
THE MONGE PROBLEM FOR DISTANCE COST IN GEODESIC SPACES
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Abstract. We address the Monge problem in metric spaces with a geodesic distance: (X, d) is a Polish
space and dL is a geodesic Borel distance which makes (X, dL) a non branching geodesic space. We

show that under the assumption that geodesics are d-continuous and locally compact, we can reduce the
transport problem to 1-dimensional transport problems along geodesics.

We introduce two assumptions on the transport problem π which imply that the conditional prob-
abilities of the first marginal on each geodesic are continuous or absolutely continuous w.r.t. the 1-

dimensional Hausdorff distance induced by dL. It is known that this regularity is sufficient for the
construction of a transport map.

We study also the dynamics of transport along the geodesic, the stability of our conditions and show

that in this setting dL-cyclical monotonicity is not sufficient for optimality.
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1. Introduction

This paper concerns the Monge transportation problem in geodesic spaces, i.e. metric spaces with a
geodesic structure. Given two Borel probability measure µ, ν ∈ P(X), where (X, d) is a Polish space, we
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study the minimization of the functional

I(T ) =
∫
dL(x, T (x))µ(dy)

where T varies over all Borel maps T : X → X such that T]µ = ν and dL is a Borel distance that makes
(X, dL) a non branching geodesic space.

Before giving an overview of the paper and of the existence result, we recall which are the main results
concerning the Monge problem.

In the original formulation given by Monge in 1781 the problem was settled in Rn, with the cost given
by the Euclidean norm and the measures µ, ν were supposed to be absolutely continuous and supported
on two disjoint compact sets. The original problem remained unsolved for a long time. In 1978 Sudakov
[18] claimed to have a solution for any distance cost function induced by a norm: an essential ingredient
in the proof was that if µ � Ld and Ld-a.e. Rd can be decomposed into convex sets of dimension k,
then then the conditional probabilities are absolutely continuous with respect to the Hk measure of the
correct dimension. But it turns out that when d > 2, 0 < k < d− 1 the property claimed by Sudakov is
not true. An exemple with d = 3, k = 1 can be found in [12].

The Euclidean case has been correctly solved only during the last decade. L. C. Evans and W. Gangbo
in [9] solved the problem under the assumptions that sptµ ∩ spt ν = ∅, µ, ν � Ld and their densities are
Lipschitz functions with compact support. The first existence results for general absolutely continuous
measures µ, ν with compact support have been independently obtained by L. Caffarelli, M. Feldman
and R.J. McCann in [6] and by N. Trudinger and X.J. Wang in [19]. Afterwards M. Feldman and R.J.
McCann [10] extended the results to manifolds with geodesic cost. The case of a general norm as cost
function on Rd, including also the case with non strictly convex unitary ball, has been solved first in the
particular case of crystalline norm by L. Ambrosio, B. Kirchheim and A. Pratelli in [2], and then in fully
generality independently by L. Caravenna in [7] and by T. Champion and L. De Pascale in [8].

1.1. Overview of the paper. The presence of 1-dimensional sets (the geodesics) along which the cost
is linear is a strong degeneracy for transport problems. This degeneracy is equivalent to the following
problem in R: if µ is concentrated on (−∞, 0], and ν is concentrated on [0,+∞), then every transference
plan is optimal for the 1-dimensional distance cost | · |. In fact, every π ∈ Π(µ, ν) is supported on the set
(−∞, 0]× [0,+∞), on which |x− y| = y − x and thus∫

|x− y|π(dxdy) = −
∫
xµ(dx) +

∫
yν(dy).

Nevertheless, for this easy case an explicit map T : R → R can be constructed if µ is continuous (i.e.
without atoms): the easiest choice is the monotone map, a minimizer of the quadratic cost | · |2.

The approach suggested by the above simple case is the following:

(1) reduce the problem to transportation problems along distinct geodesics;
(2) show that the disintegration of the marginal µ on each geodesic is continuous;
(3) find a transport map on each geodesic and piece them together.

While the last point can be seen as an application of selection principles in Polish spaces, the first two
points are more subtle.

The geodesics used by a given transference plan π to transport mass can be obtained from a set Γ
on which π is concentrated. If π wants to be a minimizer, then it certainly chooses the shortest paths:
however the metric space can be branching, i.e. geodesics can bifurcate.

In this paper we assume that the space is non branching.
Under this assumption, a cyclically monotone plan π yields a natural partition R of a subset of the

transport set Te, i.e. the set of points on the geodesics used by π: defining

• the set T made of inner points of geodesics,
• the set a ∪ b := Te \ T of initial points a and end points b,

the non branching assumption and the cyclical monotonicity of Γ imply that the geodesics used by π are
a partition on T . In general in a there are points from which more than geodesic starts and in b there are
points in which more than one geodesic ends, hence being on a geodesic can’t be an equivalence relation
on the set a ∪ b. For example one can think to the unit circle with µ = δ0 and ν = δπ.
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We note here that π gives also a direction along each component of R, as the one dimensional example
above shows.

Even if we have a natural partition R in T and µ(a∪b) = 0, we cannot reduce the transport problem to
one dimensional problems: a necessary and sufficient condition is that the disintegration of the measure
µ is strongly consistent, which is equivalent to the fact that there exists a µ-measurable quotient map
f : T → T of the equivalence relation R. In this case, one can write

m := f]µ, µ =

∫
µym(dy), µy(f

−1(y)) = 1,

i.e. the conditional probabilities µy are concentrated on the counterimages f−1(y) (which are single
geodesics). We can obtain the one dimensional problems by partitioning π w.r.t. the partitionR×(X×X),

π =

∫
πym(dy), ν =

∫
νym(dy) νy := (P2)]πy,

and considering the one dimensional problems along the geodesic R(y) with marginals µy, νy and cost | · |,
the length on the geodesic. At this point we can study the problem of the regularity of the conditional
probabilities µy.

The fact that there exists a strongly consistent disintegration is a property of the geodesics of the
metric space. In the setting considered in this paper, (X, dL) is a non branching geodesic space, not
necessarily Polish. To assure that standard measure theory can be used, there exists a second distance d
on X which makes (X, d) Polish, and dL is a Borel function on X ×X with the metric d× d.

Note that we do not require dL to be l.s.c., so the existence of an optimal plan π is not assured, but we
consider a dL-cyclically monotone transference plan π. It is worth notice that we do not use the existence
of optimal potentials (φ, ψ), as well as the optimality of π.

Thus, let π be a dL-cyclically monotone transference plan. The strong consistency of the disintegration
of µ along the geodesic used by π is a consequence of the topological properties of the geodesics of dL
considered as curves in (X, d): in fact we require that they are d-continuous and locally compact. Under
this assumption, on T (the transport set without end points) it is possible to disintegrate µ. Moreover,
a natural operation on sets can be considered: the translation along geodesics. If A is a subset of T , we
denote by At the set translated by t in the direction determined by π.

It turns out that the fact that µ(a ∪ b) = 0 and the measures µy are continuous depends on how the
function t 7→ µ(At) behaves. We can now state the main result.

Theorem 1.1 (Lemma 5.3 and Proposition 5.4). If ]{t > 0 : µ(At) > 0} is uncountable for all A Borel
such that µ(A) > 0, then µ(a ∪ b) = 0 and the conditional probabilities µy are continuous.

This is sufficient to solve the Monge problem, i.e. to find a transport map which has the same cost as
π. A second result concerns a stronger regularity assumption.

Theorem 1.2 (Theorem 5.7). Assume that L1({t > 0 : µ(At) > 0}) > 0 for all A Borel such that
µ(A) > 0. Then µ(a ∪ b) = 0 and µy is a.c. w.r.t. the 1-dimensional Hausdorff measure H1

dL
induced by

dL.

The assumption of the above theorem and the assumption dL ≥ d allows to define a current in (X, d)
which represents the vector field corresponding to the translation A 7→ At, and moreover to solve the
equation

∂U = µ− ν

is the sense of current in metric space.
The final results of the paper are the stability of these conditions under Measure-Gromov-Hausdorff

like convergence of structures (Xn, dn, dL,n, πn). The conclusion is that a sort of uniform integrability
condition on the conditional probability w.r.t. H1

dL,n
passes to the limit, so that one can verify by

approximation if Theorem 1.2 holds.
In the case d = dL, considering a reference measure η ∈ P(X) such that (X, d, η) is a geodesic measure

space satisfying the MCP (K,N) for K ∈ R and N ≥ 1, the application of the above results toghether
with MCP -condition implies that Assumption 2 holds for η w.r.t. the optimal flow induced by any
d-monotone plan π ∈ Π(µ, ν). Hence if µ� η, the existence of a minimizer for the Monge minimization
problem with marginal µ and ν follows.
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To conclude this introduction, we observe that it is probably possible to extend these results to the
case where −dL is a Souslin function on (X ×X, d× d): this means that d−1

L (−∞, t) is an analytic set in
the sense of Souslin.

The interested reader can refer for example to the analysis of [3].

1.2. Structure of the paper. The paper is organized as follows.
In Section 2, we recall the basic mathematical results we use. In Section 2.1 the fundamentals of

projective set theory are listed. In Section 2.2 we recall the Disintegration Theorem, using the version
of [3]. Next, the basic results of selection principles are in Section 2.3, and in Section 2.4 we define the
geodesic structure (X, d, dL) which is studied in this paper. Finally, Section 2.5 recalls some fundamental
results in optimal transportation theory.

The next three sections are the key ones.
Section 3 shows how using only the dL-cyclical monotonicity of a set Γ we can obtain a partial order

relation G ⊂ X ×X as follows (Lemma 3.3 and Proposition 3.7): xGy iff there exists (w, z) ∈ Γ and a
geodesic γ : [0, 1] → X, with γ(0) = w, γ(1) = z, such that x, y belongs to γ and γ−1(x) ≤ γ−1(y). This
set G is analytic, and allows to define

• the transport ray set R (3.4),
• the transport sets Te, T (with and without and points) (3.5),
• the set of initial points a and final points b (3.8).

Moreover we show that RxT ×T is an equivalence relation (Proposition 3.7), we can assume that the set
of final points b can be taken µ-negligible (Lemma 3.11), and in two final remarks we study what happens
in the case more regularity on the cost dL is assumed, Remark 3.12 and Remark 3.13.
Notice that in the case d = dL the existence of a Lipschitz potential ϕ, one can take

Γ = G =
{
(x, y) : ϕ(x)− ϕ(y) = d(x, y)

}
.

Thus the main result of this section is that these sets can be defined even if the potential does not exist.
Section 4 proves that the continuity and local compactness of geodesics imply that the disintegration

induced by R on T is strongly consistent (Proposition 4.4): as Example 1 shows, the strong consitency
of the disintegration is a non trivial property of the metric spaces we are considering.
Using this fact, we can define an order preserving map g which maps our transport problem into a
transport problem on S × R, where S is a cross section of R (Proposition 4.6). Finally we show that
under this assumption there exists a transference plan with the same cost of π which leaves the common
mass µ ∧ ν at the same place (note that in general this operation lowers the transference cost).

In Section 5 we prove Theorem 1.1 and Theorem 1.2. We first introduce the operation A 7→ At, the
translation along geodesics (5.1), and show that t 7→ µ(At) is a Souslin function if A is analytic (Lemma
5.2).
Next we show that under the assumption

µ(A) > 0 =⇒ ]
{
t > 0 : µ(At) > 0

}
> ℵ0

the set of initial points a is µ-negligible (Lemma 5.3) and the conditional probabilities µy are continuous.
Finally, we show that under the stronger assumption

(1.1) µ(A) > 0 =⇒
∫
R+

µ(At)dt > 0,

the conditional probabilities µy are a.c. w.r.t. H1
dL

(Theorem 5.7). A final result shows that actually
Condition (1.1) yields that t 7→ µ(At) has more regularity than just integrability (Proposition 5.8) it is
in fact continuous

After the above results, the solution of the Monge problem is routine, and it is done in Theorem 6.2
of Section 6.

Under Condition 1.1 and d ≤ dL, in Section 7 we give a dynamic interpretation to the transport
along geodesics. In Definition 7.1 we define the current ġ in (X, d), which represents the flow induced
by the transference plan π. Not much can be said of this flow, unless some regularity assumptions are
considered. These assumptions are the natural extensions of properties of transportation problems in
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finite dimensional spaces.
If there exists a background measure η whose disintegration along geodesics satisfies

η =

∫
qyH1

dLm(dy), qy ∈ BV,

∫
Tot.Var.(qy)m(dy) < +∞,

then ġ is a normal current, i.e. its boundary is a bounded measure on X (Lemma 7.2).
We can also consider the problem ∂U = µ− ν in the sense of currents: Proposition 7.4 gives a solution,
and in the case qy(t) > 0 for H1

dL
-a.e. t we can write represent U = ρġ, i.e. the flow ġ multiplied by a

scalar density ρ (Corollary 7.6).
In Section 8 we address the stability of the assumptions under Measure-Gromov-Hausdorff-like con-

vergence of structures (Xn, dn, dL,n, πn). Under a uniform integrability condition of µy,n w.r.t. H1
dL,n

and a uniform bound on the πn transportation cost (Assumption 4 of Section 8.2), we show that the
marginal µ can be represented as the image of a measure rm⊗ L1 by a Borel function h : T × R → Te,
with r ∈ L1(m ⊗ L1) (Proposition 8.13). The key feature of h is that t 7→ h(y, t) is a geodesic of T for
m-a.e. y ∈ T .
Thus while h(0, T ) is not a cross section for R (in that case we would have finished the proof), in
Proposition 8.3 we show which conditions on h imply that µ can be disintegrated with a.c. conditional
probabilities, and we verify that this is our case in Theorem 8.14.
In two remarks we suggest how to pass also uniform estimates on the disintegration on (Xn, dn, dL,n) to
the transference problem in (X, d, dL) (Remark 8.4 and Remark 8.15).

