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Abstract. After a brief introduction on gradient flows in metric spaces and
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1. Introduction

This paper aims to give an account of some of the main ideas from recent de-
velopments on gradient flows in metric measure spaces, examining the special case
of the gradient flow of the Entropy functional in the space of probability measures.
The results presented in this work are published in several texts, mainly [3, 7, 4, 2];
our aim is to give to the interested reader a single self-contained paper with both
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the proofs of existence and uniqueness of the gradient flow of the Entropy. We prove
technical results when needed, however, to avoid excessive difficulties, in Section 4
we restrict our analysis to the case of a compact metric space.

We assume the reader has some familiarity with standard tools in measure the-
ory; we recall the fundamental ones in Section 2.

In Section 3 we introduce the main concepts of the theory of gradient flows in a
purely metric setting. We begin with a generalization to metric spaces of a property
of gradient flows in the smooth setting, namely the Energy Dissipation Equality,
which relies only on the norm of the differential of the functional and the norm
of the derivative of the curve which solves the gradient flow. To make sense of
these two concepts in a metric space we introduce the metric speed of a curve and
the descending slope of a functional. We proceed defining K-convexity in geodesic
metric spaces and state a useful formula for computing the descending slope and
an important weak form of the chain rule for K-convex functionals.

Section 4 is dedicated to the proof of existence of the gradient flow of the Entropy
in the space of probability measures over a compact metric space. After defining
the fundamental Wasserstein distance between probability measures, we introduce
the Entropy functional and outline two interesting cases where a solution to a PDE
is obtained as a solution of a gradient flow of a functional: the Dirichlet Energy
in L2(Rn) and the Entropy in the space of probability measures on the torus Tn.
We then give the definition of geodesic metric space with Ricci curvature bounded
from below, a concept which will allow us to apply the theory developed for K-
convex functionals to the Entropy. We proceed by proving the existence of a curve
solving the gradient flow using a discrete approximation scheme and showing its
convergence to a curve which satisfies the Energy Dissipation Equality.

Section 5 deals with the uniqueness of the gradient flow of the Entropy. A
deeper understanding of the nature of the curve solving the gradient flow is achieved
introducing the concept of push-forward via a plan and restricting our analysis
to plans with bounded deformation. After proving some preliminary properties
concerning the approximation of the Entropy and the convexity of the squared
descending slope of the Entropy, we conclude showing the uniqueness of the gradient
flow.

2. Measure theoretic preliminaries

From now on, if not otherwise stated, (X, d) will be a complete and separable
metric space with distance d. We will indicate as P(X) the set of Borel probability
measures on X.

We recall two concepts we will often use: the push-forward of a measure through
a map and narrow convergence of measures.

Definition 2.1. Let X,Y be metric spaces, µ ∈ P(X), T : X → Y a Borel map.
We define the push-forward of µ through T as

T∗µ(E) := µ(T−1(E))

for every Borel subset E ⊆ Y .
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The push-forward of a measure satisfies the following property: for every Borel
function f : Y → R ∪ {∞} it holds∫

Y

f T∗µ =

∫
X

f ◦ T µ,

where the equality means that if one of the integrals exists so does the other one
and their value is the same.

We give a useful weak notion of convergence in P(X).

Definition 2.2. Given (µn)n a sequence of measures in P(X), µn narrowly con-
verges to µ ∈ P(X), and we write µn ⇀ µ, if for every ϕ ∈ Cb(X,R) it holds∫

X

ϕ µn →
∫
X

ϕ µ.

Notice that if X is compact, weak* convergence and narrow convergence on P(X)
are the same, thanks to the Riesz-Markov-Kakutani Representation Theorem.

We pass to examine absolutely continuous measures.

Definition 2.3. Let λ, µ be measures on a σ-algebra A. λ is absolutely continuous
with respect to µ, and we write λ � µ, if for every E ∈ A such that µ(E) = 0, it
also holds λ(E) = 0.

The following two classic theorems will be widely used in the last section of this
paper.

Theorem 2.4 (Radon-Nikodym). Let λ, µ be finite measures on X measurable
space, λ� µ. Then there exists a unique h ∈ L1(µ) such that

(1) λ = hµ.

To express (1) we also write synthetically

dλ

dµ
= h.

The analogue of Radon-Nikodym Theorem in the space of probability measures
is the Disintegration Theorem.

Theorem 2.5 (Disintegration Theorem). Let (X, dX), (Y, dY ) be complete and sep-
arable metric spaces, let γ ∈ P(X × Y ) and π1 : X × Y → X the projection on the
first coordinate. Then there exists a π1

∗γ-almost everywhere uniquely determined
family of probability measures {γx}x∈X ⊆ P(Y ) such that

(1) the function x 7→ γx(B) is a Borel map for every Borel B ⊆ Y ,
(2) for every Borel function f : X × Y → [0,∞] it holds

(2)

∫
X×Y

f(x, y) γ(dx, dy) =

∫
X

(∫
Y

f(x, y) γx(dy)

)
π1
∗γ(dx).

We also express property (2) by writing

γ =

∫
X

γx π
1
∗γ(dx).

The theorem obviously holds mutatis mutandis for the projection π2 on Y .
For a proof of Theorem 2.5 and a broader view on the topic see [6, Chapter 45].

A simpler proof for vector valued measures can be found in [1, Theorem 2.28].
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3. Gradient flows in metric spaces

The following observation is the starting point to extend the notion of gradient
flows to metric spaces.

From now on we adopt the subscript notation for curves (i.e. ut = u(t)).

Remark 3.1. Let H be a Hilbert space, E : H → R ∪ {∞} a Frechét differentiable
functional. If u : [0,∞)→ R is a gradient flow of E, i.e. u̇t = −∇E(ut), then

d

dt
E(ut) = 〈∇E(ut), u̇t〉 = −1

2
‖u̇t‖2 −

1

2
‖∇E(ut)‖2.

Integrating with respect to t we obtain

E(us)− E(u0) = −1

2

∫ s

0

‖u̇t‖2 dt−
1

2

∫ s

0

‖∇E(ut)‖2 dt ∀s > 0.

This last equality is called Energy Dissipation Equality.

By extending appropriately the concepts of the norm of the derivative of a curve
and the norm of the gradient of a functional we can make sense of this last equality
even in metric spaces.

We restrict our analysis to a special class of curves.

