1 = 0, . . . , y · pn−k−k1 = 0, y · q1 = 0, . . . , y · qk1 > 0

}
∪ΠCF ,
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where

ΠCF
= CF ∩ (−CF )

=
{
y ∈ Rn : y · pi = 0, y · qj = 0, i = 1, . . . , n− k − k1, j = 1, . . . , k1

}
.

It is obvious that CF is generating and by construction

ΠCF
= Sk(F ).

Finally it is easy to show that F =
{
y1 ∈ R(µ) : y1 ≥CF

y, ∀y ∈ R(µ)
}
. �

In what follows a closed convex subset C of Rn is said to be strictly convex if it has
no non–trivial (e.g. different from a point and from R(µ)) extremal faces, i.e. if its only
proper extremal faces are points.
Let k ∈ {1, . . . , n − 1}. The following corollary is an easy consequence of the previous
results.

Corollary 1.6. R(µ) has a non–trivial extremal face of dimension less than or equal to k
if and only if there exists a k–dimensional subspace Sk in Ωk such that |µ|(f−1(Sk)) > 0.

Remark. By Lyapunov’s Theorem R(µ) is compact and convex, so that it does have at
least an extreme point. However |µ|(f−1(0)) = 0 since |f | = 1 and 0 is the linear dimension
of a point.

Proof. Assume that |µ|(f−1(Sk)) = 0 for every k–dimensional subspace Sk ∈ Ωk. Consider
an extremal face F with dimension l, 0 < l ≤ k, and let CF be its corresponding minimal
cone. Lemma 1.5 shows that CF exists and ΠCF

has dimension less or equal than k. By
Theorem 1.4, µ(E) belongs to F if and only if f−1(CF \ ΠCF

) ⊆ E ⊆ f−1(CF ). Since
|µ|

(
f−1(ΠCF

)
)
= 0, it follows that E = f−1(CF ), so that F is reduced to one point.

Conversely, if there exists an Sk ∈ Ωk such that |µ|(f−1(Sk)) > 0, there are two subsets

A1, A2 in f−1(Sk) such that µ(A1) 6= µ(A2). Consider a orthonormal base {pi}n−k
i=1 in S⊥

k ,
the orthogonal complement of Sk, and let C be the generating cone defined by the family
{pi}n−k

i=1 as in (2):

C =
{
y ∈ Rn : y · p1 > 0

}
∪

∪
{
y ∈ Rn : y · p1 = 0, y · p2 > 0

}
∪ · · · ∪

∪
{
y ∈ Rn : y · p1 = 0, . . . , y · pk−1 = 0, y · pk > 0

}
∪ Sk.

It is easy to show that the two sets

E1 = f−1(C \ Sk) ∪A1 and E2 = f−1(C \ Sk) ∪A2

correspond to different points on the face determined by Chk
. �
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Remark. Corollary 1.6 is a generalization of Proposition 3.1 in [3], stating that R(µ) is a
n–dimensional strictly convex set if and only if |µ|({x : p·f(x) = 0}) = 0 for all p ∈ (Rn\0);
in fact the orthonormal space of a non–zero vector p is a (n− 1)–dimensional subspace.

Notations. For u1, . . . , um in Rn we denote by <u1, . . . , um> the vector space spanned by
u1, . . . , um and by <u1, . . . , um>⊥ its orthogonal space.

We denote by u1 ∧ · · · ∧um the external product on Rn and by |u1 ∧ · · · ∧um| its norm,
i.e. the square root of the Gramian of u1, . . . , um (m ≤ n); we recall that the latter is
the sum of the squares of the minors of order m of the matrix (ei · uj)i,j (where (ei)i is
the standard basis in Rn) and that u1, . . . , um are linearly dependent if and only if their
Gramian vanishes. We write {u1, . . . , ûi, . . . , um} = {uj : 1 ≤ j ≤ m, j 6= i}.

We introduce the subset ∆k of Xk defined by

∆k = {(x1, . . . , xk) ∈ Xk : f(x1) ∧ · · · ∧ f(xk) = 0}.

Theorem 1.7. R(µ) has a non–trivial extremal faces of dimension less than or equal to
k, 1 ≤ k ≤ (n− 1), if and only if |µ|⊗(k+1)(∆k+1) > 0.