In Section 9 we consider an application of the results obtained in the previous sections. We assume
d = dL and the existence of background probability measure η such that (X, d, η) satisfies MCP (K,N)
(Definition 9.1). In this framework we prove that for any d-cyclically monotone transference plan π, η
admits a disintegration along the geodesics used by π with marginal probabilities absolutely continuous
w.r.t. H1 (Theorem 9.5). This implies directly (Corollary 9.6) that if µ � η the Monge minimization
problem with marginals µ and ν admits a solution. The final result of the section (Lemma 9.7) shows
that we can solve the dynamical problem ∂U = µ − ν with U = ρġ, and if the support of µ and ν are
disjoint U is a normal current.

The last section contains two important examples. In Example 1 we show that if the geodesics are
not locally compact, then in general the disintegration along transport rays is not strongly supported. In
Example 2 we show that under our assumptions the c-monotonicity is not sufficient for optimality.

We end with a list of notations, Section A.

2. Preliminaries

In this section we recall some general facts about projective classes, the Disintegration Theorem for
measures, measurable selection principles, geodesic spaces and optimal transportation problems.

2.1. Borel, projective and universally measurable sets. The projective class Σ1
1(X) is the family of

subsets A of the Polish space X for which there exists Y Polish and B ∈ B(X×Y ) such that A = P1(B).
The coprojective class Π1

1(X) is the complement in X of the class Σ1
1(X). The class Σ1

1 is called the class
of analytic sets, and Π1

1 are the coanalytic sets.
The projective class Σ1

n+1(X) is the family of subsets A of the Polish space X for which there exists
Y Polish and B ∈ Π1

n(X × Y ) such that A = P1(B). The coprojective class Π1
n+1(X) is the complement

in X of the class Σ1
n+1.

If Σ1
n, Π

1
n are the projective, coprojective pointclasses, then the following holds (Chapter 4 of [15]):

(1) Σ1
n, Π

1
n are closed under countable unions, intersections (in particular they are monotone classes);

(2) Σ1
n is closed w.r.t. projections, Π1

n is closed w.r.t. coprojections;
(3) if A ∈ Σ1

n, then X \A ∈ Π1
n;

(4) the ambiguous class ∆1
n = Σ1

n ∩Π1
n is a σ-algebra and Σ1

n ∪Π1
n ⊂ ∆1

n+1.

We will denote by A the σ-algebra generated by Σ1
1: clearly B = ∆1

1 ⊂ A ⊂ ∆1
2.

We recall that a subset of X Polish is universally measurable if it belongs to all completed σ-algebras
of all Borel measures on X: it can be proved that every set in A is universally measurable. We say that
f : X → R ∪ {±∞} is a Souslin function if f−1(t,+∞] ∈ Σ1

1.

Lemma 2.1. If f : X → Y is universally measurable, then f−1(U) is universally measurable if U is.
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Proof. If µ ∈ M(X), then f]µ ∈ M(Y ), so for U ⊂ Y universally measurable there exist Borel sets B,
B′ such that B ⊂ U ⊂ B′ and

0 = (f]µ)(B
′ \B) = µ

(
f−1(B′) \ f−1(B)

)
.

Since f−1(B), f−1(B′) ⊂ X are universally measurable, there exists Borel sets C, C ′ such that

C ⊂ f−1(B) ⊂ f−1(U) ⊂ f−1(B′) ⊂ C ′

and µ(C ′ \ C) = 0. The conclusion follows. �

2.2. Disintegration of measures. Given a measurable space (R,R) and a function r : R→ S, with S
generic set, we can endow S with the push forward σ-algebra S of R:

Q ∈ S ⇐⇒ r−1(Q) ∈ R,

which could be also defined as the biggest σ-algebra on S such that r is measurable. Moreover given a
measure space (R,R, ρ), the push forward measure η is then defined as η := (r]ρ).

Consider a probability space (R,R, ρ) and its push forward measure space (S,S , η) induced by a map
r. From the above definition the map r is clearly measurable and inverse measure preserving.

Definition 2.2. A disintegration of ρ consistent with r is a map ρ : R × S → [0, 1] such that

(1) ρs(·) is a probability measure on (R,R) for all s ∈ S,
(2) ρ·(B) is η-measurable for all B ∈ R,

and satisfies for all B ∈ R, C ∈ S the consistency condition

ρ
(
B ∩ r−1(C)

)
=

∫
C

ρs(B)η(ds).

A disintegration is strongly consistent with respect to r if for all s we have ρs(r
−1(s)) = 1.

The measures ρs are called conditional probabilities.
We say that a σ-algebra H is essentially countably generated with respect to a measurem if there exists

a countably generated σ-algebra Ĥ such that for all A ∈ H there exists Â ∈ Ĥ such that m(A M Â) = 0.
We recall the following version of the disintegration theorem that can be found on [11], Section 452

(see [3] for a direct proof).

Theorem 2.3 (Disintegration of measures). Assume that (R,R, ρ) is a countably generated probability
space, R = ∪s∈SRs a partition of R, r : R → S the quotient map and (S,S , η) the quotient measure
space. Then S is essentially countably generated w.r.t. η and there exists a unique disintegration s 7→ ρs
in the following sense: if ρ1, ρ2 are two consistent disintegration then ρ1,s(·) = ρ2,s(·) for η-a.e. s.

If {Sn}n∈N is a family essentially generating S define the equivalence relation:

s ∼ s′ ⇐⇒ {s ∈ Sn ⇐⇒ s′ ∈ Sn, ∀n ∈ N}.

Denoting with p the quotient map associated to the above equivalence relation and with (L,L , λ) the
quotient measure space, the following properties hold:

• Rl := ∪s∈p−1(l)Rs = (p ◦ r)−1(l) is ρ-measurable and R = ∪l∈LRl;
• the disintegration ρ =

∫
L
ρlλ(dl) satisfies ρl(Rl) = 1, for λ-a.e. l. In particular there exists a

strongly consistent disintegration w.r.t. p ◦ r;
• the disintegration ρ =

∫
S
ρsη(ds) satisfies ρs = ρp(s) for η-a.e. s.

In particular we will use the following corollary.

Corollary 2.4. If (S,S ) = (X,B(X)) with X Polish space, then the disintegration is strongly consistent.

2.3. Selection principles. Given a multivalued function F : X → Y , X, Y metric spaces, the graph of
F is the set

(2.1) graph(F ) :=
{
(x, y) : y ∈ F (x)

}
.

The inverse image of a set S ⊂ Y is defined as:

(2.2) F−1(S) :=
{
x ∈ X : F (x) ∩ S 6= ∅

}
.
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For F ⊂ X × Y , we denote also the sets

(2.3) Fx := F ∩ {x} × Y, F y := F ∩X × {y}.
In particular, F (x) = P2(graph(F )x), F

−1(y) = P1(graph(F )
y). We denote by F−1 the graph of the

inverse function

(2.4) F−1 :=
{
(x, y) : (y, x) ∈ F

}
.

We say that F is R-measurable if F−1(B) ∈ R for all B open. We say that F is strongly Borel mea-
surable if inverse images of closed sets are Borel. A multivalued function is called upper-semicontinuous
if the preimage of every closed set is closed: in particular u.s.c. maps are strongly Borel measurable.

In the following we will not distinguish between a multifunction and its graph. Note that the domain
of F (i.e. the set P1(F )) is in general a subset of X. The same convention will be used for functions, in
the sense that their domain may be a subset of X.

Given F ⊂ X × Y , a section u of F is a function from P1(F ) to Y such that graph(u) ⊂ F . We recall
the following selection principle, Theorem 5.5.2 of [15], page 198.

Theorem 2.5. Let X and Y be Polish spaces, F ⊂ X × Y analytic, and A the σ-algebra generated by
the analytic subsets of X. Then there is an A-measurable section u : P1(F ) → Y of F .

A cross-section of the equivalence relation E is a set S ⊂ E such that the intersection of S with each
equivalence class is a singleton. We recall that a set A ⊂ X is saturated for the equivalence relation
E ⊂ X ×X if A = ∪x∈AE(x).

The next result is taken from [15], Theorem 5.2.1.

Theorem 2.6. Let Y be a Polish space, X a nonempty set, and L a σ-algebra of subset of X. Every
L-measurable, closed value multifunction F : X → Y admits an L-measurable section.

A standard corollary of the above selection principle is that if the disintegration is strongly consistent
in a Polish space, then up to a saturated set of negligible measure there exists a Borel cross-section.

In particular, we will use the following corollary.

Corollary 2.7. Let F ⊂ X × X be A-measurable, X Polish, such that Fx is closed and define the
equivalence relation x ∼ y ⇔ F (x) = F (y). Then there exists a A-section f : P1(F ) → X such that
(x, f(x)) ∈ F and f(x) = f(y) if x ∼ y.

Proof. For all open sets G ⊂ X, consider the sets F−1(G) = P1(F ∩ X × G) ∈ A, and let R be the
σ-algebra generated by F−1(G). Clearly R ⊂ A.

If x ∼ y, then

x ∈ F−1(G) ⇐⇒ y ∈ F−1(G),

so that each equivalence class is contained in an atom of R, and moreover by construction x 7→ F (x) is
R-measurable.

We thus conclude by using Theorem 2.6 that there exists anR-measurable section f : this measurability
condition implies that f is constant on atoms, in particular on equivalence classes. �

2.4. Metric setting. In this section we refer to [5].

Definition 2.8. A length structure on a topological space X is a class A of admissible paths, which is a
subset of all continuous paths in X, together with a map L : A → [0,+∞]: the map L is called length of
path. The class A satisfies the following assumptions:

closure under restrictions: if γ : [a, b] → X is admissible and a ≤ c ≤ d ≤ b, then γx[c,d] is also
admissible.

closure under concatenations of paths: if γ : [a, b] → X is such that its restrictions γ1, γ2 to
[a, c] and [c, b] are both admissible, then so is γ.

closure under admissible reparametrizations: for an admissible path γ : [a, b] → X and a for
ϕ : [c, d] → [a, b], ϕ ∈ B, with B class of admissible homeomorphisms that includes the linear
one, the composition γ(ϕ(t)) is also admissible.

The map L satisfies the following properties:

additivity: L(γx[a,b]) = L(γx[a,c]) + L(γx[c,b]) for any c ∈ [a, b].



8 STEFANO BIANCHINI AND FABIO CAVALLETTI

continuity: L(γx[a,t]) is a continuous function of t.
invariance: The length is invariant under admissible reparametrizations.
topology: Length structure agrees with the topology ofX in the following sense: for a neighborhood
Ux of a point x ∈ X, the length of paths connecting x with points of the complement of Ux is
separated from zero:

inf
{
L(γ) : γ(a) = x, γ(b) ∈ X \ Ux

}
> 0.

Given a length structure, we can define a distance

dL(x, y) = inf
{
L(γ) : γ : [a, b] → X, γ ∈ A, γ(a) = x, γ(b) = y

}
,

that makes (X, dL) a metric space (allowing dL to be +∞). The metric dL is called intrinsic.
It follows from Proposition 2.5.9 of [5] that every admissible curve of finite length admits a constant

speed parametrization, i.e. γ defined on [0, 1] and L(γx[t, t′]) = v(t′ − t), with v velocity.

Definition 2.9. A length structure is said to be complete if for every two points x, y there exists an
admissible path joining them whose length L(γ) is equal to dL(x, y).

In other words, a length structure is complete if there exists a shortest path between two points.
Intrinsic metrics associated with complete length structure are said to be strictly intrinsic. The metric

space (X, dL) with dL strictly intrinsic is called a geodesic space. A curve whose length equals the distance
between its end points is called geodesic.

Definition 2.10. Let (X, dL) be a metric space. The distance dL is said to be strictly convex if, for all
r ≥ 0, dL(x, y) = r/2 implies that

{z : dL(x, z) = r} ∩ {z : dL(y, z) = r/2}
is a singleton.

The definition can be restated in geodesics spaces as: geodesics cannot bifurcate in the interior, i.e. the
geodesic space (X, dL) is not branching. An equivalent requirement is that if γ1 6= γ2 and γ1(0) = γ2(0),
γ1(1) = γ2(1), then γ1((0, 1)) ∩ γ2((0, 1)) = ∅ and such geodesics do not admit a geodesic extension i.e.
they are not a part of a longer geodesic.

From now on we assume the following:

(1) (X, d) Polish space;
(2) dL : X ×X → [0,+∞] Borel distance;
(3) (X, dL) is a non-branching geodesic space;
(4) geodesics are continuous w.r.t. d;
(5) geodesics are locally compact in (X, d): if γ is a geodesic for (X, dL), then for each x ∈ γ there

exists r such that γ−1(B̄r(x)) is compact in R.