Definition 3.2. A curve u : [0, 1] → X is absolutely continuous if there exists
g ∈ L1(I) such that for every t < s it holds

(3) d(ut, us) ≤
∫ s

t

g(r) dr.

For absolutely continuous curves we are able to define a corresponding concept
of speed of a curve.

Proposition 3.3. If u is an absolutely continuous curve, there exists a minimal
(in the L1-sense) g which satisfies (3); this function is given for almost every t by

|u̇t| := lim
s→t

d(us, ut)

|s− t|
.

The function |u̇t| is called metric derivative or metric speed of u.

Proof. Let (yn)n be dense in u(I) and define

hn(t) := d(yn, ut) ∀n ∈ N.
Let g ∈ L1 be such that

|hn(t)− hn(s)| ≤ d(ut, us) ≤
∫ s

t

g(r) dr ∀n ∈ N.

Therefore hn(t) are absolutely continuous for every n, so by the Lebesgue Funda-
mental Theorem of Calculus there exists h′n ∈ L1 such that

hn(t)− hn(s) =

∫ s

t

h′n(r) dr.

We have that |h′n(t)| ≤ g(t) a.e. and a fairly easy calculation shows that

lim sup
s→t

d(us, ut)

|s− t|
≤ sup

n
|h′n(t)| ≤ lim inf

s→t

d(us, ut)

|s− t|
,

therefore we can take supn |h′n(t)| as the metric derivative. �
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We pass to define the concept which will substitute the norm of the differential
of a function in the metric case.

We indicate by ( · )+, ( · )− the standard positive and negative parts, i.e. x+ =
max{x, 0}, x− = max{−x, 0}.

Definition 3.4. Let E : X → R ∪ {∞}. The descending slope of E at x is

|D−E|(x) := lim sup
y→x

(
E(x)− E(y)

)+
d(x, y)

.

We are now ready to define gradient flows using the Energy Dissipation Equality
(EDE).

For a functional E : X → R ∪ {∞}, we write D(E) := {x : E(x) <∞}.

Definition 3.5 (Gradient flow - EDE). Let E be a functional from X to R∪ {∞}
and let x0 ∈ D(E). A locally absolutely continuous curve x : [0,∞) → X is an
EDE-gradient flow, or simply a gradient flow, of E starting from x0 if x takes values
in D(E) and it holds

E(xs) = E(xt)−
1

2

∫ s

t

|ẋr|2 dr −
1

2

∫ s

t

|D−E|2(xr) dr, ∀s > t,

or equivalently

E(xs) = E(x0)− 1

2

∫ s

0

|ẋr|2 dr −
1

2

∫ s

0

|D−E|2(xr) dr, ∀s > 0.

3.1. K-convexity. A class of functionals with useful properties is that of K-convex
functionals.

In Rn the standard definition is that the distributional derivative of a function
E : Rn 7→ R satisfies

D2E −KIn ≥ 0,

where In is the n × n-identity matrix. To extend the definition from the smooth
setting to metric spaces we will use geodesics.

Definition 3.6. A metric space X is geodesic if ∀x0, x1 ∈ X,∃g : [0, 1] → X such
that g0 = x0, g1 = x1 and

d(gt, gs) = |t− s|d(x0, x1), ∀s, t ∈ [0, 1].

Such a g is called constant speed geodesic between x0 and x1.

It is natural to extend the definition of K-convexity by requiring the K-convexity
of the functional along geodesics.

Definition 3.7. Let (X, d) be a geodesic space, E : X → R ∪ {∞}. E is K-
geodesically convex, or simply K-convex, if ∀x0, x1 ∈ Y, ∃g : [0, 1] → X constant
speed geodesic between x0 and x1 and for every t ∈ [0, 1] it holds

E(gt) ≤ (1− t)E(x0) + tE(x1)− K

2
t(1− t)d2(x0, x1).

Remark 3.8. Notice that if E is K-convex then for every K ′ ≤ K,E is K ′-convex.

We prove a useful formula for computing the descending slope of K-convex func-
tionals.
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Lemma 3.9. If E is K-convex then

(4) |D−E|(x) = sup
y 6=x

(
E(x)− E(y)

d(x, y)
+
K

2
d(x, y)

)+

.

Proof. ” ≤ ”. This inequality holds trivially.
” ≥ ”. Fix y 6= x. Let g be a constant speed geodesic from x to y such that

E(x)− E(gt)

d(x, gt)
≥ t

d(x, gt)

(
E(x)− E(y) +

K

2
(1− t)d2(x, y)

)
=
E(x)− E(y)

d(x, y)
+
K

2
(1− t)d(x, y).

Therefore as t→ 0,

|D−E|(x) ≥ lim sup
t→0+

(
E(x)− E(gt)

d(x, gt)

)+

≥
(

lim sup
t→0+

(
E(x)− E(y)

d(x, y)
+
K

2
(1− t)d(x, y)

))+

=

(
E(x)− E(y)

d(x, y)
+
K

2
d(x, y)

)+

.

We conclude by taking the supremum w.r.t. y. �

For K-convex functionals we have a useful weak form of chain rule.

Theorem 3.10. Let E : X → R ∪ {∞} be a K-convex and lower semicontinuous
functional. Then for every absolutely continuous curve x : [0, 1] → X such that
E(xt) <∞ for every t ∈ [0, 1], it holds

(5) |E(xs)− E(xt)| ≤
∫ s

t

|ẋr||D−E|(xr) dr,

with t < s.

Proof. We follow the reasoning of [2, Proposition 3.19].
Step 0. By linear scaling we may reduce to the case t = 0 and s = 1. We may

also assume that ∫ 1

0

|ẋr||D−E|(xr) dr <∞,

otherwise the inequality holds trivially. By the standard arc-length reparametriza-
tion we may furthermore assume |ẋt| = 1 for almost every t, so xt is 1-Lipschitz
and the function t 7→ |D−E|(xt) is in L1([0, 1]).

Step 1. Notice that it is sufficient to prove absolute continuity of the function
t 7→ E(xt), then the thesis follows from the inequality

lim sup
h→0

E(xt+h)− E(xt)

h
≤ lim sup

h→0

(
E(xt+h)− E(xt)

)+
|h|

≤ lim sup
h→0

(
E(xt+h)− E(xt)

)+
d(xt+h, xt)

lim sup
h→0

d(xt+h, xt)

|h|
≤ |D−E|(xt)|ẋt|
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and the fact that for a.c. f it holds

f(s)− f(t) =

∫ s

t

df

dτ
dτ.