Remark. Theorem 1.7 generalizes Theorem 3.2 of [3] stating that R(µ) is a n–dimensional
strictly convex set if and only if |µ|⊗n(∆n) = 0.

Proof. If there exists a l–dimensional face F onR(µ), with l ∈ {1, . . . , k}, then by Corollary
1.6 we can find a k-dimensional subspace Sk in Ωk such that f−1(Sk) is non–negligible;
since (f−1(Sk))

k+1 ⊆ ∆k+1 then we obtain

|µ|⊗(k+1)(∆k+1) ≥
[
|µ|(f−1(Sk))

]k+1
> 0.

We will prove now the opposite implication. For each set S ⊆ Xk+1 and (x2, . . . , xk+1) in
Xk we set S(x2, . . . , xk+1) = {x1 ∈ X : (x1, . . . , xk+1) ∈ S}. The measurability of the set

B = {(x1, . . . , xk+1) ∈ Xk+1 : f(x1) ∈<f(x2), . . . , f(xk+1)>}

is shown in [3]. Fubini’s theorem gives

|µ|⊗(k+1)(∆k+1) =

∫
Xk

{∫
∆k+1(x2,...,xn)

d|µ|(x1)

}
d(|µ|(x2)⊗ · · · ⊗ |µ|(xk+1)).

Assume that R(µ) has no l–dimensional faces, with l ∈ {1, . . . , k}; then Corollary 1.6
yields

|µ|({x1 ∈ X : f(x1) ∈<f(x2), . . . , f(xk+1)>}) = 0

so that if ∆1
k+1 is the subset of ∆k+1 defined by

∆1
k+1 = {(x1, . . . , xk+1) ∈ ∆k+1 : f(x1) /∈<f(x2), . . . , f(xk+1)>}
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from the above formula we obtain

|µ|⊗(k+1)(∆) =

∫
Xk

{∫
∆1

k+1
(x2,...,xk+1)

d|µ|(x1)

}
d(|µ|(x2)⊗ · · · ⊗ |µ|(xk+1)).

The set ∆1
k+1 being measurable, Tonelli’s Theorem yields

|µ|⊗(k+1)(∆k+1) = |µ|⊗(k+1)(∆1
k+1).

Similarly if for i in {2, . . . , k + 1} we put

∆i
k+1 = {(x1, . . . , xk+1) ∈ ∆k+1 : f(xi) /∈<f(x1), . . . , f̂(xi) . . . , f(xk+1)>}

the same arguments give |µ|⊗(k+1)(∆k+1) = |µ|⊗(k+1)(∆i
k+1). As a consequence we have

|µ|⊗(k+1)(∆k+1) = |µ|⊗(k+1)

(k+1⋂
i=1

∆i
k+1

)
.

Obviously the set

k+1⋂
i=1

∆i
k+1 is empty; the conclusion follows. �

2. A decomposition of X

In [4] it is shown that a zonoid, i.e. the range of a vector measure, is decomposable. This
means that R(µ) can be decomposed into the vector sum of convex sets Di, i = 1, 2, . . . ,
where Di is not homothetic to R(µ) for all i; in [4] this criterion was used to decide whether
a convex set can be a zonoid or not. In this section we give a decomposition of X,

X = Xn ∪
( ⋃
i∈In−1

Xi
n−1

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
,

that reflects the structure of the extremal faces of R(µ). Actually we will decompose R(µ)
as the sum of the ranges of the measure µ restricted to the sets Xi

k in such a way that
R(µ|Xi

k
) is a strictly convex set of dimension k. The following lemma is the base of our

construction.

Lemma 2.1. Suppose that there exists a k ∈ {0, . . . , n − 1} such that |µ|
(
f−1(Sk)

)
= 0

for all subspace Sk in Ωk. Then:

a) The set Nk+1 =
{
Sk+1 ∈ Ωk+1 : |µ|

(
f−1(Sk)

)
> 0

}
is at most countable;

b) If Xk+1 is defined as

Xk+1 = X\
( ⋃
Sk+1∈Nk+1

f−1(Sk+1)
)

then R
(
µ|Xk+1

)
has no extremal faces of dimension l, 1 ≤ l ≤ k + 1;

c) R
(
µ|f−1(Sk+1)

)
is a strictly convex set of dimension k for all Sk+1 in Nk+1.
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Proof. If we consider two distinct (k + 1)–dimensional subspaces S1
k+1, S

2
k+1 of Rn, the

dimension of S1
k+1 ∩ S2

k+1 is strictly less than k + 1; it follows that

|µ|
(
f−1(S1

k+1) ∩ f−1(S2
k+1)

)
= |µ|

(
f−1(S1

k+1 ∩ S2
k+1)

)
= 0.