Since we have two metric structures on X, we denote the quantities relating to dL with the subscript
L: for example

Br(x) =
{
y : d(x, y) < r

}
, Br,L(x) =

{
y : dL(x, y) < r

}
.

In particular we will use the notation

DL(x) =
{
y : dL(x, y) < +∞

}
,

(K, dH) for the compact sets of (X, d) with the Hausdorff distance dH and (KL, dH,L) for the compact
sets of (X, dL) with the Hausdorff distance dH,L. We recall that (K, dH) is Polish.

We write

(2.5) γ[x,y] :=
{
γ ∈ LipdL([0, 1];X) : γ(0) = x, γ(1) = y, L(γ) = dL(x, y)

}
.

With a slight abuse of notation, we will write

(2.6) γ(x,y) =
⋃

γ∈γ[x,y]

γ((0, 1)), γ[x,y] =
⋃

γ∈γ[x,y]

γ([0, 1]).

We will also use the following definition.
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Definition 2.11. We say that A ⊂ X is geodesically convex if for all x, y ∈ A the minimizing geodesic
γ[x,y] between x and y is contained in A:{

γ((0, 1)) : γ(0) = x, γ(1) = y, L(γ) = d(x, y), x, y ∈ A
}
⊂ A.

Lemma 2.12. If A is analytic in (X, d), then {x : dL(A, x) < ε} is analytic for all ε > 0.

Proof. Observe that {
x : dL(A, x) < ε

}
= P1

(
X ×A ∩

{
(x, y) : dL(x, y) < ε

})
,

so that the conclusion follows from the invariance of the class Σ1
1 w.r.t. projections. �

In particular, A
dL , the closure of A w.r.t. dL, is analytic if A is analytic.

Remark 2.13. During the paper, whenever more regularity is required, we will assume also the following
hypothesis:

(2’) dL : X ×X → [0,+∞] l.s.c. distance,
(4’) dL(x, y) ≥ d(x, y),
(5’) ∪x∈K1,y∈K2γ[x,y] is d-compact if K1, K2 are d-compact, dLxK1×K2 uniformly bounded.

A simple computation shows that dL(x, y) ≥ d(x, y) implies the following

(1) dL-compact sets are d-compact;
(2) d-Lipschitz functions are dL-Lipschitz with the same costant.

An application of Theorem 2.5, in the setting of Remark 2.13, gives a Borel function which selects a
single geodesic γ ∈ γ[x,y] for any couple (x, y).

Lemma 2.14. Assume that dL is l.s.c.. Then there exists a Borel function Υ : X ×X → Lipd([0, 1], X)
such that up to reparametrization Υ (x, y) ∈ γ[x,y].

Proof. Let

F : X ×X → Lipd([0, 1], X)
(x, y) 7→ γ[x,y]

with Lipd([0, 1], X) endowed with the uniform topology and γ[x,y] defined in (2.5).
The result follows by Theorem 2.5 observing that graph(F ) is the set{

(x, y, γ) ∈ X ×X × Lipd([0, 1], X), L(γ) = dL(x, y)
}
.

which is Borel by the l.s.c. of the map γ 7→ L(γ), and this is implied by the l.s.c. of dL. �

2.5. General facts about optimal transportation. Let (X,B, µ) and (Y,B, ν) be two Polish prob-
ability spaces and c : X × Y → R be a Borel measurable function. Consider the set of transference
plans

Π(µ, ν) :=
{
π ∈ P(X × Y ) : (P1)]π = µ, (P2)]π = ν

}
.

Define the functional

(2.7)
I : Π(µ, ν) → R+

π 7→ I(π) :=
∫
cπ.

The Monge-Kantorovich minimization problem is to find the minimum of I over all transference plans.
If we consider a µ-measurable transport map T : X → Y such that T]µ = ν, the functional (2.7)

becomes

I(T ) := I
(
(Id× T )]µ

)
=

∫
c(x, T (x))µ(dx).

The minimum problem over all T is called Monge minimization problem.
The Kantorovich problem admits a (pre) dual formulation.
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Definition 2.15. A map ϕ : X → R∪{−∞} is said to be c-concave if it is not identically −∞ and there
exists ψ : Y → R ∪ {−∞}, ψ 6≡ −∞, such that

ϕ(x) = inf
y∈Y

{
c(x, y)− ψ(y)

}
.

The c-transform of ϕ is the function

(2.8) ϕc(y) := inf
x∈X

{c(x, y)− ϕ(x)} .

The c-superdifferential ∂cϕ of ϕ is the subset of X × Y defined by

(2.9) ∂cϕ :=
{
(x, y) : c(x, y)− ϕ(x) ≤ c(z, y)− ϕ(z) ∀z ∈ X

}
⊂ X × Y.

Definition 2.16. A set Γ ⊂ X × Y is said to be c-cyclically monotone if, for any n ∈ N and for any
family (x0, y0), . . . , (xn, yn) of points of Γ, the following inequality holds:

n∑
i=0

c(xi, yi) ≤
n∑
i=0

c(xi+1, yi),

where xn+1 = x0.
A transfence plan is said to be c-cyclically monotone if it is concentrated on a c-cyclically monotone

set.

Consider the set

(2.10) Φc :=
{
(ϕ,ψ) ∈ L1(µ)× L1(ν) : ϕ(x) + ψ(y) ≤ c(x, y)

}
.

Define for all (ϕ,ψ) ∈ Φc the functional

(2.11) J(ϕ,ψ) :=

∫
ϕµ+

∫
ψν.

The following is a well known result (see Theorem 5.10 of [20]).

Theorem 2.17 (Kantorovich Duality). Let X and Y be Polish spaces, let µ ∈ P(X) and ν ∈ P(Y ), and
let c : X × Y → [0,+∞] be lower semicontinuous. Then the following holds:

(1) Kantorovich duality:

inf
π∈Π(µ,ν)

I(π) = sup
(ϕ,ψ)∈Φc

J(ϕ,ψ).

Moreover, the infimum on the left-hand side is attained and the right-hand side is also equal to

sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ,ψ),

where Cb = Cb(X,R)× Cb(Y,R).
(2) If c is real valued and the optimal cost is finite, then there is a measurable c-cyclically monotone

set Γ ⊂ X × Y , closed if c is continuous, such that for any π ∈ Π(µ, ν) the following statements
are equivalent:
(a) π is optimal;
(b) π is c-cyclically monotone;
(c) π is concentrated on Γ;
(d) there exists a c-concave function ϕ such that π-a.s. ϕ(x) + ϕc(y) = c(x, y).

(3) If moreover

c(x, y) ≤ cX(x) + cY (y), cX µ-integrable, cY ν-integrable,

then the supremum is attained:

sup
Φc

J = J(ϕ,ϕc) = inf
π∈Π(µ,ν)

I(π).

We recall also that if −c is Souslin, then every optimal transference plan π is concentrated on a
c-cyclically monotone set [3].
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3. Optimal transportation in geodesic spaces

Let µ, ν ∈ P(X) and consider the transportation problem with cost c(x, y) = dL(x, y), and let π ∈
Π(µ, ν) be a dL-cyclically monotone transference plan with finite cost. By inner regularity, we can
assume that the optimal transference plan is concentrated on a σ-compact dL-cyclically monotone set
Γ ⊂ {dL(x, y) < +∞}. By Lusin Theorem, we can require also that dLxΓ is σ-continuous:

(3.1) Γ = ∪nΓn, Γn ⊂ Γn+1 compact, dLxΓn continuous.

In this section, using only the dL-cyclical monotonicity of Γ, we obtain a partial order relation G ⊂
X ×X. The set G is analytic, and allows to define the transport ray set R, the transport sets Te, T , and
the set of initial points a and final points b. Moreover we show that RxT ×T is an equivalence relation
and that we can assume the set of final points b to be µ-negligible.

Consider the set

Γ′ :=

{
(x, y) : ∃I ∈ N0, (wi, zi) ∈ Γ for i = 0, . . . , I, zI = y

wI+1 = w0 = x,

I∑
i=0

dL(wi+1, zi)− dL(wi, zi) = 0

}
.(3.2)

In other words, we concatenate points (x, z), (w, y) ∈ Γ if they are initial and final point of a cycle with
total cost 0.

Lemma 3.1. The following holds:

(1) Γ ⊂ Γ′ ⊂ {dL(x, y) < +∞};
(2) if Γ is analytic, so is Γ′;
(3) if Γ is dL-cyclically monotone, so is Γ′.

Proof. For the first point, set I = 0 and (wn,0, zn,0) = (x, y) for the first inclusion. If dL(x, y) = +∞,
then (x, y) /∈ Γ and all finite set of points in Γ are bounded.

For the second point, observe that

Γ′ =
⋃
I∈N0

P12(AI)

=
⋃
I∈N0

P12

( I∏
i=0

Γ ∩
{ I∏
i=1

(wi, zi) :
I∑
i=0

dL(wi+1, zi)− dL(wi, zi) = 0, wI+1 = w0

})
.

For each I ∈ N0, since dL is Borel, it follows that{ I∏
i=1

(wi, zi) :
I∑
i=0

dL(wi+1, zi)− dL(wi, zi) = 0, wI+1 = w0

}
is Borel in

∏I
i=0(X ×X), so that for Γ analytic each set An,I is analytic. Hence P12(AI) is analytic, and

since the class Σ1
1 is closed under countable unions and intersections it follows that Γ′ is analytic.

For the third point, observe that for all (xj , yj) ∈ Γ′, j = 0, . . . , J , there are (wj,i, zj,i) ∈ Γ, i = 0, . . . , Ij ,
such that

dL(xj , yj) +

Ij−1∑
i=0

dL(wj,i+1, zj,i)−
Ij∑
i=0

dL(wj,i, zj,i) = 0.

Hence we can write for xJ+1 = x0, wj,Ij+1 = wj+1,0, wJ+1,0 = w0,0

J∑
j=0

dL(xj+1, yj)− dL(xj , yj) =
J∑
j=0

Ij∑
i=0

dL(wj,i+1, zj,i)− dL(wj,i, zj,i) ≥ 0,

using the dL-cyclical monotonicity of Γ. �

Definition 3.2 (Transport rays). Define the set of oriented transport rays

(3.3) G :=
{
(x, y) : ∃(w, z) ∈ Γ′, dL(w, x) + dL(x, y) + dL(y, z) = dL(w, z)

}
.
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For x ∈ X, the outgoing transport rays from x is the set G(x) and the incoming transport rays in x is
the set G−1(x). Define the set of transport rays as the set

(3.4) R := G ∪G−1.

Lemma 3.3. The following holds:

(1) G is dL-cyclically monotone;
(2) Γ′ ⊂ G ⊂ {dL(x, y) < +∞};
(3) the sets G, R := G ∪G−1 are analytic.

Proof. The second point follows by the definition: if (x, y) ∈ Γ′, just take (w, z) = (x, y) in the r.h.s. of
(3.3).

The third point is consequence of the fact that

G = P34

((
Γ′ ×X ×X

)
∩
{
(w, z, x, y) : dL(w, x) + dL(x, y) + dL(y, z) = dL(w, z)

})
,

and the result follows from the properties of analytic sets.
The first point follows from the following observation: if (xi, yi) ∈ γ[wi,zi], then from triangle inequality

dL(xi+1, yi)− dL(xi, yi) + dL(xi, yi−1) ≥ dL(xi+1, zi)− dL(zi, yi)− dL(xi, yi) + dL(xi, yi−1)

= dL(xi+1, zi)− dL(xi, zi) + dL(xi, yi−1)

≥ dL(xi+1, zi)− dL(xi, zi) + dL(wi, yi−1)− dL(wi, xi)

= dL(xi+1, zi)− dL(wi, zi) + dL(wi, yi−1).

Repeating the above inequality finitely many times one obtain∑
i

dL(xi+1, yi)− dL(xi, yi) ≥
∑
i

dL(wi+1, zi)− dL(wi, zi) ≥ 0.

Hence the set G is dL-cyclically monotone. �
Definition 3.4. Define the transport sets

T := P1

(
graph(G−1) \ {x = y}

)
∩ P1

(
graph(G) \ {x = y}

)
,(3.5a)

Te := P1

(
graph(G−1) \ {x = y}

)
∪ P1

(
graph(G) \ {x = y}

)
.(3.5b)

From the definition of G it is fairly easy to prove that T , Te are analytic sets. The subscript e refers
to the endpoints of the geodesics: clearly we have

(3.6) Te = P1(R \ {x = y}).
The following lemma shows that we have only to study the Monge problem in Te.

Lemma 3.5. It holds π(Te × Te ∪ {x = y}) = 1.

Proof. If x ∈ P1(Γ \ {x = y}), then x ∈ G−1(y) \ {y} for some y ∈ X. Similarly, y ∈ P2(Γ \ {x = y})
implies that y ∈ G(x) \ {x} for some x ∈ X. Hence Γ \ Te × Te ⊂ {x = y}. �

As a consequence, µ(Te) = ν(Te) and any maps T such that for νxTe= T]µxTe can be extended to a
map T ′ such that ν = T]µ with the same cost by setting

(3.7) T ′(x) =

{
T (x) x ∈ Te
x x /∈ Te

We now use the non branching assumption.