Step 2. We define f, g : [0, 1]→ R as

f(t) := E(xt),

g(t) := sup
s6=t

(
f(t)− f(s)

)+
|t− s|

.

From the fact that |ẋt| = 1 and the trivial inequality a+ ≤ (a+ b)+ + b− valid for
any a, b ∈ R we obtain

g(t) ≤ sup
s6=t

(
f(t)− f(s)

)+
d(xt, xs)

≤

(
sup
s6=t

f(t)− f(s)

d(xt, xs)
+
K

2
d(xt, xs)

)+

+

(
K

2
d(xt, xs)

)−
.

Since {xt}t∈[0,1] is compact, there exists aD ∈ R+ such that d(xt, xs) ≤ D; applying
then (4) we obtain

g(t) ≤ |D−E|(xt) +
K−

2
D.

Therefore the thesis is proven if we show that

|f(s)− f(t)| ≤
∫ s

t

g(r) dr.

Step 3. Fix M, ε > 0 and define fM := min{f,M}, ρε : R → R a smooth
mollifier with support in [−ε, ε] and fMε , gMε : [ε, 1− ε]→ R such that

fMε (t) := (fM ∗ ρε)(t),

gMε (t) := sup
s6=t

(
fMε (t)− fMε (s)

)+
|s− t|

.

Since fMε is smooth and gMε ≥
∣∣(fMε )′

∣∣,∣∣fMε (s)− fMε (t)
∣∣ ≤ ∫ s

t

gMε (r) dr.

Therefore we have

gMε (t) = sup
s6=t

1

|s− t|

(∫ 1

0

(
fM (t− r)− fM (s− r)

)
ρε(r) dr

)+

≤ sup
s6=t

1

|s− t|

∫ 1

0

(
f(t− r)− f(s− r)

)+
ρε(r) dr

≤ sup
s6=t

∫ 1

0

(
f(t− r)− f(s− r)

)+
|(s− r)− (t− r)|

ρε(r) dr

≤
∫ 1

0

g(t− r)ρε(r) dr = (g ∗ ρε)(t),
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thus the family
{
gMε
}
ε

is uniformly integrable in L1((0, 1)). In fact, for A ⊂
(ε, 1− ε), ∫

A

gMε (t) dt ≤
∫
A

(g ∗ ρε)(t) dt =

∫
A

∫ 1

0

g(t− y)ρε(y) dy dt

=

∫ 1

0

1

ε
ρ

(
y

ε

)∫
A−y

g(t) dt dy =

∫ 1

0

ρ(z)

[ ∫
A−εz

g(t) dt

]
dz ≤ ω(|A|),

where ω(|A|) = supL(B)=L(A){
∫
B
g}.

Since

|fMε (y)− fMε (x)| ≤ ω(|y − x|) and lim
z→0

ω(z) = 0,

the family
{
fMε
}
ε

is equicontinuous in C([δ, 1 − δ]) for every δ fixed. Hence by

Arzelà-Ascoli Theorem, up to subsequences, the family
{
fMε
}
ε

uniformly converges

to a function f̃M on (0, 1) as ε→ 0 for which it holds

|f̃M (s)− f̃M (t)| ≤
∫ s

t

g(r) dr.

By the fact that fMε → fM in L1, fM = f̃M on a A ⊆ [0, 1] such that [0, 1] \A has
negligible Lebesgue measure.

Step 4. Now we prove that fM = f̃M everywhere. fM is lower semicontinuous
and f̃M is continuous, hence fM ≤ f̃M in [0, 1]. Suppose by contradiction that

there are t0 ∈ (0, 1), c, C ∈ R such that fM (t0) < c < C < f̃M (t0), so there

exists δ > 0 such that f̃M (t) > C for t ∈ [t0 − δ, t0 + δ]. Thus fM (t) > C for
t ∈ [t0 − δ, t0 + δ] ∩A, so∫ 1

0

g(t) dt ≥
∫
[t0−δ,t0+δ]∩A

g(t) dt ≥
∫
[t0−δ,t0+δ]∩A

C − c
|t− t0|

dt = +∞,

which is absurd since g ∈ L1(R).
Conclusion. Thus we proved that if g ∈ L1((0, 1)),

|fM (s)− fM (t)| ≤
∫ s

t

g(r) dr, ∀t < s, ∀M > 0.

Letting M →∞ the thesis is proven. �

Notice that an application of Young’s inequality on (5) gives

(6) E(xs)− E(xt) ≥ −
1

2

∫ s

t

|ẋr|2 dr −
1

2

∫ s

t

|D−E|2(xr) dr, ∀t < s,

Therefore, a K-convex functional satisfies the Energy Dissipation Equality if we
require only a minimum dissipation of E along the curve, in particular

(7) E(xt) ≥ E(xs) +
1

2

∫ s

t

|ẋr|2 dr +
1

2

∫ s

t

|D−E|2(xr) dr, ∀t < s.

4. The Entropy functional and existence of its gradient flow

For simplicity, from now on we will restric our analysis to a compact metric space
(X, d).



EXISTENCE AND UNIQUENESS OF THE GRADIENT FLOW OF THE ENTROPY 9

4.1. The Wasserstein distance. We can equip the space of probability measures
with a natural distance obtained by the minimization problem of Optimal Transport
theory.

Definition 4.1. Given µ ∈ P(X), ν ∈ P(Y ), we define the set of admissible plans
from µ to ν as

Adm(µ, ν) :=
{
γ ∈ P(X × Y ) : πX∗ γ = µ, πY∗ γ = ν

}
,

where πX , πY is the projection on X,Y .

Definition 4.2. Given µ, ν ∈ P(X), the Wasserstein distance between µ and ν is

W2(µ, ν) :=

√
inf

γ∈Adm(µ,ν)

∫
d2(x, y) γ(dx, dy).

The space of probability measures P(X) endowed with the Wasserstein distance
inherits many of the properties of the underlying space X. We point out just two
of them:

• Given a sequence (µn)n in P(X), it holds

(8) W2(µn, µ)→ 0 ⇔ µn ⇀ µ.

Notice that as a consequence sequential narrow compactness and narrow
compactness coincide. (In the case of non compact metric spaces, one needs
an additional condition on the right hand side of the equivalence (8).)
• If X is geodesic then P(X) is also geodesic.

For the proofs and a generalization to non-compact spaces see [2, Theorems 2.7
and 2.10].