The sets
{
f−1(Sk+1)

}
Sk+1⊆Ωk+1

are then disjoint |µ|–a.e. and this implies that the num-

ber of different linear subspaces Sk+1 with |µ|(f−1(Sk+1)) > ε is less than |µ|(X)
ε . As a

consequence the set Nk+1 is at most countable. By the σ–additivity of M, the set

Xk+1 = X\
( ⋃
Sk+1∈Nk+1

f−1(Sk+1)
)

is measurable and the application of Corollary 1.6 to µ|Xk+1 and µ|f−1(Sk+1), with Sk+1 ∈
Nk+1, completes the proof. �
Remark. We note that for k = 0 the fact that |µ|(f−1(0)) = 0 is always true: it follows
that the number of one dimensional subspace S1 in Rn such that |µ|(f−1(S1)) > 0 is at
most countable. Moreover we observe that we have used the fact that µ is non–atomic
only in the application of Corollary 1.6. Thus part a) of Lemma 2.1 is valid even if µ is
atomic.

Theorem 2.2. Suppose that (X,M) is a measurable space and µ is a non–atomic vector
measure with values in Rn. There exists a decomposition of the space X,

X =
(⋃
i∈Il

Xi
l

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
or

X = Xn ∪
( ⋃
i∈In−1

Xi
n−1

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
,

(3)

with l ≤ n− 1, such that:

a) the sets Ik are at most countable;
b) the sets Xi

k are disjoint and R(µ|Xi
k
) is contained in a k–dimensional linear space

Si
k;

c) R(µ|Xi
k
) is a strictly convex k–dimensional zonoid;

d) If |µ|(Xn) > 0, then R(µ|Xn
) is a strictly convex n–dimensional zonoid.

Proof. By Lemma 2.1 and the subsequent remark, the set N1 is at most countable. Let
us write N1 = {Si

1

}
i∈I1

and define Xi
1 = f−1(Si

1) for all i in I1. Lemma 2.1 ensures

that R(µ|Xi
1
) is a strictly convex 1–dimensional zonoid. Let X2 = X \

(⋃
i∈I1

Xi
1

)
. If X2

is empty, then the Theorem is proved; otherwise Lemma 2.1 can be applied to X2 with
9



k = 1, µ2 = µ|X2 . It is obvious that if f2(·) is the Radon–Nikodym derivative of µ2 with
respect to its total variation, then f2(x) = f(x) for all x ∈ X2. Thus by construction for
all subspaces S1 in Ω1 we have |µ2|(f−1

2 (S1)) = |µ|(f−1(S1) ∩ X2) = 0, and by Lemma
2.1 we obtain that the set N2 = {S2 ∈ Ω2 : |µ2|(f−1

2 (S2)) > 0} is at most countable: let
as denote this family by N2 = {Si

2}i∈I2 . If X
3 = X \

[(⋃
i∈I2

Xi
2

)
∪
(⋃

i∈I1
Xi

1

)]
is empty,

then the theorem is proved. Otherwise we proceed with this construction until either we
stop at an index k = l < n, so that

X =
(⋃
i∈Il

Xi
l

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
,

or, if we define

Xn = X \
[( ⋃

i∈In−1

Xi
n−1

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)]
,

we have the following decomposition of X:

X = Xn ∪
( ⋃
i∈In−1

Xi
n−1

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
.

Lemma 2.1 ensures that each R(µ|Xi
k
) is a strictly convex k–dimensional zonoid and that

R(µ|Xn) is a strictly convex n–dimensional zonoid in Rn, if |µ|(Xn) > 0. �

Remark. A consequence of the decomposition of Theorem 2.2 is that if F is a k–dimensional
strictly convex extremal face of R(µ), with k ≥ 1, then F is the translate of some R(µXi

k
).