Lemma 3.6. If x ∈ T , then R(x) is a single geodesic.

Proof. Since x ∈ T , there exists (w, x), (x, z) ∈ G \ {x = y}: from the dL-cyclical monotonicity and
triangular inequality, it follows that

dL(w, z) = dL(w, x) + dL(x, z),

so that (w, z) ∈ G and x ∈ γ(w,z). Hence from the non branching assumption the set

R(x) =
⋃

y∈G(x)

γ[x,y] ∪
⋃

z∈G−1(x)

γ[z,x]
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is a single geodesic. �
Proposition 3.7. The set R ∩ T × T is an equivalence relation on T . The set G is a partial order
relation on Te.

Proof. Using the definition of R, one has in T :

(1) x ∈ T implies that
∃y ∈ G(x) \ {x = y},

so that from the definition of G it follows (x, x) ∈ G;
(2) if y ∈ R(x), x, y ∈ T , then from Lemma 3.6 there exists (w, z) ∈ G such that x, y ∈ γ(w,z). Hence

x ∈ R(y);
(3) if y ∈ R(x), z ∈ R(y), x, y, z ∈ T , then from Lemma 3.6 it follows again there exists (w, z) ∈ G

such that x, y, z ∈ γ(w,z). Hence z ∈ R(x).

The second part follows similarly:

(1) x ∈ Te implies that

∃(x, y) ∈
(
G \ {x = y}

)
∪
(
G−1 \ {x = y}

)
,

so that in both cases (x, x) ∈ G;
(2) as in Lemma 3.6, (x, y), (y, z) ∈ G \ {x = y} implies by dL-cyclical monotonicity that (x, z) ∈ G.

�
Remark 3.8. Note that G ∪ {x = y} is a partial order relation on X.

Definition 3.9. Define the multivalued endpoint graphs by:

a :=
{
(x, y) ∈ G−1 : G−1(y) \ {y} = ∅

}
,(3.8a)

b :=
{
(x, y) ∈ G : G(y) \ {y} = ∅

}
.(3.8b)

We call P2(a) the set of initial points and P2(b) the set of final points.

Even if a, b are not in the analytic class, still they belong to the σ-algebra A.

Proposition 3.10. The following holds:

(1) the sets
a, b ⊂ X ×X, a(A), b(A) ⊂ X,

belong to the A-class if A analytic;
(2) a ∩ b ∩ Te ×X = ∅;
(3) a(x), b(x) are singleton or empty when x ∈ T ;
(4) a(T ) = a(Te), b(T ) = b(Te);
(5) Te = T ∪ a(T ) ∪ b(T ), T ∩ (a(T ) ∪ b(T )) = ∅.

Proof. Define

C :=
{
(x, y, z) ∈ Te × Te × Te : y ∈ G(x), z ∈ G(y)

}
= (G×X) ∩ (X ×G) ∩ Te × Te × Te,

that is clearly analytic. Then

b =
{
(x, y) ∈ G : y ∈ G(x), G(y) \ {y} = ∅

}
= G \ P1,2(C \X × {y = z}),

b(A) =
{
y : y ∈ G(x), G(y) \ {y} = ∅, x ∈ A

}
= P2(G ∩A×X) \ P2(C \X × {y = z}).

A similar computation holds for a:

a = G−1 \ P23(C \ {x = y} ×X), a(A) = P1(G ∩X ×A) \ P1(C \ {x = y} ×X)

Hence a, b ∈ A(X ×X), a(A), b(A) ∈ A(X), being the intersection of an analytic set with a coanalytic
one.

If x ∈ T , then from Lemma 3.6 it follows that a(x), b(x) are empty or singletons and a(x) 6= b(x). If
x ∈ Te \ T , then it follows that the geodesic γ[w,z], (w, z) ∈ G, to which x belongs cannot be prolonged
in at least one direction: hence x ∈ a(x) ∪ b(x).

The other point follows easily. �
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Figure 1. Construction of the sets Γ, Γ′, G, G−1, a, b in a 1-dimensional example with
dL = | · |.

We finally show that we can assume that the µ-measure of final points and the ν-measure of the initial
points are 0.

Lemma 3.11. The sets G ∩ b(T )×X, G ∩X × a(T ) is a subset of the graph of the identity map.

Proof. From the definition of b one has that

x ∈ b(T ) =⇒ G(x) \ {x} = ∅,

A similar computation holds for a. �

Hence we conclude that

π(b(T )×X) = π(G ∩ b(T )×X) = π({x = y}),

and following (3.7) we can assume that

µ(b(T )) = ν(a(T )) = 0.

Remark 3.12. In the case considered in Remark 2.13, it is possible to obtain more regularity for the
sets introduced so far. Recall that we are now assuming

(2’) dL : X ×X → [0,+∞] l.s.c. distance,
(4’) dL(x, y) ≥ d(x, y),
(5’) ∪x∈K1,y∈K2γ[x,y] is d-compact if K1, K2 are d-compact, dLxK1×K2 uniformly bounded.
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The set Γ′ is σ-compact: in fact, if one restrict to each Γn given by (3.1), then the set of cycles of
order I is compact, and thus

Γ′
n,Ī :=

{
(x, y) : ∃I ∈ {0, . . . , Ī}, (wi, zi) ∈ Γn for i = 0, . . . , I, zI = y

wI+1 = w0 = x,
I∑
i=0

dL(wi+1, zi)− dL(wi, zi) = 0

}
is compact. Finally Γ′ = ∪n,IΓ′

n,I .

Moreover, dLxΓ′
n,I

is continuous. If (xn, yn) → (x, y), then from the l.s.c. and

I∑
i=0

dL(wn,i+1, zn,i) =
I∑
i=0

dL(wn,i, zn,i), wn,I+1 = wn,0 = xn, zn,I = yn,

it follows also that each dL(wn,i+1, zn,i) is continuous.
Similarly the sets G, R, a, b are σ-compact: assumption (5’) and the above computation in fact shows

that

Gn,I :=
{
(x, y) : ∃(w, z) ∈ Γ′

n,I , dL(w, x) + dL(x, y) + dL(y, z) = dL(w, z)
}

is compact. For a, b, one uses the fact that projection of σ-compact sets is σ-compact.
So if we are in the case of Remark 2.13, Γ, Γ′, G, G−1, a and b are σ-compact sets.

Remark 3.13. Many simplifications occur in the case the disintegration w.r.t. the partition {DL(x)}x∈X
is strongly consistent. Recall that DL(x) =

{
y : dL(x, y) < +∞

}
. Let

π =

∫ 1

0

παm(dα), µ =

∫ 1

0

µαm(dα), ν =

∫ 1

0

ναm(dα)

be strongly consistent disintegrations such that

µα(DL(xα)) = να(DL(xα)) = 1, πα ∈ Π(µα, να).

We have used the fact that the partition {DL(x)×DL(x)}x∈X has the crosswise structure, and then we
can apply the results of [3].

1) Optimality of πα. Since π is dL-cyclically monotone, also the πα are dL-cyclically monotone: precisely
they are concentrated on the sets

Γα = Γ ∩DL(xα)×DL(xα),

if Γ is dL-cyclically monotone and π(Γ) = 1.
Using the fact that (DL(xα), dL) is a metric space, then we can construct a potential ϕ(x, xα) using

the formula

ϕ(x, xα) = inf

{ I∑
i=0

dL(xi+1, yi)− dL(xi, yi), (xi, yi) ∈ Γα, xI+1 = x, (x0, y0) = (xα, xα)

}
.

and since this is bounded on (DL(xα), dL), we see that πα and hence π are optimal.

2. Potential for π. Extend ϕ(x, xα) to X by setting ϕ(x, xα) = +∞ if x /∈ DL(xα). If {(xα, xα)}α∈[0,1]

is a Borel section, then the function

ϕ(x) = inf
α
{ϕ(x, α)}

is easily seen to be analytic. This function is clearly a potential for π. In particular, it follows again from
[3] that π is optimal if it is dL-cyclically monotone.

3.Transport set. We can then define the set of oriented transport rays as the set

G =
{
(x, y) ∈ X ×X : ϕ(x)− ϕ(y) = dL(x, y)

}
.

In general, this sets is larger than the one of definition 3.2.
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4. Partition of the transport set T

In this section we use the continuity and local compactness of geodesics to show that the disintegration
induced by R on T is strongly consistent. Using this fact, we can define an order preserving map g which
maps our transport problem into a transport problem on S × R, where S is a cross section of R.

Let {xi}i∈N be a dense sequence in (X, d).

Lemma 4.1. The sets

Wijk :=
{
x ∈ T ∩ B̄2−j (xi) : L(G(x)), L(G

−1(x)) ≥ 22−k, L
(
R(x) ∩ B̄21−j (xi)

)
≤ 2−k

}
form a countable covering of T of class A.

Proof. We first prove the measurability. We consider separately the conditions defining Wijk.
Point 1. The set

Aij := T ∩ B̄2−j (xi)

is clearly analytic.
Point 2. The set

Bk :=
{
x ∈ T : L(G(x)) ≥ 22−k

}
= P1

(
G ∩

{
dL(x, y) ≥ 22−k

})
is again analytic, being the projection of an analytic set. Similarly, the set

Ck :=
{
x ∈ T : L(G−1(x)) ≥ 22−k

}
= P1

(
G−1 ∩

{
dL(x, y) ≥ 22−k

})
is again analytic.

Point 3. The set

Djk :=
{
x ∈ T : L

(
R(x) ∩ B̄2−j (xi)

)
≤ 2−k

}
= T \ P1

(
R ∩

(
{(x, y) : d(xi, y) ≤ 21−j} ∩ {dL(x, y) > 2−k}

))
is in the A-class, being the difference of two analytic sets.

We finally can write

Wijk = Aij ∩Bk ∩ Ck ∩Djk,

and the fact that A is a σ-algebra proves that Wijk ∈ A.
To show that it is a covering, notice that for all x ∈ T it holds

min
{
L(G(x)), L(G−1(x))

}
≥ 22−k̄

for some k̄ ∈ N.
From the local compactness of geodesics, Assumption (5) of page 8, it follows that if γ−1(B̄r(x)) is

compact, then the continuity of γ implies that γ−1(B̄r′(x)) is also compact for all r′ ≤ r, and diam dL(γ∩
B̄r′(x)) → 0 and r′ → 0. In particular there exists j̄ ∈ N such that

L
(
R(x) ∩ B̄21−j̄ (x)

)
≤ 2−k̄,

with k̄ the one chosen above.
Finally, one choose xī such that d(x, xī) < 2−1−j̄ , so that x ∈ B̄2−j̄ (xī) ⊂ B̄21−j̄ (x) and thus

L
(
R(x) ∩ B̄2−j̄ (xī)

)
≤ 2−k̄.

�
Lemma 4.2. There exist µ-negligible sets Nijk ⊂Wijk such that the family of sets

Tijk = R−1(Wijk \Nijk)
is a countable covering of T \ ∪ijkNijk into saturated analytic sets.

Proof. First of all, since Wijk ∈ A, then there exists µ-negligible set Nijk ⊂Wijk such that Wijk \Nijk ∈
B(X). Hence {Wijk \ Nijk}i,j,k∈N is a countable covering of T \ ∪ijkNijk. It follows immediately that
{Tijk}i,j,k∈N satisfies the lemma. �
Remark 4.3. Observe that B̄2−j (xi) ∩ R(x) is compact for all x ∈ Tijk: in fact, during the proof of
Lemma 4.1 we have already shown that γ−1(B̄2−j (xi)) is compact.
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From any analytic countable covering, we can find a countable partition into A-class saturated sets by
defining

(4.1) Zm,e := Timjmkm \
m−1⋃
m′=1

Tim′ jm′km′ , Z0,e := Te \
⋃
m∈N

Zm,e,

where

N 3 m 7→ (im, jm, km) ∈ N3

is a bijective map. Intersecting the above sets with T , we obtain the countable partition of T in A-sets

(4.2) Zm := Zm,e ∩ T , m ∈ N0.

Now we use this partition to prove the strong consistency of the disintegration.
On Zm, m > 0, we define the closed values map

(4.3) Zm 3 x 7→ F (x) := R(x) ∩ B̄2−jm (xim) ∈ K
(
B̄2−jm (xim)

)
,

where K(B̄2−jm (xim)) is the space of compact subsets of B̄2−jm (xim).

Proposition 4.4. There exists a µ-measurable cross section f : T → T for the equivalence relation R.

Proof. First we show that F is A-measurable: for δ > 0,

F−1(Bδ(y)) =
{
x ∈ Zm : R(x) ∩Bδ(y) ∩ B̄2−jm (xim) 6= ∅

}
= Zm ∩ P1

(
R ∩

(
X ×Bδ(y) ∩ B̄2−jm (xim)

))
.