Before passing to the definition of Entropy, we prove a property of the metric
derivative which we will use later on.

Remark 4.3. If µt, νt are absolutely continuous curves in (P(X),W2), then ∀k ∈
[0, 1], ηt := (1− k)µt + kνt is absolutely continuous and it holds

|η̇t|2 ≤ (1− k)|µ̇t|2 + k|ν̇t|2.

In fact, it is easy to prove the convexity of the squared Wasserstein distance w.r.t.
linear interpolation of measures, i.e.

W 2
2

(
(1− t)µ0 + tµ1, (1− t)ν0 + tν1

)
≤ (1− t)W 2

2 (µ0, ν0) + tW 2
2 (µ1, ν1)

for arbitrary µ0, µ1, ν0, ν1 ∈ P(X). Applying the definition of metric speed, the
estimate above follows immediately.

4.2. Entropy: definition and properties.

Definition 4.4. The Entropy functional Entm : P(X) → [0,∞] relative to m ∈
P(X) is defined as

Entm(µ) :=


∫
X

f log f m if ∃f ∈ L1(m) : µ = fm,

∞ otherwise.
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Example 4.6 below suggest that the gradient flow of the Entropy functional in
measure metric spaces is the natural extension of the heat flow from the smooth
setting. As a consequence, it is possible to construct the analogue of the Laplace
operator, which is the starting point to construct several tools used in Analysis on
measure metric spaces.

A very interesting fact is that gradient flows of certain functionals in carefully
selected spaces generate solutions to well known PDEs (see the seminal papers [8],
[10]). In this context we show two interesting examples of solutions to a PDE
generated by a gradient flow.

Example 4.5. The gradient flow of the Dirichlet Energy functional D : L2(Rn)
→ R defined as

D(f) :=
1

2
‖∇f‖2L2

produces a solution of the heat equation in Rn.
We sketch the proof assuming that the functions are smooth. Differentiating

D(f) along v we obtain

lim
t→0

1

2

‖∇(f + tv)‖2L2 − ‖∇f‖2L2

t
=

∫
〈∇f,∇v〉,

which can be rewritten, using Green’s first identity, as −
∫
v∆f. Therefore we con-

clude that
−∇D(f) = ∆f.

Example 4.6. The heat equation is also obtained as a solution of the Entropy
gradient flow in (P2(X),W2). We give an informal proof of this fact in the case
X = Tn the n-torus. We refer to [3, Chapters 8-10] and to [10] for a more detailed
approach.

Let f : Tn → R be integrable and s.t.
∫
Tn f L = 1 where L is the Lebesgue mea-

sure on the torus Tn. Define µ := fL. The natural space of perturbations (tangent
vector fields) in the metric space (P(Tn),W2) in the point µ = fL are vector fields
v : Tn → Tn square integrable w.r.t. µ, corresponding to the perturbations (see
Definition 2.31 of [2])

∂tf = −divx(vf).

Inserting these perturbations in EntL(f) we obtain

d

dt
EntL

(
(I + tv)∗(fL)

)
= −

∫
divx(vf)

(
log f + 1

)
dx

= −
∫

divx(vf) log f dx =

∫
(vf) · ∇x log f dx =

∫
v · ∇xf dx.

To find the norm of the gradient we have to maximize it with respect to v with the
restriction

∫
|v|2f dx ≤ 1. With a fairly easy calculation we obtain

v̄ = − 1

α
∇x log f where α =

√∫
f |∇x log f |2 dx.

From
d

dt
EntL

(
(I + tv̄)∗(fL)

)
= −α,

we conclude that the gradient flow is ∇EntL(f) = −∇x log f , and finally that

∂tf = −divx((∇x log f)f) = divx(∇xf) = ∆f.
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In the following two propositions we prove strict convexity w.r.t. linear interpo-
lation and lower semicontinuity of the Entropy.

Proposition 4.7. The Entropy functional is strictly convex with respect to linear
interpolation of measures, i.e. given µ0, µ1 ∈ D(Entm),

Entm
(
(1− t)µ0 + tµ1

)
≤ (1− t) Entm(µ0) + tEntm(µ1), ∀t ∈ [0, 1],

and equality holds if and only if µ0 = µ1.

Proof. Let µ0 = f0m, µ1 = f1m, u(z) := z log z. Since u is strictly convex, it holds

u((1− t)f0 + tf1) ≤ (1− t)u(f0) + tu(f1), ∀t ∈ [0, 1],

and equality holds if and only if f = g. Integrating we obtain the thesis. �

Proposition 4.8. The Entropy functional is lower semicontinuous with respect to
narrow convergence of measures.

Proof. Given ϕ ∈ C(X) let Gϕ : P(X)→ R be such that

Gϕ(µ) :=

∫
X

ϕ µ−
∫
X

eϕ−1 m.

Notice that Gϕ is continuous with respect to narrow convergence by definition.
Define now

F (µ) := sup
φ∈C(X)

Gφ(µ).

If µ ⊥ m, by varying φ we can obtain arbitrary large values for
∫
φ µ without

increasing
∫
eφ−1 m more than 1; therefore F (µ) =∞.

If µ� m, there exists a non-negative f ∈ L1(m) s.t. µ = fm. It is easily verified
that 1 + log f maximizes F , therefore by a standard approximation technique we
have

F (µ) =

∫
(1 + log f)f − elog f m =

∫
f log f m,

and

F (µ) = Entm(µ).

But F is the supremum of continuous functions, therefore it is l.s.c.. �

We now define boundedness from below of the Ricci curvature, relying on the
definition by Sturm and Lott-Villani (see [11] and [9]).

Definition 4.9. Let (X, d,m) be a compact geodesic metric space with m ∈ P(X).
X has Ricci curvature bounded from below by K ∈ R, and we write (X, d,m) is a
CD(K,∞) space, if Entm is K-convex in (P(X),W2), i.e. for every pair of points
µ0, µ1 ∈ D(Entm), there exists µt : [0, 1]→ P(X) constant speed geodesic between
µ0 and µ1, such that

Entm(µt) ≤ (1− t) Entm(µ0) + tEntm(µ1)− K

2
t(1− t)W 2

2 (µ0, µ1), ∀t ∈ [0, 1].

The previous definition will allow us to apply the properties of K-convex func-
tionals to the Entropy.
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4.3. Existence of the gradient flow of the Entropy. The proof of the existence
of a gradient flow of the Entropy functional relies on a variational approach which
dates back to De Giorgi (see [5]). We will define a recursive scheme and prove that
it converges to a solution of the gradient flow of the Entropy. The recursive scheme
is obtained with the following functional.