In fact Theorem 1.4 shows that if CF is the minimal cone corresponding to F , then

F = µ(CF \ΠCF ) +R(µ|f−1(ΠCF
))

and that |µ|(f−1(ΠCF
)) > 0. Since F is strictly convex, Corollary 1.6 implies that

|µ|(f−1(ΠCF ) ∩Xi
l ) = 0 for all i ∈ Il, l = 1, . . . , k − 1. As a consequence f−1(ΠCF ) = Xi

k

for some Xi
k.

3. On atomic real measures

In this section we study the range of an atomic real measure. We recall that a set
H ∈ M is an atom of µ if |µ|(H) > 0 and for all A ∈ M such that A ⊆ H, |µ|(A) is either
0 or |µ|(H). The main result of this section is an extension of Lyapunov’s Theorem to
atomic real measures.
As a preliminary step, consider a sequence of real vectors a = (ai)i∈N, ai ∈ Rn, such that
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∑
i∈N |ai| < ∞, where |ai| is the Euclidean norm of the vector ai. To every sequence

a = (ai)i∈N we associate the following map from the Cantor set {0, 1}N in Rn:

ha : {0, 1}N → Rn

s = {si}i∈N → h(s) =

∞∑
i=1

aisi.
(4)

If the sequence a is finite, we suppose ai = 0 from an index onwards. Define Ka =
ha({0, 1}N), i.e. the image through ha of the Cantor set. We prove the following Lemma.

Lemma 3.1. If
∑

i∈N |ai| < ∞, where |ai| is the Euclidean norm of the vector ai, then
Ka is a compact set in Rn.

Proof. If {0, 1}N is equipped with the usual product topology, then {0, 1}N is a compact
space. Since

∑∞
i=1 |ai| < ∞, it is easy to prove that ha is continuous. As a conseguence,

ha({0, 1}N) is compact. �
In the following, we will use some result on atomic measures; these results can be found

in [1]. The first Theorem of this section is the application of Corollary 5.2.13 of [1] to |µ|.

Theorem 3.2. Let µ an atomic vector measure on M. Then we can write

X =
∞⋃
i=0

Hi or X =
N⋃
i=0

Hi (5)

for some N ≥ 0 with the following properties:

a) the Hi are pairwise disjoint;
b) Hi is an atom of µ for every i ≥ 1;
c) µ|H0 is a non–atomic vector measure.

Now we can extend Theorem 11.4.4 of [1] to vector measures.

Theorem 3.3. Let µ any vector measure. Then R(µ) is compact.

Proof. Consider the decomposition of X given in Theorem 3.2. Since µ|H0 is a non–atomic
vector measure, its range is compact by Lyapunov’s Theorem, and since the vector sum of
two compact sets in Rn is compact, we just have to prove that R(µ|X\H0

) is compact.
Let ai = µ(Hi) for every Hi with i ≥ 1, and consider the sequence a = (ai)i∈N. (If the
atoms Hi are finite, we suppose ai = 0 from an index onwards.) Since

∞∑
i=1

|an| =
∞∑
i=1

|µ(Hn)| =
∞∑
i=1

|µ|(Hn) = |µ|(X \H0),

11



Lemma 3.1 assures that Ka is compact. Thus we are left to prove that R(µX\H0
) is equal

to the set Ka. If s = {si}i∈N is in {0, 1}N, then

ha(s) =

∞∑
i=1

aisi =

∞∑
i=1

µ(Hi)si = µ
( ⋃
i:si=1

Hi

)
,

so that ha({0, 1}N) is contained in R(µ|X\H0
). Conversely, if A is a measurable set in

X \H0, then by σ–additivity

µ(A) =
∞∑
i=1

µ(A ∩Hi) =
∞∑
i=1

µ(Hi)si(A),

where si(A) = 1 if and only if µ(A∩Hi) = µ(Hi). (We recall that µ(A∩Hi) can be either
0 or µ(Hi).) Thus, defining s(A) = (si(A))i∈N ∈ {0, 1}N, we have µ(A) = ha(s(A)). It
follows that Ka = ha({0, 1}N) = R(µ|X\H0