Being the intersection of two A-class sets, F−1(Bδ(y)) is in A.
By Corollary 2.7 there exists a A-class section fm : Zm → B̄2−jm (xim). The proposition follows by

setting fxZm= fm on ∪mZm, and defining it arbitrarily on T \ ∪mZm: the latter being negligible, f is
µ-measurable. �

Up to a µ-negligible saturated set TN , we can assume it to have σ-compact range: just let S ⊂ f(T )
be a σ-compact set where f]µxT is concentrated, and set

(4.4) TS := R−1(S) ∩ T , TN := T \ TS , µ(TN ) = 0.

Having the µxT -measurable cross-section

S := f(T ) = S ∪ f(TN ) = (Borel) ∪ (f(µ-negligible)),

we can define the parametrization of T and Te by geodesics.

Definition 4.5 (Ray map). Define the ray map g by the formula

g :=
{
(y, t, x) : y ∈ S, t ∈ [0,+∞), x ∈ G(y) ∩ {dL(x, y) = t}

}
∪
{
(y, t, x) : y ∈ S, t ∈ (−∞, 0), x ∈ G−1(y) ∩ {dL(x, y) = −t}

}
= g+ ∪ g−.

Proposition 4.6. The following holds.

(1) The restriction g ∩ S × R×X is analytic.
(2) The set g is the graph of a map with range Te.
(3) t 7→ g(y, t) is a dL 1-Lipschitz G-order preserving for y ∈ T .
(4) (t, y) 7→ g(y, t) is bijective on T , and its inverse is

x 7→ g−1(x) =
(
f(y),±dL(x, f(y))

)
where f is the quotient map of Proposition 4.4 and the positive/negative sign depends on x ∈
G(f(y))/x ∈ G−1(f(y)).
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Figure 2. The ray map g.

Proof. For the first point just observe that

g+ =
{
(y, t, x) : y ∈ S, t ∈ R+, x ∈ G(y) ∩ {dL(x, y) = t}

}
= S ×R+ ×X ∩ {(y, t, x) : (y, x) ∈ G} ∩ {(y, t, x) : dL(x, y) = t} ∈ Σ1

1.

Similarly

g− =
{
(y, t, x) : y ∈ S, t ∈ R−, x ∈ G−1(y) ∩ {dL(x, y) = −t}

}
∈ Σ1

1.

Since S ⊂ T and R(y) is a subset of a single geodesic for y ∈ S ⊂ T , g is the graph of a map. Note
that for any x ∈ Te there exists z ∈ T such that x ∈ R(z): hence x ∈ R(f(z)), and therefore the range
of the map is the whole Te.

The third point is a direct consequence of the definition.The fourth point follows by substitution. �

We finally prove the following property of dL-cyclically monotone transference plans.

Proposition 4.7. For any π dL-monotone there exists a dL-cyclically monotone transference plan π̃ with
the same cost of π such that it coincides with the identity on µ ∧ ν.

We will use the disintegration technique exploited also in the next section. We observe that another
proof can be the direct composition of the transference plan with itself, using the fact that the mass
moves along geodesics and the disintegration makes the problem one dimensional.

Proof. We have already shown that we can take

µ(P2(b)) = ν(P2(a)) = 0,

so that µ ∧ ν is concentrated on TS .
Step 1. On T we can use the Disintegration Theorem to write

(4.5) µxT =
∫
S

µym(dy), m = f](µxT ), µy ∈ P(R(y) ∩ T ).

In fact, the existence of a Borel section is equivalent to the strong consistency of the disintegration. Since
{R(y)×X}y∈T is also a partition on T ×X, we can similarly write

πxT ×X=

∫
S

πym(dy), πy(R(y)×R(y)) = 1.

We write moreover

(4.6) νy := (P2)](πxT ×X), ν̃ :=

∫
S

νym(dy) =

∫
S

(P2)]πym(dy).

Clearly the rest of the mass starts from a(T ), so we have just to show how to rearrange the transference
plan in T in order to obtain µ ⊥ ν. Using g, we can reduce the problem to a transport problem on S×R
with cost

c((y, t), (y′, t′)) =

{
|t− t′| y = y′

+∞ y 6= y′
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By standard regularity argument, we can assume that S 3 y 7→ πy ∈ P(R(y)×R(y)) is σ-continuous, i.e.
its graph is σ-compact.

Step 2. Using the fact that (µ, ν) 7→ µ ∧ ν is Borel w.r.t. the weak topology [3], we can assume that
S 3 y 7→ µy ∧ νy ∈ P(R(y)) is σ-continuous, so that also the map

S 3 y 7→ (µy − µy ∧ νy, νy − µy ∧ νy) ∈ P(R(y))× P(R(y))

is σ-continuous.
Step 3. Since in each R(y) the problem is one dimensional, one can take the unique transference plan

π̃y ∈ Π
(
µy − µy ∧ νy, νy − µy ∧ νy

)
concentrated on a monotone set: clearly ∫

dLπ̃y =

∫
dLπy.

Step 4. If we define the left-continuous distribution functions

H(y, s) :=
(
µy − µy ∧ νy

)
(−∞, s), F (y, t) :=

(
νy − µy ∧ νy

)
(−∞, t),

and

G(y, s, t) := π̃y
(
(−∞, s)× (−∞, t)

)
,

then the measure π̃y is uniquely determined by G(y, s, t) = min{H(y, s), F (y, t)}.
The σ-continuity of y 7→ (µy − µy ∧ νy, νy − µy ∧ νy) yields that H, F are again σ-l.s.c., so that G is

Borel, and finally y 7→ π̃y is σ-continuous up to a f]µ-negligible set.
Step 5. Define

π̂y := π̃y + (I, I)](µy ∧ νy) ∈ Π(µy, νy).

The above steps show that π̂ is m-measurable, and thus we can define the measure

π̂ := πx(Te\T )×X+

∫
π̂ym(dy).

It is routine to check that π̂ has the required properties. �

5. Regularity of the disintegration

This section is divided in two parts.
In the first one we consider the translation of Borel sets by the optimal geodesic flow, we introduce a

first regularity assumption (Assumption 1) on the measure µ and we show that an immediate consequence
is that the set of initial points is negligible. A second consequence is that the disintegration of µ w.r.t.
R has continuous conditional probabilities.

In the second part we consider a stronger regularity assumption (Assumption 2) which gives that the
conditional probabilities are absolutely continuous with respect to H1 along geodesics.

5.1. Evolution of Borel sets. Let A ⊂ Te be an analytic set and define for t ∈ R the t-evolution At of
A by

(5.1) At := g
(
g−1(A) + (0, t)

)
.

Lemma 5.1. The set At ∩ g(S × R) is analytic, and At is µ-measurable for t ≥ 0.

Proof. Divide A into two parts:

AS := A ∩ g(S × R) and AN := A \AS .

From Point (1) of Proposition 4.6 it follows that AS is analytic. We consider the evolution of the two
sets separately.

Again by Point (1) of Proposition 4.6, the set (AS)t is analytic, hence universally measurable for all
t ∈ R.

Since TN is µ-negligible (see (4.4)), it follows that (AN )t is µ-negligible for all t > 0, and by the
assumptions it is clearly measurable for t = 0. �

We can show that t 7→ µ(At) is measurable.
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Lemma 5.2. Let A be analytic. The function t 7→ µ(At) is Souslin for t ≥ 0. If A ⊂ g(S × R), then
t 7→ µ(At) is Souslin for t ∈ R.

Proof. As before, we split the A into the sets

AS := A ∩ g(S × R) and AN := A \AS .

The function

t 7→ µ(AN,t) =

{
µ(AN ) t = 0

0 t > 0

is clearly Borel. Observe that since TN ⊂ T and the µ-measure of final points is 0, the value of µ(AN,t)
is known only for t > 0.

Since AS is analytic, then g−1(AS) is analytic, and the set

ÃS :=
{
(y, τ, t) : (y, τ − t) ∈ g−1(AS)

}
is easily seen to be again analytic. Define the analytic set ÂS ⊂ X × R by

ÂS := (g, I)(ÃS).

Clearly (AS)t = ÂS(t). We now show in two steps that the function t 7→ µ((AS)t) is analytic.
Step 1. Define the closed set in P(X × [0, 1])

Π(µ) :=
{
π ∈ P(X × [0, 1]) : (P1)](π) = µ

}
and let B ⊂ X × R× [0, 1] a Borel set such that P12(B) = ÂS .

Consider the function

R×Π(µ) 3 (t, π) 7→ π(B(t)).

A slight modification of Lemma 4.12 in [3] shows that this function is Borel.
Step 2. Since supremum of Borel function are Souslin, pag. 134 of [15], the proof is concluded once

we show that

µ((AS)t) = µ(ÂS(t)) = sup
π∈Π(µ)

π(B(t)).

From the Disintegration Theorem, for all π ∈ Π(µ) we have

π(B(t)) =

∫
πx(B(t))µ(dx) ≤

∫
P1(B(t))

µ(dx) = µ(ÂS(t)).

On the other hand from Theorem 2.5, there exists an A-measurable section u : ÂS(t) → B(t). Clearly

for πu = (I, u)](µ) it holds πu(B(t)) = µ(ÂS(t)). �

The next assumption is the first fundamental assumption of the paper.

Assumption 1 (Non-degeneracy assumption). For all Borel sets A such that µ(A) > 0 the set {t ∈ R+ :
µ(At) > 0} has cardinality > ℵ0.

By inner regularity, it is clearly enough to verifies Assumption 1 only for compact sets. Note that since
for analytic set Cantor Hypothesis holds true, Theorem 4.3.5, pag. 142 of [15] , Assumption 1 implies
that the cardinality of {t ∈ R+ : µ(At) > 0} is c.

An immediate consequence of the Assumption 1 is that the measure µ is concentrated on T .

Lemma 5.3. If µ satisfies Assumption 1 then

µ(Te \ T ) = 0.

Proof. If A ⊂ a(X), then At ∩As = ∅ for 0 ≤ s < t. Hence

]
{
t ∈ R+ : µ(At) > 0

}
≤ ℵ0,

because of the boundedness of µ. This contradicts the assumptions. �
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Figure 3. The evolution of a set B through the optimal flow.

Once we know that µ(T ) = 1, we can use the Disintegration Theorem 2.3 to write

(5.2) µ =

∫
S

µym(dy), m = f]µ, µy ∈ P(R(y)).

The disintegration is strongly consistent since the quotient map f : T → T is µ-measurable and (T ,B(T ))
is countably generated.

The second consequence of Assumption 1 is that µy is continuous, i.e. µy({x}) = 0 for all x ∈ X.

Proposition 5.4. The conditional probabilities µy are continuous for m-a.e. y ∈ S.

Proof. From the regularity of the disintegration and the fact that m(S) = 1, we can assume that the
map y 7→ µy is weakly continuous on a compact set K ⊂ S of comeasure < ε such that L(R(y)) > ε for
all y ∈ K. It is enough to prove the proposition on K.

Step 1. From the continuity of K 3 y 7→ µy ∈ P(X) w.r.t. the weak topology, it follows that the map

y 7→ A(y) :=
{
x ∈ R(y) : µy({x}) > 0

}
= ∪n

{
x ∈ R(y) : µy({x}) ≥ 2−n

}
is σ-closed: in fact, if (ym, xm) → (y, x) and µym({xm}) ≥ 2−n, then µy({x}) ≥ 2−n by u.s.c. on compact
sets.

Hence it is Borel, and by Lusin Theorem (Theorem 5.8.11 of [15]) it is the countable union of Borel
graphs: setting in case ci(y) = 0, we can consider them as Borel functions on S and order them w.r.t. G,

µy,atomic =
∑
i∈Z

ci(y)δxi(y), xi+1(y) ∈ G(xi(y)), i ∈ Z.

Step 2. Define the sets

Sij(t) :=
{
y ∈ K : xi(y) = g

(
g−1(xj(y)) + t

)}
∩ T .

Since K ⊂ S, to define Sij we are using the graph g ∩ S × R× T , which is analytic: hence Sij ∈ Σ1
1.

For Aj := {xj(y), y ∈ K} and t ∈ R+ we have that

µ((Aj)t) =

∫
K

µy((Aj)t)m(dy) =

∫
K

µy,atomic((Aj)t)m(dy)

=
∑
i∈Z

∫
K

ci(y)δxi(y)

(
g(g−1(xj(y)) + t)

)
m(dy) =

∑
i∈Z

∫
Sij(t)

ci(y)m(dy).

We have used the fact that Aj ∩R(y) is a singleton.
Step 3. For fixed i, j ∈ N, again from the fact that Aj ∩R(y) is a singleton

Sij(t) ∩ Sij(t′) =

{
Sij(t) t = t′

∅ t 6= t′
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so that
]
{
t : m(Sij(t)) > 0

}
≤ ℵ0.

Finally

µ((Aj)t) > 0 =⇒ t ∈
⋃
i

{
t : m(Sij(t)) > 0

}
,

whose cardinality is ≤ ℵ0, contradicting Assumption 1. �

5.2. Absolute continuity. We next assume a stronger regularity assumption.

Assumption 2 (Absolute continuity assumption). For every Borel set A ⊂ Te

µ(A) > 0 =⇒
∫ +∞

0

µ(At)dt > 0.

Again by inner regularity, Assumption 2 can be verified only for compact sets. Note that the condition
is meaningful by Lemma 5.2. Observe moreover that Assumption 2 implies Assumption 1, so that in the
following we will restrict the map g to the set g−1(T ), where it is analytic. Moreover, we can consider
shift t 7→ At for t ∈ R, because of Lemma 5.2.