Definition 4.10. For τ > 0, and µ ∈ P(X) define Jτµ as the probability σ ∈ P(X)
which minimizes

σ 7→ Entm(σ) +
W 2

2 (σ, µ)

2τ
.

Since P (X) is compact w.r.t. narrow convergence, the existence and uniqueness
of the minimizer is obtained through lower semicontinuity and strict convexity of
the Entropy.

We prove an important estimate on the curve t 7→ Jtµ, which is almost the EDE
we are looking for.

Lemma 4.11. Let µ ∈ P(X). Then it holds

(9) Entm(µ) = Entm(Jtµ) +
W 2

2 (Jtµ, µ)

2t
+

∫ t

0

W 2
2 (Jrµ, µ)

2r2
dr.

Proof. By the definition of Jtµ we have

W 2
2 (Jtµ, µ)

2t
− W 2

2 (Jtµ, µ)

2s

≤ Entm(Jtµ) +
W 2

2 (Jtµ, µ)

2t
−
(

Entm(Jsµ) +
W 2

2 (Jsµ, µ)

2s

)
≤ W 2

2 (Jsµ, µ)

2t
− W 2

2 (Jsµ, µ)

2s
,

and passing to the limit we obtain

lim
s→t

1

t− s

(
Entm(Jtµ) +

W 2
2 (Jtµ, µ)

2t
−
(

Entm(Jsµ) +
W 2

2 (Jsµ, µ)

2s

))
= − W 2

2 (Jtµ, µ)

2t2
.

Since the left hand side is the derivative of

r 7→ Entm(Jrµ) +
W 2

2 (Jrµ, µ)

2r
,

by integration we obtain∫ t

0

d

dr

(
Entm(Jrµ) +

W 2
2 (Jrµ, µ)

2r

)
dr = −

∫ t

0

W 2
2 (Jrµ, µ)

2r2
dr.

If we show that

lim
x→0+

W 2
2 (Jxµ, µ)

2x
= 0,

we will thus have the thesis. In fact, since Entm(µ) <∞, then by definition of Jrµ
we have

0 ≤ Entm(Jrµ) +
W 2

2 (Jrµ, µ)

2r
≤ Entm(µ),

and the lower semicontinuity of the Entropy yields Entm(Jrµ) ≥ Entm(µ) as r →
0. �
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We are ready to prove the first main result of this chapter, i.e. the existence of an
EDE-gradient flow of the Entropy for metric measure spaces with Ricci curvature
bounded from below.

Theorem 4.12 (Existence). If (X, d,m) has Ricci curvature bounded from below
by K then for every µ̃ ∈ D(Entm) there exists a gradient flow of Entm starting
from µ̃.

Proof. The proof will be given in several steps. Notice that in order to prove the
EDE, by (7) it is enough to show there exists an absolutely continuous curve t 7→ µt
such that µ0 = µ̃ and

Entm(µ̃) ≥ Entm(µt) +
1

2

∫ t

0

|µ̇|2(r) dr +
1

2

∫ t

0

|D− Entm |2(µr) dr, ∀t ≥ 0.

Step 1. The approximate solution is constructed by defining recursively

µτ0 := µ̃,

µτn+1 := Jτ (µτn).

Then define the curve t 7→ µτ (t) as

µτ (nτ) := µτn,

µτ (t) := Jt−nτ (µτn), ∀t ∈ (nτ, (n+ 1)τ),

and let

|µ̇τ |(t) :=
W2(µτn, µ

τ
n+1)

2τ
, ∀t ∈ [nτ, (n+ 1)τ).

Step 2. We give an estimate on the descending slope of the Entropy. Given
ν, σ ∈ P(X), since Jt(σ) is the minimizer, we have

Entm(Jtσ) +
W 2

2 (σ, Jtσ)

2t
≤ Entm(ν) +

W 2
2 (σ, ν)

2t
.

Hence by triangle inequality

Entm(Jtσ)− Entm(ν) ≤ 1

2t

(
W 2

2 (σ, ν)−W 2
2 (σ, Jtσ)

)
=

1

2t

(
W2(σ, ν)−W2(σ, Jtσ)

)(
W2(ν, σ) +W2(σ, Jtσ)

)
≤ W2(Jtσ, ν)

2t

(
W2(ν, σ) +W2(σ, Jtσ)

)
.

If Jtσ = ν the inequality holds trivially. Otherwise, dividing by W2(Jtσ, ν) both
sides and passing to the limit

|D− Entm |(Jtσ) = lim sup
ν→Jtσ

(
Entm(Jtσ)− Entm(ν)

)+
W2(Jtσ, ν)

≤ lim sup
ν→Jtσ

W2(ν, σ) +W2(σ, Jtσ)

2t
=
W2(σ, Jtσ)

t
.

Step 3. Using now the curve µτ (t), the definition of its time derivative |µ̇τ | and
the previous inequality, we can thus rewrite (9) as

Entm(µτn) ≥ Entm(µτn+1) +
1

2
(2τ)|µ̇τ |2(t) +

1

2

∫ (n+1)τ

nτ

|D− Entm |2
(
µτ (s)

)
ds.
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where t ∈ [n, n+ 1)τ . Adding these inequalities from 0 to T = Nτ we obtain

(10) Entm(µ̃) ≥ Entm(µτT ) +
1

2

∫ T

0

|µ̇τ |2(t) dt+
1

2

∫ T

0

|D− Entm |2
(
µτ (t)

)
dt.

Notice that the definition of |µ̇τ | implies that we rescale time as t 7→ t/2, i.e. we
take 2τ to pass from µτn to µτn+1.

The last part of the proof concerns the compactness of the family of curves
{t 7→ µτt }τ in the space C(X,P(X)) and the lower semicontinuity (with respect to
τ in 0) of the right hand side of (10). These results clearly will conclude the proof.

Step 4. We address the convergence of the curve t 7→ µτ (t) as τ → 0. First,
since the starting point is in the domain of the Entropy we have by (10) that∫ T

0

|µ̇τ |2(t) dt < 2 Entm(µ̃).