). �
Let {ai}i∈N be a sequence of real numbers such that

∑∞
i=1 |ai| < ∞. We wonder

what is the maximal gap in the set Ka = ha

(
{0, 1}N

)
, i.e. the number inf{δ ≥ 0 :

Ka + [0, δ] is connected }. Lemma 3.1 shows that Ka is compact. Let m be the minimum
of Ka: m = min{x : x ∈ Ka}. Consider the function δ(x) on Ka defined as

δ(x) =

{
0 x = m

inf
{
(x− y), y < x, y ∈ Ka

}
x > m

This function is upper semi-continuous, because if we consider the family of upper semi-
continuous functions

δy(x) =

{
2(x−m) x ≤ y
x− y x > y

then
δ(x) = inf

{
δy(x), y ∈ Ka

}
.

We conclude that max{δ(x), x ∈ Ka} exists and this value is the maximal gap in the set
Ka. It is obvious that if δ(x) is 0 on Ka, then Ka is an interval.

Theorem 3.4. If δ(x) and {ai}i∈N are defined as above, then

max
{
δ(x), x ∈ Ka

}
= max

{
|ai| −

∑
|aj |<|ai|

|aj |, i ∈ N
}

if there exists an index i such that |ai|−
∑

|aj |<|ai| |aj | > 0; otherwise max{δ(x), x ∈ Ka} =
0.

12



Remark. This Theorem is a slight generalization of Exercise 131 in [9]. We note also that
in both cases

max
{
δ(x), x ∈ K

}
= sup

{
|ai| −

∑
|aj |<|ai|

|aj |, i ∈ N
}
. (6)

In fact, if the numbers |ai| −
∑

|aj |<|ai| |aj | are negative for all i ∈ N, then, by the conver-

gence of the series
∑

i∈N |ai|, for all ε > 0 there exists an index i0 such that |ai0 | < ε and∑
|aj |<|ai0 |

|aj | < ε. For this index i0 we have

−ε < |ai0 | −
∑

|aj |<|ai0 |

|aj | ≤ 0,

so that sup
{
|ai| −

∑
|aj |<|ai| |aj |, i ∈ N

}
= 0. If there exists an index i0 such that |ai0 | −∑

|aj |<|ai0 |
|aj | > 0, then (6) is a consequence of the statement of the Theorem.

Proof. For every real sequence a = (ai)i∈N such that
∑∞

i=1 |ai| < ∞, we define the sequence
ã = (|ai|)i∈N. We start showing that Kã is a translate of Ka. If the series is positive, the
claim is trivial. Otherwise let m be the minimum of Ka: m =

∑
ai<0 ai. To every x in

Ka, x =
∑∞

i=1 aisi(x), si(x) ∈ {0, 1}, we associate the point x̃ in Kã defined as:

x̃ =
∑
ai>0

aisi(x)−
∑
ai<0

ai(1− si(x))

=
∞∑
i=0

aisi(x)−
∑
ai<0

ai = x−m.

Conversely, if ỹ is in Kã, ỹ =
∑∞

i=1 |ai|si(ỹ), si(ỹ) ∈ {0, 1}, consider the point in Ka:

y =
∑
ai>0

|ai|si(ỹ)−
∑
ai<0

|ai|(1− si(ỹ))

=
∑
ai>0

|ai|si(ỹ) +
∑
ai<0

|ai|si(ỹ)−
∑
ai<0

|ai| = ỹ +m.

These two formulae imply that Kã = Ka − m, so that the maximal gap in these two
sets is the same. Without loss of generality, we can then suppose that the sequence is
strictly positive and, by the absolute convergence, decreasing. In this case the numbers
|ai| −

∑
|aj |<|ai| |aj | become ai −

∑
aj<ai

aj and j > i, and since equation (6) is unaffected

by terms less than zero, we have

max
{
δ(x), x ∈ K

}
= sup

{
ai −

∑
aj<a1

aj , i ∈ N
}
= sup

{
ai −

∞∑
j=i+1

aj , i ∈ N
}
. (6′)
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Define the series ci = ai −
∑∞

j=i+1 aj . If ci ≤ 0 for all i ∈ N, then we can apply the result

of Exercise 131 in [9], obtaining δ(x) = 0.
Suppose now that there exists at least one ci greater than 0. We begin showing that
maxi∈N ci exists: this follows from the fact that the series is convergent. If ci > 2ε for
some ii, then there exists an index k such that al < ε,

∑∞
j=l+1 aj < ε for all l > k; then

|cl| =
∣∣∣al − ∞∑

j=l+1

aj

∣∣∣ < 2ε.