Remark 5.5. An equivalent form of the Assumption 2 is the following:

µ(A) > 0 =⇒
∫
t,s≥0

µ(At ∩As)dtds > 0.

In fact, due to µ(X) = 1, in the set In := {t : µ(At) > 2−n} the set {s ∈ In : µ(As ∩At) = 0, t ∈ In} has
cardinality at most 2−n. Hence, since for some n L1(In) > 0 by Assumption 2, it follows that

L2(In × In) =
(
L1(In)

)2
> 0.

The opposite implication is a consequence of Fubini theorem.

The next results show regularity of the Radon-Nikodym derivative of µy w.r.t. (H1
L)xf−1(y), where H1

L

is the 1-dimensional Hausdorff measure w.r.t. the dL-distance. Note that along dL 1-Lipschitz geodesics,
H1
L is equivalence to g(y, ·)]L1: in the following we will use both notations.

Lemma 5.6. Let µ be a Radon measure and

µy = r(y, ·)g(y, ·)]L1 + ωy, ωy ⊥ g(y, ·)]L1

be the Radon-Nikodym decomposition of µy w.r.t. g(y, ·)]L1. Then there exists a Borel set C ⊂ X such
that

L1
(
g−1(C) ∩ ({y} × R))

)
= 0

and ωy = µyxC for m-a.e. y ∈ [0, 1].

Proof. Consider the measure
λ = g](m⊗ L1),

and compute the Radon-Nikodym decomposition

µ =
Dµ

Dλ
λ+ ω.

Then there exists a Borel set C such that ω = µxC and λ(C) = 0. The set C proves the Lemma.
Indeed C = ∪y∈[0,1]Cy where Cy = C ∩ f−1(y) is such that µyxCy= ωy and g(y, ·)]L1(Cy) = 0 for m-a.e.
y ∈ [0, 1]. �

Theorem 5.7. If µ satisfies Assumption 2, then for m-a.e. y ∈ [0, 1] the conditional probabilities µy are
absolutely continuous w.r.t. g(y, ·)]L1.

The proof is based on the following simple observation.

Let η be a Radon measure on R. Suppose that for all A ⊂ R Borel with η(A) > 0 it holds∫
R+

η(A+ t)dt = η ⊗ L1
(
{(x, t) : t ≥ 0, x− t ∈ A}

)
> 0.

Then η � L1.
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Proof. The proof will use Lemma 5.6: take C the set constructed in Lemma 5.6 and suppose by contra-
diction that

µ(C) > 0 and m⊗ L1(g−1(C)) = 0.

In particular, for all t ∈ R it follows that

m⊗ L1(g−1(Ct)) = m⊗ L1(g−1(C) + (0, t)) = 0.

By Fubini-Tonelli Theorem

0 <

∫
R+

µ(Ct)dt =

∫
R+

(∫
g−1(Ct)

(g−1)]µ(dydτ)

)
dt

=
(
(g−1)]µ⊗ L1

)({
(y, τ, t) : (y, τ) ∈ g−1(T ), (y, τ − t) ∈ g−1(C)

})
≤

∫
S×R

L1
({
τ − g−1(C ∩ f−1(y))

})
(g−1)]µ(dydτ)

=

∫
S×R

L1
(
g−1(C ∩ f−1(y))

)
(g−1)]µ(dydτ)

=

∫
S

L1
(
g−1(C ∩ f−1(y))

)
m(dy) = 0.

That gives a contradiction. �
Now we will study the regularity of the map t 7→ µ(At) under Assumption 2. We will use the following

notation:

µ(A) =

∫
S

µy(A)m(dy) =

∫
S

(∫
g(y,·)−1(A)

r(y, τ)dτ

)
m(dy) = g](rm⊗ L1).

Proposition 5.8. µ satisfies Assumption 2 if and only if for all A Borel t 7→ µ(At) is continuous.
Moreover if A is geodesically convex then µ(At) is absolutely continuous.

Proof. It is enough to prove the continuity for t = 0. Since

µ(At) =

∫
S

(∫
g(y,·)−1(At)

r(y, τ)dτ

)
m(dy),

its continuity is a direct consequence of Lebesgue dominated convergence theorem applied to the function:

t 7→ µy(At) =

∫
g(y,·)−1(At)

r(y, τ)dτ.

Suppose now A geodesically convex. Each g(y, ·)−1(A) is an interval (α(y), ω(y)), so that the map

t 7→
∫
g(y,·)−1(At)

r(y, τ)dτ

is absolutely continuous with derivative

h(y, t) = r(y, ω(y) + t)− r(y, α(y) + t).

Since h(y, t) ∈ L1(m⊗ L1) the result follows by a standard computation. �

6. Solution to the Monge problem

In this section we show that Theorem 5.7 allows to construct an optimal map T . We recall the one
dimensional result for the Monge problem [20].

Theorem 6.1. Let µ, ν be probability measures on R, µ continuous, and let

H(s) := µ((−∞, s)), F (t) := ν((−∞, t)),

be the left-continuous distribution functions of µ and ν respectively. Then the following holds.

(1) The non decreasing function T : R → R ∪ [−∞,+∞) defined by

T (s) := sup
{
t ∈ R : F (t) ≤ H(s)

}
maps µ to ν. Moreover any other non decreasing map T ′ such that T ′

]µ = ν coincides with T on
the support of µ up to a countable set.
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(2) If φ : [0,+∞] → R is non decreasing and convex, then T is an optimal transport relative to the
cost c(s, t) = φ(|s− t|). Moreover T is the unique optimal transference map if φ is strictly convex.

Assume that µ satisfies Assumption 1. Then we can disintegrate µ and π respect to the ray equivalence
relation R and R×X as in (5.2),

(6.1) µ =

∫
µym(dy), π =

∫
πym(dy), µy continuous, (P1)]πy = µy.

We write moreover

(6.2) ν =

∫
νym(dy) =

∫
(P2)]πym(dy).

Note that πy ∈ Π(µy, νy) is dL-cyclically monotone (and hence optimal, because R(y) is one dimensional)
for m-a.e. y. If ν(T ) = 1, then (6.2) is the disintegration of ν w.r.t. R.

Theorem 6.2. Let π ∈ Π(µ, ν) be a dL-cyclically monotone transference plan, and assume that Assump-
tion 1 holds. Then there exists a Borel map T : X → X with the same transport cost as π.

Proof. By means of the map g−1, we reduce to a transport problem on S × R, with cost

c((y, s), (y′, t)) =

{
|t− s| y = y′

+∞ y 6= y′

It is enough to prove the theorem in this setting under the following assumptions: S compact and
S 3 y 7→ (µy, νy) weakly continuous. We consider here the probabilities µy, νy on R.

Step 1. From the weak continuity of the map y 7→ (µy, νy), it follows that the maps

(y, t) 7→ H(y, t) := µy((−∞, t)), (y, t) 7→ F (y, t) := νy((−∞, t))

are easily seen to be l.s.c.. Both are clearly increasing in t. Note also that H is continuous in t.
Step 2. The map T defined as Theorem 6.1 by

T (y, s) :=
(
y, sup

{
t : F (y, t) ≤ H(y, s)

})
is Borel. In fact, for A Borel,

T−1(A× [t,+∞)) =
{
(y, s) : y ∈ A,H(y, s) ≥ F (y, t)

}
∈ B(S × R).

Step 3. Note that πy and T (y, ·) are both optimal for the transport problem between µy and νy with
cost dL restricted to R(y). Indeed dL restricted to R(y) × R(y) is finite. Therefore πy and T (y, ·) have
the same cost. �

Remark 6.3. By the definition of the set G, it follows that along each geodesic µy(g(y, (−∞, t))) ≥
νy(g(y, (−∞, t))), because in the opposite case G is not dL-cyclically monotone. Hence T (s) ≥ s, and
c((y, s), T (y, s)) = P2(T (y, s))− s. Hence

(6.3)

∫
dLπ =

∫
dL(x, T (x))µ(dx) =

∫
S×R

s
(
g(y, ·)−1

] (νy−µy)
)
(ds)m(dy) =

∫
P2(g

−1(x))(ν−µ)(dx).

7. Dynamic interpretation

In this section we show how the regularity of the disintegration yields a correct definition of the current
ġ representing the flow along the geodesics of an optimal transference plan. This allows to solve the PDE

∂U = µ− ν

in the sense of currents in metric spaces. In particular, under additional regularity assumptions, one can
prove that the boundary ∂ġ is well defined and satisfies an ODE along geodesics. This gives a dynamic
interpretation to the transport problem.

The setting here is slightly different from the previous sections:

(1) d(x, y) ≤ dL(x, y);
(2) there exists a probability measure η, such that it (or more precisely ηxTe) satisfies Assumption 2

along the transport rays of the transportation problem with marginals µ, ν;
(3) µ� η, so that also µ satisfies Assumption 2.
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In particular, Lip(X) ⊂ LipdL(X).
The main reference for this chapter is [1].

7.1. Definition of ġ. For any Lipschitz function ω : X → R we can define the derivative ∂tω along the
geodesic g(t, y) for a.e. t ∈ R,

∂tω(g(y, t)) :=
d

dt
ω(g(t, y)).

Using the disintegration formula

ηxT =
∫

(g(y, ·))](q(y, ·)L1)m(dy) = g](qm⊗ L1)

for some q ∈ L1(m⊗ L1) (Theorem 5.7), we can define the measure ∂tωη as∫
φ(x)(∂tωη)(dx) :=

∫
S

∫
R
φ(g(y, t))∂tω(g(y, t))q(y, t)dtm(dy).

where φ ∈ Cb(X,R).

Definition 7.1. We define the flow ġ as the current

〈ġ, (h, ω)〉 =
∫
S×R

h(g(y, t))∂tω(g(y, t))q(y, t)dtm(dy)

where h, ω are Lipschitz functions of (X, d) with h bounded.

It is fairly easy to see that ġ is a current: in fact,

(1) ġ has finite mass, namely ∣∣〈ġ, (h, ω)〉∣∣ ≤ Lip(ω)

∫
hη;

(2) ġ is linear in h, ω;
(3) if ωn → ω pointwise in X with uniformly bounded Lipschitz constant, then by Lebesgue Domi-

nated Convergence Theorem if follows that

lim
n→+∞

〈ġ, (hn, ωn)〉 = 〈ġ, (h, ω)〉;

(4) 〈ġ, (h, ω)〉 = 0 if ω is constant in {h 6= 0}.
In general, ġ is only a current, with boundary ∂ġ defined by the duality formula

(7.1) 〈∂ġ, ω〉 = 〈ġ, (1, ω)〉.
Under additional assumptions, the current ġ is a normal current, i.e. ∂ġ is also a scalar current, in
particular it is a bounded measure on (X, d).

Lemma 7.2. Assume that q(y, ·) : R → R belongs to BV(R) for m-a.e. y and

σy := − d

dt
q(y, t),

∫
S

|σy(R)|m(dy) =

∫
S

Tot.Var.(q(y, ·))m(dy) < +∞.

Then ġ is a normal current and its boundary is given by

〈∂ġ, ω〉 =
∫
S

∫
R
ω(g(y, t))σy(dt)m(dy).

Note that in the above formula we cannot restrict σy to g−1(T ): in fact, in general∫
S

(g(y, ·)]σy)(Te \ T )m(dy) > 0.

Proof. First of all, by using the formula q(y, t) = σy((t,+∞)), it follows that σy is m-measurable, i.e. for
all φ ∈ Cb(X,R) the integral ∫ (∫

φ(g(y, t))σy(dt)

)
m(dy)

is meaningful and then ∫ (
g(y, ·)]σy

)
m(dy)



26 STEFANO BIANCHINI AND FABIO CAVALLETTI

is a finite measure on (X, d).
A direct computation yields

〈∂ġ, ω〉 = 〈ġ, (1, ω)〉 =
∫
S

∫
R
∂tω(g(t, y))σy((t,+∞))dtm(dy) =

∫
S

∫
R
ω(g(t, y))σy(dt)m(dy).

�

Remark 7.3. In many cases the measure
∫
(g(y, ·)]σy)xTm(dy) is absolutely continuous w.r.t. η, i.e. for

m-a.e. y

σyxT = h(g(t, y))q(y, t)L1.

for some h ∈ L1(η). In that case we obtain that

〈∂ġ, ω〉 =
∫
ω(b(y))σy

(
P2({g−1(b(y))})

)
m(dy)

−
∫
ω(a(y))σy

(
P2({g−1(a(y))})

)
m(dy) +

∫
ω(x)h(x)η(dx).

7.2. Transport equation. We now consider the problem ∂U = µ− ν in the sense of currents:

〈U, (1, ω)〉 = 〈µ− ν, ω〉 =
∫
ω(x)(µ− ν)(dx).

Using the disintegration formula and (6.1), (6.2) we can write

〈U, (1, ω)〉 =
∫
S

{∫
R
ω(g(y, t))(g−1(y, ·)]µy)(dt)−

∫
R
ω(g(y, t))(g−1(y, ·)]νy)(dt)

}
m(dy).