By Hölder inequality, for all Borel A ⊂ [0, T ]∫
A

|µ̇τ |(t) dt =

∫ T

0

χA|µ̇τ |(t) dt ≤

√∫ T

0

χ2
A dt

√∫ T

0

|µ̇τ |2(t) dt

≤
√
L(A)

√
2 Entm(µ̃),

which gives the uniform integrability of |µ̇τ (t)|. Since

W2(µτ (s), µτ (t)) ≤
∫ s

t

|µ̇τ |(r) dr,

the family of curves (µτ )τ is uniformly continuous.
Up to subsequences we can pass to the limit as τn ↘ 0, obtaining by Arzelà-Ascoli
Theorem that µτn converges uniformly to a curve t 7→ µ(t) such that µ(0) = µ̃.
Since |µ̇τ (t)| is uniformly integrabile, up to subsequences, also |µ̇τn(t)| L1-weakly
converges to a function g. It follows easily from the definition of metric derivative
that |µ̇(t)| ≤ g(t), therefore µ(t) is locally absolutely continuous.

Step 5. We prove the lower semicontinuity of the right hand side of (10).
By Hölder’s inequality we have∫ T

0

|µ̇|2(t) dt ≤
∫ T

0

g(t)2 dt ≤ lim inf
n

∫ T

0

|µ̇τn |2(t) dt,

thus the l.s.c. of the first integral.
Notice that being the supremum of lower semicontinuous functions by formula

(4), |D− Entm | is lower semicontinuous too. Then define for every k ∈ N, ν ∈ P(X)

ek(ν) := inf
σ∈P(X)

{
|D− Entm |2(σ) + kW2(ν, σ)

}
.

Notice that supk ek(ν) = |D− Entm |2(ν) for all ν.
The infimum of Lipschitz functions bounded from below is a Lipschitz function;
therefore ek is Lipschitz. By uniform convergence

lim
n

∫ T

0

ek(µτn(t)) dt =

∫ T

0

ek(µ(t)) dt.

By Fatou Lemma∫
ek(µ(t)) dt ≤ lim inf

n

∫
|D− Entm |2(µτn(t)) dt,
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for every k ∈ N. By Monotone Convergence Theorem we finally have∫
|D− Entm |2(µ(t)) dt = sup

k

∫
ek(µ(t)) dt ≤ lim inf

n

∫
|D− Entm |2(µτn(t)) dt.

�

5. Uniqueness of the gradient flow of the Entropy

For the proof of the uniqueness we will follow the argumentation of [4, Section 5]
and [7, Section 3].

We start by introducing two new concepts, the push-forward via a plan, and
plans with bounded deformation. We prove different interesting auxiliary proper-
ties which correlate these two new concepts with the Entropy functional and its
descending slope, and the key result in Proposition 5.10. We conclude the section
proving the uniqueness of the gradient flow of the Entropy.

5.1. Plans with bounded deformation and push-forward via a plan. We
extend the notion of push-forward via a map as follows.

Definition 5.1 (Push-forward via a plan). Let µ ∈ P(X), γ ∈ P(X2) be such that
µ� π1

∗γ. The measures γµ ∈ P(X2) and γ∗µ ∈ P(X) are defined as

γµ(dx, dy) :=
dµ

dπ1
∗γ

(x)γ(dx, dy),

γ∗µ(dy) := π2
∗γµ(dy).

Remark 5.2. Since µ � π1
∗γ, there exists f ∈ L1(π1

∗γ) such that µ = fπ1
∗γ. By

Disintegration Theorem, considering {γy}y∈X the disintegration of γ with respect
to its second marginal we obtain

(11) γ∗µ(dy) =

(∫
X

f(x) γy(dx)

)
π2
∗γ(dy).

The plans which are particularly useful in our analysis belong to the following
category.

Definition 5.3. The plan γ ∈ P(X2) has bounded deformation if ∃c ∈ R+ such
that 1

cm ≤ π
1
∗γ, π

2
∗γ ≤ cm.

We show now some preliminary properties. The following is a useful estimate.

Proposition 5.4. ∀µ, ν ∈ P(X),∀γ ∈ P(X2) such that µ, ν � π1
∗γ,

Entγ∗ν(γ∗µ) ≤ Entν(µ).

Proof. We assume µ � ν, otherwise Entν(µ) = ∞ and there is nothing to prove.
Then there exists f ∈ L1(ν) such that µ = fν and since ν � π1

∗γ by hypothesis,
∃θ ∈ L1(π1

∗θ) such that ν = θπ1
∗γ. Disintegrating γ∗ν, γ∗µ as in (11) we obtain

γ∗µ =

(∫
X

f(x)θ(x) γy(dx)

)
π2
∗γ,(12)

γ∗ν =

(∫
X

θ(x) γy(dx)

)
π2
∗γ.(13)
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It is easily verified that γ∗µ � γ∗ν. Therefore by Radon-Nikodym Theorem
there exists η ∈ L1(γ∗µ) such that γ∗µ = ηγ∗ν, and considering (12), (13), we have

(14) η(y) =

∫
fθ γy(dx)∫
θ γy(dx)

=

∫
f

θ∫
θ γy(dx)

γy(dx).

Defining
γ̃ := (θ ◦ π1)γ,

its disintegration with respect to its second marginal γ∗ν is

γ̃y =
θ∫

θ γy(dx)
γy,

so we can rewrite (14) as

η(y) =

∫
f γ̃y(dx).

Now let u(z) := z log z. From the convexity of u(z) and Jensen’s inequality,

u(η(y)) ≤
∫
u(f(x)) γ̃y(dx).

Integrating both sides with respect to γ∗ν we get

Entγ∗ν(γ∗µ) =

∫
u(η(y)) γ∗ν(dy) ≤

∫ (∫
u(f(x)) γ̃y(dx)

)
γ∗ν(dy),

and from Disintegration Theorem,∫ (∫
u(f(x)) γ̃y(dx)

)
γ∗ν(dy) =

∫
u(f(x)) ν(dx) = Entν(µ).

�

The following formula will be useful in the proof of the next proposition.

Lemma 5.5. If µ, ν, σ ∈ P(X) and σ is such that there exists c > 0 : 1
cν ≤ σ ≤ cν,

then it holds

(15) Entν(µ) = Entσ(µ) +

∫
X

log

(
dσ

dν

)
µ(dx).

Proof. From the hypothesis on σ we can deduce there exists 1
c ≤ g ≤ c such that

σ = gν. If µ is not absolutely continuous with respect to ν we obtain ∞ =∞+ C
and (15) holds.