Thus the maximum is taken over a finite set of ci ’s.
Now we have to prove that there exists a point x in Ka such that δ(x) is equal to ci0 =
maxi∈N ci > 0. Consider the point ai0 : the nearest point y lower than ai0 is obviously
y =

∑
ai<ai0

ai, and then x− y = ci0 . �

At this point we can prove the following extension of Lyapunov’s Theorem to atomic
real measures. We recall that a measure µ is said to admit a Hahn set if there exists a set
D ∈ M such that µ(A ∩D) ≤ 0 and µ(A ∩ (X \D)) ≥ 0 for all A ∈ M.

Theorem 3.5. Let µ a real–valued measure on (X,M) such that |µ|(X) < ∞ and let
{Hi}i≥0 be the decomposition of X as in (5). Then R(µ) is convex in R if and only if the
following condition holds:

|µ|(H0) ≥ sup
i≥1

(
|µ|(Hi)−

∑
j:|µ|(Hj)<|µ|(Hi)

|µ|(Hj)
)
. (7)

Moreover R(µ) = [−µ−(X), µ+(X)], where µ = µ+ − µ− is the Jordan decomposition of
µ.

Proof. If we define ai = µ(Hi), then we can apply Theorem 3.3 and the result is that the
maximal gap c0 in R(µ|X\H0

) is equal to

c0 = sup
i≥1

(
|µ|(Hi)−

∑
j:|µ|(Hj)<|µ|(Hi)

|µ|(Hj)
)
.

It is obvious that R(µ) = R(µ|H0) +R(µ|X\H0
) and by Lyapunov’s Theorem R(µ|H0) is

an interval of length |µ|(H0). Thus R(µ) is an interval if and only if |µ|(H0) is greater of
the maximal gap in R(µ|X\H0

), i.e.

|µ|(H0) ≥ sup
i≥1

(
|µ|(Hi)−

∑
j:|µ|(Hj)<|µ|(Hi)

|µ|(Hj)
)
.
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Since µ admits a Hahn set, obviously choosing the set D = {x ∈ X : f(x) ≤ 0}, by
Proposition 11.4.6 of [1] we have

α = sup
A∈M

µ(A) = µ+(X) ∈ R(µ)

β = inf
A∈M

µ(A) = −µ−(X) ∈ R(µ),

and thus R(µ) = [−µ−(X), µ+(X)]. �

4. An extension of Lyapunov’s Theorem

In this last section we study the range of an atomic vector measure µ and we extend
Theorem 3.4 to vector measures. The first step is the following Lemma, that relates the
decomposition (3) of Theorem 2.2 with (5) of Theorem 3.2.

Lemma 4.1. Let µ be an atomic vector measure. Then there exists a decomposition of
X,

X =
(⋃
i∈Il

Xi
l

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
or

X = Xn ∪
( ⋃
i∈In−1

Xi
n−1

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
,

(3′)

with l ≤ n− 1, such that:

a) the sets Ik are at most countable;
b) the sets Xi

k are disjoint and R(µ|Xi
k
) is contained in a k–dimensional linear space

Si
k.

Moreover if

X =

∞⋃
j=0

Hj or X =

N⋃
j=0

Hj (5′)

for some N ≥ 0 is the decomposition of Theorem 3.2, then every atom Hj, j ≥ 1, is
contained in some Xi

1, i ≥ 0.