By integrating by parts we obtain∫
R
ω(g(y, t))(g−1(y, ·)]µy)(dt) = −

∫
R
µy(g(y, (−∞, t)))∂tω(g(y, t))dt = −

∫
R
H(y, t)∂tω(g(y, t))dt,

∫
R
ω(g(y, t))(g−1(y, ·)]νy)(dt) = −

∫
R
νy(g(y, (−∞, t)))∂tω(g(y, t))dt = −

∫
R
F (y, t)∂tω(g(y, t))dt.

Observe that the map

S × R 3 (y, t) 7→ F (y, t)−H(y, t) ∈ R

is in L1(m ⊗ L1) if the transport cost I(π) is finite: in fact, using the fact that F (y, t) ≤ H(y, t) and
integrating by parts,

(7.2)

∫
R
H(y, t)− F (y, t)dt =

∫
R
(g−1(y, ·)]µy − g−1(y, ·)]νy)(−∞, t)(dt) =

∫
R2

(t− s)π̃y(ds, dt),

where π̃y is the monotone rearrangement.
We deduce the following proposition.

Proposition 7.4. Under Assumption 1, a solution to ∂U = µ− ν is given by the current U defined as

〈U, (h, ω)〉 =
∫
S

(∫
R
(F (y, t)−H(y, t))h(g(y, t))∂tω(g(y, t))dt

)
m(dy).

In general, the solution is not unique: just add a boundary free current to our solution.
Some further assumptions allow to represent our solution U as the product of a scalar ρ with the

current ġ.

Proposition 7.5. Assume that q(y, t) > 0 whenever H(y, t)− F (y, t) > 0. Then R = ρġ, where

ρ(g(y, t)) =
F (y, t)−H(y, t)

q(y, t)
.
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Proof. It is enough to observe that∫
S×R

F (y, t)−H(y, t)dtm(dy) =

∫
S×R

F (y, t)−H(y, t)

q(y, t)
q(y, t)dtm(dy)

=

∫
S×R

ρ(g(y, t))q(y, t)dtm(dy) =

∫
X

ρ(x)η(dx),

and from (7.2) we conclude that ρ ∈ L1(η). �

Corollary 7.6. If q(y, t) 6= 0 for m⊗L1-a.e. (y, t) ∈ g−1(T ), then there exists a scalar function ρ such
that ∂(ρġ) = µ− ν.

8. Stability of the non degeneracy condition

In this section we prove a general approximation theorem, which will be then applied to the Measure-
Gromov-Hausdorff (MGH) convergence: if a uniform estimate holds for the disintegration in the approx-
imating spaces, we deduce the regularity of the disintegration also in the limit.

8.1. A general stability result. We consider the following setting:

(1) µn is a sequence of measure converging to µ weakly;
(2) there exists functions gn : Sn × R → X, Sn ⊂ X Borel, and measures rnmn ⊗ L1 ∈ P(Sn × R)

such that

(8.1) µn = (gn)]
(
rnmn ⊗ L1

)
.

The following is the basic tool for our stability result.

Proposition 8.1. Let Y be a Polish space, {ξn}n∈N ⊂ P(Y ) such that ξn ⇀ ξ. Consider {rn}n∈N,
rn ≥ 0, such that rn ∈ L1(ξn), rnξn ⇀ ζ and the following equintegrability condition holds:

∀ε > 0 ∃δ > 0

(
∀A ∈ B, ξn(A) < δ =⇒

∫
A

rnξn < ε

)
.

Then there exists r ∈ L1(ξ) such that ζ = rξ.

Proof. We will show that ζ(B) = 0 for all B such that ξ(B) = 0. Clearly by inner and outer regularity,
it is enough to prove the following statement:

∀ε > 0 ∃δ > 0

(
φ ∈ Cb(Y ), φ ≥ 0,

∫
φξ < δ =⇒

∫
φζ < ε

)
.

Fix ε > 0 and take the corresponding δ given by the equintegrability condition on rn. Clearly w.l.o.g.
δ ≤ ε. Consider φ ∈ Cb(Y ) positive such that∫

φξ ≤ δ2/2.

From the weak convergence for n great enough∫
φξn ≤ δ2,

so that we can estimate ∫
φrnξn ≤

∫
φ>δ

rnξn + δ < ε+ δ.

Hence
∫
φζ < 2ε. �

Theorem 8.2. Assume that the family of functions {rn} ⊂ L1(mn ⊗ L1) given by (8.1) is such that

(I, I, gn)]
(
rnmn ⊗ L1

)
⇀ (I, I, g)]ζ

with ζ ∈ P(S × R) and g being the ray map (Definition 4.5). Assume moreover

∀T ≥ 0 ∀ε > 0 ∃δ > 0

(
A ∈ B(S × [−T, T ]),mn ⊗ L1(A) < δ =⇒

∫
A

rnmn ⊗ L1 < ε

)
.
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Then ζ = rm⊗ L1 for some function r ∈ L1(m⊗ L1), measure m ∈ P(S) and the disintegration of µ is
a.c. w.r.t. H1 on each geodesic.

Proof. Define for k ∈ N

φk ∈ Cc(R), φk ≥ 0, φk(t) :=

{
1 |t| ≤ k,

0 |t| ≥ k + 1.

Let ξn,k = mn⊗L1x[−k−1,k+1] and consider the functions r̃n,k := rn(y, t)φk(t). Since mn = (P1)](rnmn⊗
L1) and hence mn ⇀m = (P1)]ζ, then

ξn,k ⇀m⊗ L1x[−k−1,k+1]

and the hypothesis of Proposition 8.1 are verified up to rescaling. So ζ = rm⊗ L1.
The fact that g]ζ is a disintegration is a consequence of the a.c. of ζ along each geodesic: in this case

the initial points have ζ-measure 0 and therefore g is invertible on a set of full µ-measure. �
In general the convergence of the graph of gn is too strong: the next result considers a more general

case.

Proposition 8.3. Assume that ζ̃ ∈ Π(rm ⊗ L1, µ) is concentrated on the graph of a Borel function
h : T × R → Te such that

(1) (y, t) 7→ e(y) := f(h(y, t)) ∈ S is constant w.r.t. t,
(2) it holds

h(y, ·)]
(
r(y, ·)L1

)
� H1xg(e(y),R).

Then the disintegration w.r.t. g has absolutely continuous conditional probability.

Proof. We can disintegrate the measure m as follows:

m =

∫
S

mz(e]m)(dz),

and by the second assumption

h(y, ·)](r(y, ·)L1) = g(e(y), ·)](r̃(y, ·)L1),

for m-a.e. y ∈ T . Hence by explicit computation,

µ =

∫
S

h(y, ·)](r(y, ·)L1)m(dy) =

∫
S

g(e(y), ·)](r̃(y, ·)L1)m(dy)

=

∫
S

(∫
e−1(z)

g(z, ·)](r̃(y, ·)L1)mz(dy)

)
e]m(dz).

To conclude the proof observe that∫
e−1(z)

g(z, ·)](r̃(y, ·)L1)mz(dy) = g(z, ·)]
(∫

e−1(z)

r̃(y, ·)L1mz(dy)

)
= g(z, ·)]

(∫
e−1(z)

r̃(y, ·)mz(dy)

)
L1.

�
Remark 8.4. Observe that some properties of rn are preserved passing to the limit r. In relation with
the previous section, we consider the following cases: for A ⊂ X × R open

(1) for some ε > 0 (
(rn − ε)mn ⊗ L1

)
xA≥ 0;

(2) there exists L > 0 such that
rn(y, ·) ∈ LipL(Ay);

(3) there exists M > 0 such that
TV (rn(y, ·)xA) ≤M.

The first condition yields that the assumptions of Corollary 7.6 holds in A. The second and third
conditions imply that we are under the conditions for Remark 7.3 in A.
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8.2. Approximations by metric spaces. In this section we explain a procedure to verify if the trans-
port problem under consideration satisfies Assumption 2. The basic references for this sections are [13]
and [16, 17].

We consider the following setting:

(1) (X, d, dL), (Xn, dn, dL,n), n ∈ N, are metric structures satisfying the assumptions of page 8 and
Remark 2.13: more precisely, dL, dL,n l.s.c., dL ≥ d, dL,n ≥ dn and⋃

x∈K1,y∈K2

γ[x,y] is dn(d)-compact if K1, K2 are dn(d)-compact, dL,n(dL)xK1×K2 uniformly bounded.

(2) µn, νn ∈ P(Xn), µn ⊥ νn;
(3) πn ∈ Π(µn, νn) is a dL,n-cyclically monotone transference plan with finite cost.

For µ, ν ∈ P(X) let π ∈ Π(µ, ν) be a generic transference plan.

Definition 8.5. We say that the structures (Xn, dn, dL,n, πn) converge to (X, d, dL, π) if the following
holds: there exists C > 0 such that for all n ∈ N∫

dL,nπn ≤ C

and there exist Borel sets An ⊂ Xn and Borel maps `n : An → X such that

(8.2) (`n ⊗ `n)]πnxAn×An⇀ π,

(8.3)
∣∣dL(`n(x), `n(y))− dL,n(x, y)

∣∣ ≤ 2−n,

and if (`n(xn), `n(yn)) → (x, y), then

(8.4) dL(x, y) = lim
n
dL,n(xn, yn).

As a first result, we show that also π is dL-cyclically monotone with finite cost.

Proposition 8.6. If (Xn, dn, dL,n, πn) converges to (X, d, dL, π) and the plans πn have uniformly bounded
cost then also π has finite cost and is dL-cyclically monotone.

Proof. Since dL is l.s.c.∫
dLπ ≤ lim inf

n→+∞

∫
dL(`n ⊗ `n)]πn = lim inf

n→+∞

∫
dL(`n(x), `n(y))πn(dxdy)

(8.3)

≤ lim inf
n→+∞

{∫
dL,n(x, y)πn(dxdy) + 2−n

}
≤ C,

for some C < +∞.
Now let Γn be a dL,n-cyclically monotone set with πn(Γn) = 1: by standard regularity of Borel function

and by Prokhorov Theorem we can assume that

(1) Γn is σ-compact, Γn = ∪m∈NΓn,m with Γn,m ⊂ Γn,m+1;
(2) (`n ⊗ `n)(Γn,m) is compact and (`n ⊗ `n)(Γn,m) → Γm in the Hausdorff distance dH ;
(3) πn(Γn,m) ≥ 1− 2−m.

It follows that: π(Γm) ≥ 1− 2−m, hence

π

( ⋃
m∈N

Γm

)
= 1.

Since each Γm is the limit in Hausdorff distance of (`n ⊗ `n)(Γn,m), (8.4) implies that Γm (and thus
∪mΓm, because Γm ⊂ Γm+1) is dL-cyclically monotone. �

Note that since π is dL-cyclically monotone, we can define the sets Γ,Γ′, G,G−1, R, a, b of Section 3 as
well as the quotient map f and the ray map g constructed in Section 4. The same sets and maps can be
given for the structures (Xn, dn, dL,n): we will denote them with the subscript n.

For the transport problems in (Xn, dn) with measures µn, νn, we assume the following.

Assumption 3 (Non degeneracy). The dL,n-cyclically monotone plan πn satisfies Assumption 2 for all
n ∈ N.
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This allows to write the disintegration of µn w.r.t. the ray equivalence relation Rn:

µn = (gn)](rnmn ⊗ L1) =

∫
gn(y, ·)](rn(y, ·)L1)mn(dy),

with fn ]µn = mn and rn ∈ L1(mn ⊗ L1).

Lemma 8.7. If (Xn, dn, dL,n, πn) converges to (X, d, dL, π) then the structures (Sn × R, d̃n, d̃L,n, π̃n),
where

d̃n = dn ◦ (gn ⊗ gn), π̃n = (g−1
n ⊗ g−1

n )](πn), d̃L,n((y, t), (y
′, t′)) =

{
|t− t′| y = y′

+∞ y 6= y′,

converges to (X, d, dL, π).

Proof. It is enough to observe that πn(Gn) = 1, d̃L,n = dL,n ◦ (gn ⊗ gn) on Gn and to replace the map
`n with the map `n ◦ gn. �

By Lemma 8.7, in the following we assume that the ray map gn is the identity map.
The next assumption is the fundamental one.

Assumption 4 (Equintegrability). The L1-functions rn are equintegrable w.r.t. the measure mn ⊗ L1:

∀ε > 0 ∃δ > 0

(
(mn ⊗ L1)(A) < δ ⇒

∫
A

rnmn ⊗ L1 < ε

)
.

From now on we will assume that (Xn, dn, dL,n, πn) → (X, d, dL, π) in the sense of Definition 8.5,
(Xn, dn, dL,n, πn) verifies Assumption 3 and Assumption 4 and

∫
dL,nπn ≤ C.

Our aim is to prove that the structure (X, d, dL, π) satisfies Assumption 2, which is equivalent to the
fact that the marginal probabilities of the disintegration of µ w.r.t the ray equivalence relation R are a.c.
w.r.t. H1.

The next lemma shows that in order to obtain our purpose we can perform some reductions without
losing generality. We will write µk ↗ µ for µk ≤ µk+1 and µ = supk µk.