Otherwise if µ� ν take µ = fν; therefore

µ =
f

g
σ

and

Entσ(µ) +

∫
X

log

(
dσ

dν

)
µ =

∫
X

f log f ν = Entν(µ).

�

The push-forward of a measure via a plan with bounded deformation allows us
to remain in the domain of the Entropy, as it is proved in the next results.

Proposition 5.6. If µ ∈ D(Entm) and γ ∈ P(X2) has bounded deformation, then
γ∗µ ∈ D(Entm).
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Proof. Since γ has bounded deformation there exist c, C > 0 such that cm ≤
π1
∗γ, π

2
∗γ ≤ Cm. Using identity (15) we obtain

Entm(γ∗µ) = Entπ2
∗γ

(γ∗µ) +

∫
X

log

(
dπ2
∗γ

dm

)
γ∗µ

≤ Entπ2
∗γ

(γ∗µ) + log(C).

From the fact that γ∗(π
1
∗γ) = π2

∗(γπ1
∗γ

) = π2
∗(γ) and Proposition 5.4,

Entπ2
∗γ

(γ∗µ) = Entγ∗(π1
∗γ)

(γ∗µ) ≤ Entπ1
∗γ

(µ).

Then using again identity (15)

Entπ1
∗γ

(µ) = Entm(µ) +

∫
X

log

(
dm

dπ1
∗γ

)
µ

≤ Entm(µ) + µ(X) log
1

c
= Entm(µ)− log c.

In conclusion

Entm(γ∗µ) ≤ Entm(µ)− log c+ logC <∞.
�

The following proposition gives a quite unexpected property of convexity of the
Entropy.

Proposition 5.7. If γ ∈ P(X2) has bounded deformation then the map

D(Entm) 3 µ 7→ Entm(µ)− Entm(γ∗µ)

is convex with respect to linear interpolation of measures

Proof. Let µ0 = f0m,µ1 = f1m. Define for every t ∈ (0, 1)

µt := (1− t)µ0 + tµ1,

ft := (1− t)f0 + tf1.

We compute

(1− t) Entµt
(µ0) + tEntµt

(µ1)

= (1− t)
∫
X

f0
ft

log

(
f0
ft

)
µt + t

∫
X

f1
ft

log

(
f1
ft

)
µt

= (1− t)
∫
X

f0 log f0 m+ t

∫
X

f1 log f1 m−
∫
X

ft log ft m

= (1− t) Entm(µ0) + tEntm(µ1)− Entm(µt).

Since µi ∈ D(Ent) (for i = 1, 2) and γ has bounded deformation, from Proposition
5.6 also γ∗µi ∈ D(Ent), so an identical argument with µt replaced by γ∗µt shows
that

(1− t) Entγ∗µt
(γ∗µ0) + tEntγ∗µt

(γ∗µ1)

= (1− t) Entm(γ∗µ0) + tEntm(γ∗µ1)− Entm(γ∗µt).

By Proposition 5.4 we have Entγ∗µt
(γ∗µi) ≤ Entµt

(µi) for i = 1, 2, therefore

(1− t) Entm(γ∗µ0) + tEntm(γ∗µ1)− Entm(γ∗µt)

≤ (1− t) Entm(µ0) + tEntm(µ1)− Entm(µt).
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Rearranging the terms we finally obtain

Entm(µt)− Entm(γ∗µt)

≤ (1− t) Entm(µ0) + tEntm(µ1)− (1− t) Entm(γ∗µ0)− tEntm(γ∗µ1).

�

5.2. Approximability in Entropy and distance. The following is a technical
result which allows us to control the Entropy of a perturbation of a measure.

For γ ∈ P(X2), define the transportation cost

C(γ) :=

∫
d2(x, y) γ(dx, dy).

Lemma 5.8. If µ, ν ∈ D(Entm), there exists a sequence (γn)n of plans with
bounded deformation such that Entm(γn∗ µ) → Entm(ν) and C(γnµ) → W 2

2 (µ, ν)
as n→∞.

Proof. Let f, g ∈ L1(m) be non-negative such that µ = fm, ν = gm. Pick γ ∈
Adm(µ, ν) s.t. ∫

d2 γ = inf
γ′∈Adm(µ,ν)

∫
d2 γ′

and ∀n ∈ N define

A′n :=
{

(x, y) ∈ X2 : f(x) + g(y) ≤ n
}
,

An :=
{

(x, y) ∈ A′n : γx(A′n) > 1
2

}
,

γn(dx, dy) := cn

(
γ|An

(dx, dy) +
1

n
(id, id)∗m(dx, dy)

)
,

with cn the normalization constant, i.e. cn =
1

γ(An) + 1
n

. Disintegrating γ we

obtain

γ(dx, dy) =

∫
X

[
γx(dy)

]
µ(dx) =

∫
X

[
γy(dx)

]
ν(dy),

γ|An
(dx, dy) =

∫
X

[
γx |An

(dy)
]
µ(dx) =

∫
X

[
γy |An

(dx)
]
ν(dy).

Therefore

γn

cn
=

(∫
X

[
γx |An

(dy)
]
µ(dx)

)
+

1

n
(id, id)∗m(dx, dy)

=

∫
X

[
f(x)γx |An

(dy) +
1

n
δx(dy)

]
m(dx),

and analogously for ν,

γn

cn
=

∫
X

[
g(y)γy |An

(dx) +
1

n
δy(dx)

]
m(dy).

Then the marginals of γn are

π1
∗γ
n = cn

(
γx(An)f(x) +

1

n

)
m(dx),

π2
∗γ
n = cn

(
γy(An)g(y) +

1

n

)
m(dy).
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Since 0 ≤ f, g ≤ n and 0 ≤ γx(An), γy(An) ≤ 1,

cn
n
m ≤ π1

∗γ
n, π2
∗γ
n ≤

(
ncn +

cn
n

)
m,

i.e. γn has bounded deformation for every n.
By Radon-Nikodym Theorem

fn(x) :=
dµ

dπ1
∗γ
n

=
f(x)

cn(γx(An)f(x) + 1
n )
,(16)

so by definition of push-forward of a measure

γnµ(dx, dy) =
dµ

dπ1
∗γ
n
γn = fn(x)γn(dx, dy)

=

∫
X

cn

[
fn(x)g(y)γy |An

(dx) +
fn(x)

n
δy(dx)

]
m(dy),

and thus

γn∗ µ = π2
∗γ
n
µ(dy) =

∫
X

cn

(
g(y)

∫
An

fn(x) γy(dx) +
fn(y)

n

)
m(dy).