Proof. By the remark following Lemma 2.1, the set N1 = {S1 ∈ Ω1 : |µ|(f−1(S1) > 0}
is at most countable. Let us write N1 = {Si

1

}
i∈I1

and define Xi
1 = f−1(Si

1) for all i in

I1. We note that if Hi is an atom of µ, then |µ|
(
f−1(< µ(Hi) >)

)
is greater or equal to

|µ|(Hi): then every atom of µ is contained in some Xi
1. (We recall that with < u > we

denote the span of the non–zero vector u.) Let X2 = X \
(⋃

i∈I1
Xi

1

)
. If X2 is empty, then

the Lemma is proved: in fact R(µ|Xi
1
) is contained in Si

1. Otherwise part a) of Lemma

2.1 can be applied to X2 with k = 1, µ2 = µ|X2 . As in the proof of Theorem 2.2, we
15



obtain that the set N2 = {S2 ∈ Ω2 : |µ2|(f−1
2 (S2)) > 0} is at most countable: let as denote

this family by N2 = {Si
2}i∈I2 . If X3 = X \

[(⋃
i∈I2

Xi
2

)
∪
(⋃

i∈I1
Xi

1

)]
is empty, then the

Lemma is proved. Otherwise we proceed with this construction until either we stop at an
index k = l < n, so that

X =
(⋃
i∈Il

Xi
l

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
,

or, if we define

Xn = X \
[( ⋃

i∈In−1

Xi
n−1

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)]
,

we have the following decomposition of X:

X = Xn ∪
( ⋃
i∈In−1

Xi
n−1

)
∪ · · · ∪

(⋃
i∈I1

Xi
1

)
.

Since by construction Xi
k ⊆ f−1(Si

k) for some Si
k, the conclusion follows. �

Now we show that the convexity of R(µ) follows form the convexity of R(µ|Xi
1
), i ∈ I1.

We recall that with Xi
1 we denote a measurable subset of X such that |µ|(Xi

1) > 0 and

Xi
1 = f−1(Si

1), S
i
1 being a 1–dimensional space in Rn and f = dµ

d|µ| . By formula (3’) of

Lemma 4.1 these subsets are at most countable: let us denote them by {Si
1 : i ∈ I1}.

Theorem 4.2. The range of a vector measure µ is convex if and only if the range of the
restriction of µ to the sets Xi

1 is convex for all i ∈ I1.

Proof. If R(µ) is convex, choose a convex cone Ci such that f−1(ΠCi) is the set Xi
1, i ∈ I1.

The face corresponding to Ci is obviously a 1–dimensional strictly convex set, and, by the
remark following Theorem 2.2, if we define y = µ(f−1(Ci \ ΠCi)), then x belongs to F if
and only if x = y + µ(E), E ⊆ Xi

1. If F is convex, it is obvious that F − y = R(µ|Xi
1
) is

convex.
The converse follows immediately since the vector sum of convex sets is convex. Lemma
4.1 shows that every atom Hi, i ≥ 1, is contained in some Xi

1, i ∈ I1. As a consequence, if
we define, as in the proof of Lemma 4.1, X2 = X \ (∪i∈I1X

i
1), Lyapunov’s Theorem yields

that R(µ|X2) is convex. Since

R(µ) = R(µ|X2) +
∑
i∈I1

R(µ|Xi
1
),

and by assumption R(µ|Xi
1
) are convex, the conclusion follows. �

At this point we can prove the main result.
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Theorem 4.3. Given a vector measure µ on the measurable space (X,M), with values in
Rn, let {Xi

1}i∈I1 be the family of subsets of X such that |µ|(Xi
1) > 0 and Xi

1 = f−1(Si
1),

Si
1 being a 1–dimensional space in Rn and f = dµ

d|µ| . Let {Hi
j}j≥0 be the decomposition of

Xi
1 such that Hi

j, j ≥ 1, are the atoms of µ|Xi
1
and µ|Hi

0
is a non–atomic vector measure.

The range of µ is convex if and only if

|µ|(Hi
0) ≥ sup

j≥1

(
|µ|(Hi

j)−
∑

k:|µ|(Hi
k
)<|µ|(Hi

j
)

|µ|(Hi
k)
)

for all i ∈ I1.

Proof. Let us consider a generic vector measure on the space (X,M). By Theorem 4.2,
the measure has a convex range if and only if R(µ|Xi

1
) is convex for all i in I1. By Theorem

3.5, R(µ|Xi
1
) is convex if and only if

|µ|(Hi
0) ≥ sup

j≥1

(
|µ|(Hi

j)−
∑

k:|µ|(Hi
k
)<|µ|(Hi

j
)

|µ|(Hi
k)
)
,

where the Hi
j are the decomposition of Xi

1 as in Theorem 3.2. The Theorem is proved. �
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