Defining

hn(y) := g(y)

(∫
An

fn(x) γy(dx)

)
+
fn(y)

n
,

we can write

Entm(γn∗ µ) =

∫
X

cnhn(y) log
[
cnhn(y)

]
m(dy).

We notice that since cn → 1, cn ≥ 2/3 definitely, so

cnγx(An) +
1

nf(x)
≥ 1

2
cn +

1

n2
≥ 1

3
,

thus by definition (16), fn ≤ 3 definitely.
Therefore, defined

qn(y) := 3

(
g(y) +

1

n

)
,

we have that 0 ≤ hn ≤ qn(y) definitely. A calculation shows that qn(y) log qn(y) ∈
L1(m) definitely; thus by Dominated Convergence Theorem

lim
n

Entm(γn∗ µ) =

∫
X

lim
n

(
cnhn(y) log

(
cnhn(y)

))
m(dy)

=

∫
X

g(y) log g(y) m(dy) = Entm(ν),

since limn cn = 1 and limn hn(y) = g(y).
We pass to show the convergence of the cost. We can rewrite the cost of γnµ as

C(γnµ) =

∫
X2

d2(x, y) γnµ(dx, dy) =

∫
X2

d2(x, y)fn γ
n(dx, dy)

=

∫
X2

d2cnfnχAn
γ +

1

n

∫
X2

d2fn (id, id)∗m.
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By hypothesis X is compact and we have that cn, fn, χAn → 1, therefore there
exists k > 1 such that d2cnfnχAn

≤ k definitely. In conclusion, by Dominated
Convergence

C(γnµ)→
∫
X2

d2 γ = W 2
2 (µ, ν).

�

5.3. Convexity of the squared descending slope. If (X, d,m) has Ricci cur-
vature bounded from below by K, from (4) we know that

|D− Entm |(µ) = sup
ν∈P(X), ν 6=µ

(
Entm(µ)− Entm(ν) +

K

2
W 2

2 (µ, ν)

)+

W2(µ, ν)
.

We give yet another characterization of |D− Entm |, which relies only on plans with
bounded deformation and which we will use in the proof of Proposition 5.10.

Lemma 5.9. If (X, d,m) has Ricci curvature bounded from below by K then

|D− Entm |(µ) = sup
γ

(
Entm(µ)− Entm(γ∗µ) +

K

2
C(γµ)

)+

(C(γµ))
1/2

,

where the supremum is taken among all γ ∈ Adm(µ, ν) with bounded deformation,
and if C(γµ) = 0 the right hand side is taken 0 by definition.

Proof. We show both inequalities.
” ≥ ”. We can assume C(γµ) > 0, ν = γ∗µ and K < 0 (thanks to Remark 3.8).

The following inequality is easily proven: if a, b, c ∈ R and 0 < b ≤ c, then

(a− b)+√
b

≥ (a− c)+√
c

.

Substituting

a := Entm(µ)− Entm(γ∗µ),

b :=− K

2
W 2

2 (µ, γ∗µ),

c :=− K

2
C(γµ),

proves the thesis.
” ≤ ”. It comes directly from Lemma 5.8.

�

A key ingredient in proving the uniqueness of the flow of the Entropy is the
convexity of the squared descending slope of the Entropy, which we now show.

Proposition 5.10. If (X, d,m) has Ricci curvature bounded from below by K, then
the map

µ ∈ D(Entm) 7→ |D− Entm |2(µ)

is convex with respect to linear interpolation of measures.
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Proof. Recalling that the supremum of convex maps is still convex, and considering
Lemma 5.9, we are done if we prove that the map

(17) µ 7→

((
Entm(µ)− Entm(γ∗µ) +

K−

2
C(γµ)

)+
)2

C(γµ)

is convex.
The map

µ ∈ D(Entm) 7→ C(γµ) =

∫
X×X

d2(x, y) dγµ

is linear. Hence, together with the fact that µ 7→ Entm(µ) − Entm(γ∗µ) is convex
(Proposition 5.7), also

µ 7→ Entm(µ)− Entm(γ∗µ)− K−

2
C(γµ)

is convex. Taking its positive part we still have a convex function.
Now take

a(µ) :=

(
Entm(µ)− Entm(γ∗µ)− K−

2
C(γµ)

)+

, b(µ) := C(γµ),

and define also ψ : [0,∞)× [0,∞)→ R ∪ {∞} as

ψ(a, b) :=


a2

b
if b > 0,

∞ if b = 0, a > 0,

0 if a = b = 0.

It is immediately shown that ψ is convex and it is non-decreasing with respect to
a. Therefore we obtain

ψ
(
a
(
(1− t)µ0 + tµ1

)
, b
(
(1− t)µ0 + tµ1

))
≤ ψ

(
(1− t)a(µ0) + ta(µ1), (1− t)b(µ0) + tb(µ1)

)
≤ (1− t)ψ

(
a(µ0), b(µ0)

)
+ tψ

(
a(µ1), b(µ1)

)
,

thus the convexity of (17). �

We finally have all the tools to prove the uniqueness of the gradient flow gener-
ated by the Entropy.

Theorem 5.11 (Uniqueness). Let (X, d,m) have Ricci curvature bounded from
below by K and let µ̃ ∈ D(Entm); then there exists a unique gradient flow of Entm
in (P(X),W2) starting from µ̃.

Proof. Let µt, νt be gradient flows of Entm starting both from µ̃. Then

ηt :=
µt + νt

2

is an absolutely continuous curve (by Remark 4.3) starting from µ̃. From the
definition of gradient flow,

Entm(µ̃) = Entm(µt) +
1

2

∫ t

0

|µ̇s|2 ds+
1

2

∫ t

0

|D− Entm |2(µs) ds,
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Entm(µ̃) = Entm(νt) +
1

2

∫ t

0

|ν̇s|2 ds+
1

2

∫ t

0

|D− Entm |2(νs) ds,

for every t ≥ 0.
Adding up these two equalities, by the squared slope convexity (Proposition 5.10),
the squared metric speed convexity (Remark 4.3) and the strict convexity of the
relative Entropy (Proposition 4.7), we obtain

Entm(µ̃) > Entm(ηt) +
1

2

∫ t

0

|η̇s|2 ds+
1

2

∫ t

0

|D− Entm |2(ηs) ds

for every t where µt 6= νt. But this contradicts (6); therefore it must be µt ≡ νt. �
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