Lemma 8.8. Let {µk}k∈N ⊂ M(X), µk ≥ 0, be such that µk ↗ µ and assume that

µk = g](rkmk ⊗ L1), rk ≥ 0,

where g is the ray map on T . Then there exist m ∈ P(X), r ∈ L1(m ⊗ L1), r ≥ 0 such that the same
formula holds for µ:

µ = g](rm⊗ L1).

Proof. Since
∫
rk(y, t)dt = 1 it follows that P1 ](rkmk ⊗ L1) = mk and therefore mk ↗ m with m = f]µ

(recall that f is a section for the ray equivalence relation R). The convergence µk ↗ µ yields(
rk
dmk

dm

)
m⊗ L1 ↗ ζ,

where µ = g]ζ. We conclude ζ = rm⊗ L1 with r := supk rk
dmk

dm . �

A first reduction is given by the following lemma.

Lemma 8.9. To prove that there exist m ∈ P(X), r ∈ L1(m⊗ L1), r ≥ 0 such that

µ = g](rm⊗ L1),

we can assume w.l.o.g. that there exist x̄, ȳ ∈ X and q ≥ 0 such that

π
({

(x, y) : d(x̄, ȳ) > 8q, d(x, x̄), d(y, ȳ) ≤ q
})

= 1.

Moreover the dL-cyclically monotone set Γ and the set of oriented transport rays G can be assumed to be
compact subsets of X ×X.
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Proof. Step 1. Since π({x = y}) = 0 we can assume that Γ ∩ {x = y} = ∅. Take two dense sequences
{xi}i∈N ⊂ X, {qi}i∈N ⊂ R+ and consider the family of closed sets

Γijk :=
{
(x, y) : d(xi, xj) ≥ 8qk, d(x, xi), d(y, xj) ≤ qk

}
.

Then Γijk is a countable covering of X ×X \ {x = y}.
Suppose now to have proven that for all µijk = P1 ](πxΓijk

) the disintegration formula holds with

H1-a.c. marginal probabilies, then the same H1-a.c. property is true if we replace Γijk with the finite
union of sets Γi′j′k′ .

Define

Γ̃m :=
⋃
n<m

Γinjmkm ,

where

N 3 m 7→ (im, jm, km) ∈ N3

is a bijective map, and consider µm = P1 ](πxΓ̃m
), then {µm}m∈N verifies the hypothesis of Lemma 8.8.

Step 2. It remains to show how to construct the approximating structure π̃n ∈ P(Xn) converging in
the sense of Definition 8.5 to πxΓijk

. Since Γijk is closed, there exists a sequence φl ∈ Cc(X ×X, [0, 1])
such that φl ↘ χΓijk

. Now φlπ ↘ πxΓijk
as l → +∞ and

φl(`n ⊗ `n)]πn ⇀ φlπ.

Hence there exists a subsequence {φli(`ni ⊗ `ni)]πni}i∈N satisfying (8.2) with weak limit πxΓijk
. If one

defines

π̃i =
(
φli ◦ `ni

)
πni ,

then it is straighforward to show that (Xi, di, dL,i, π̃i) converges to (X, d, dL, πxΓijk
) in the sense of

Definition 8.5.
Step 3. Since Remark 3.12 yields that Γ, G are σ-compact, let Γ = ∪kΓk, G = ∪kGk with Γk, Gk

compact and consider πxΓk
. The same reasoning done in Step 1 and Step 2. yields that it is enough to

prove the a.c. of disintegration for πxΓk
. �

Therefore from now on we will assume that π is concentrated on the set{
(x, y) : d(x̄, ȳ) > 8q, d(x, x̄), d(y, ȳ) ≤ q

}
.

Using the same reasoning of Lemma 8.9 one can also prove the following.

Lemma 8.10. We can assume w.l.o.g. that the sets An ⊂ Xn are compact and the maps `n : An → X
are continuous. Moreover `n(An) converges in Hausdorff distance to a compact set K on which µ and ν
are concentrated.

Proof. By Lusin Theorem and inner regularity of measures it follows that there exist Bn ⊂ An such that

• An \Bn is compact;
• µn(Bn) ≤ 1/n;
• the map `n : An \Bn → X is continuous.

To prove the first part of the claim just observe that (`n ⊗ `n)]πnxAn\Bn×An\Bn
⇀ π.

The second part of the statement can be proven following the line of the second part of the proof of
the Proposition 8.6. �

By Lemma 8.10 it is straightforward that for all n great enough we have(
`n ]µn

)
(B2q(x̄)) =

(
`n ]νn

)
(B2q(ȳ)) = 1.

Lemma 8.11. We can assume that the measure mn is concentrated on a compact subset of{
y ∈ Sn : ∃t, s > δ : (y,−s), (y, 0), (y, t) ∈ P12(graph(`n))

}
for some fixed δ > 0 and

(8.5) µn(Sn × (−∞, 0]) = 1, νn(Sn × (4q,+∞)) = 1.
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Proof. Step 1. Defining

Aδ :=
{
(y, t) ∈ Sn × R : |a(y)− t| < δ

}
,

by Fubini Theorem
mn ⊗ L1(Aδ) ≤ δ,

hence by Assumption 4, for any ε > 0 we can choose δ > 0 such that rnmn ⊗ L1(Aδ) < ε for al n ∈ N.
Therefore we can assume that rnmn⊗L1 is concentrated on a compact subset Bn of `−1

n (B̄(x̄, 32q))\Aδ.
Step 2. Define the u.s.c. selection of Bn tn : Sn → R in the following way:

y 7→ tn(y) := max
{
t ∈ R, (y, t) ∈ Bn

}
.

By removing a set of arbitrarily small measure we can assume that for all y ∈ P1(graph(tn)) there exists
t > 4q such that

(y, tn(y) + t) ∈ `−1
n

(
B̄

(
ȳ,

3

2
q

))
.

Step 3. The Borel transformation

Bn 3 (y, t) 7→ (y, t− tn(y))

maps mn ⊗ L1 into itself and in the new coordinates the section Sn satisfies the first part of the claim.
By the definition of Gn and µn ⊥ νn it follows that µn and νn satisfy (8.5), see Remark 6.3. �
Define the map

hn : Sn × R → X × R
(y, t) 7→ (`n(y, 0), t).

and the measure hn ](rnmn ⊗ L1) = r̃nm̃n ⊗ L1, with m̃n = `n(·, 0)]mn.

Lemma 8.12. The family of measures {r̃nm̃n ⊗ L1}n∈N ⊂ P(`n(Sn × {0}) × R) is tight and r̃n is
equintegrabile w.r.t. m̃n ⊗ L1.

Proof. Performing the same calculation of (6.3)

C ≥
∫
dL,nπn =

∫
sνn −

∫
sr̃nm̃n ⊗ L1.

From (8.5), Lemma 8.11, it follows that s ≤ 0, r̃nm̃n ⊗ L1-a.e.. Hence r̃nm̃n ⊗ L1 ∈ P(`n(Sn × {0}) ×
(−∞, 0])) and

0 ≤ −
∫
sr̃nm̃n ⊗ L1 ≤ C,

therefore r̃nm̃n ⊗L1 is tight. Recall in fact that {Sn}n∈N is a precompact sequence w.r.t. the Hausdorff
distance by Lemma 8.10.

The equintegrability is straighforward:∫
A

r̃nm̃n ⊗ L1 =

∫
(hn)−1(A)

rnmn ⊗ L1

and mn ⊗ L1((hn)
−1(A)) = m̃n ⊗ L1(A). �

Consider the following measure

ζn := (hn, `n)](rnmn ⊗ L1) ∈ Π
(
r̃nm̃n ⊗ L1, (`n)](µn)

)
∈ P(X × R×X).

Proposition 8.13. Up to subsequences, ζn ⇀ ζ, where ζ ∈ Π(rm⊗L1, µ) is supported on a Borel graph
h : T × R → Te such that t 7→ h(y, t) is the dL 1-Lipschitz curve R(y) for m-a.e. y ∈ X.

Proof. Step 1. The convergence to the correct marginals is a consequence of (8.2)

(P2)]ζn = (`n ◦ gn)](rnmn ⊗ L1) = (`n)]µn ⇀ µ,

and by Lemma 8.12
(P1)]ζn = r̃nm̃n ⊗ L1 ⇀ rm⊗ L1.

Step 2. Since up to subsequence ζn ⇀ ζ, using the same technique of Lemma 8.6, we can assume
that Kn := (hn, `n)(Sn × R) is compact and dH(Kn, graph(h)) → 0 where graph(h) is a compact set
supporting ζ and h is the associated multivalued function.
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Step 3. Let (y, t, x) ∈ graph(h), then by the definition of convergence in the Hausdorff metric, there
exists a sequence (`n(yn, 0), tn, `n(yn, tn)) → (y, t, x). Hence from

dL,n
(
(yn, tn), (yn, 0)

)
= |tn| → |t|,

we deduce by (8.4) that dL(x, y) = |t|. In particular this implies that if t = 0 then x = y.
Step 4. Let (y, t, x), (y, t′, x′) ∈ graph(h) with t < 0 and t′ > 0. Again by the Hausdorff convergence

there exist two sequences satisfying(
`n(yn, 0), tn, `n(yn, tn)

)
→ (y, t, x),

(
`n(y

′
n, 0), t

′
n, `n(y

′
n, t

′
n)
)
→ (y, t′, x′).

Since dL(y, y) = 0, from (8.4) we deduce

dL,n
(
(yn, 0), (y

′
n, 0)

)
→ 0

hence by the definition of dL,n, for n great enough yn = y′n. Therefore

dL(x, x
′) = lim

n→+∞
dL,n((yn, tn), (y

′
n, t

′
n)) = |t|+ t′,

and by Step 3 we conclude that dL(x, x
′) = dL(x, y) + dL(y, x

′).
Step 5. Let (y, t, x) ∈ graph(h): we now show that

t ≥ 0 ⇒ (y, x) ∈ G, −t ≥ 0 ⇒ (y, x) ∈ G−1.

We will prove only the first implication for t > 0. Since following Lemma 8.10 we can take Gn compact
such that

(1) (`n ⊗ `n)(Gn) → Ĝ in the Hausdorff metric;

(2) Ĝ ⊂ G,

it is enough to show that there exists a sequence (`n(yn, 0), tn, `(yn, tn)) → (y, t, x) so that (yn, xn) ∈ Gn
for all n, but this last implication is straightforward.

Step 6. We next show that for any y ∈ P1(graph(h)) there exist t−, t+ ≥ δ and x−, x+ such that
(y,−t−, x−), (y, t+, x+) ∈ graph(h). In fact we recall that for all yn ∈ Sn there exist t−,n, t+,n ≥ δ, for
some strictly positive constant δ, such that(

(yn,−t−,n), (yn, 0)
)
,
(
(yn, 0), (yn, t+,n)

)
∈ Gn.

Hence chose yn ∈ Sn such that `n(yn) → y and pass to converging subsequences to obtain the claim.
Step 7. Since for y ∈ P1(graph(h)) there exist x, x′ such that (x, y), (y, x′) ∈ G \ {x = y}, then

(x, x′) ∈ G, y ∈ T and h is single valued. The same computation of Point 5 yields that{
(y, h(t, y)), t ≥ 0

}
∪
{
(h(t, y), y), t ≤ 0

}
⊂ G,

and from this it follows that h(y,R) ⊂ R(y).
Again from Point 5 one obtains that dL(y, h(t, y)) = |t| and therefore t 7→ g−1(h(y, t)) = g−1(y)+t. �

Theorem 8.14. Let (Xn, dn, dL,n, πn) → (X, d, dL, π) and (Xn, dn, dL,n, πn), n ∈ N, verifies Assumption
3 and Assumption 4. Then the marginal measure µ = P1 ](π) satisfies Assumption 2.

Proof. The measure ζ constructed in the Proposition 8.13 satisfies the hypothesis of Proposition 8.3.
Therefore the marginal probabilities of the disintegration of µ are absolutely continuous with respect to
H1 and therefore µ verifies Assumption 2. �

Remark 8.15. As in Remark 8.4, if we know more regularity of the disintegrations for the approximating
problems, we can pass them to the limit. Here the key observation is that geodesics converge to geodesics,
so uniform continuous functions on them converge pointwise to continuous functions.

A special case is when dL = d: a natural approximation is by transport plans where ν is atomic, with a
finite number of atoms. This case can be studied with more standard techniques, we refer to the analysis
contained in [4].
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9. Applications

In this section we recall the definition of Measure Contraction Property (MCP ) and then we prove that
for a metric measure space (X, d, η) satisfying MCP , the Monge minimization problem with marginal
measures µ and ν with µ � η and cost d admits a solution. We show moreover that the hypotheses of
Corollary 7.6 hold, and if suppµ and suppν are at positive distance then the assumptions of Lemma 7.2
are satisfied, i.e. the current ġ is normal. The main reference for this section is [14].

From now on d = dL and η ∈ M+(X) is a locally finite measure on X. Since dL = d there exists a
Lipschitz function ϕ potential for the transport problem: hence in the following we will set

Γ = Γ′ = G =
{
(x, y) ∈ X ×X : ϕ(x)− ϕ(y) = d(x, y)

}
,

where φ is a potential for the transport problem.
Let H be the set of all geodesics: we regard H as a subset of Lip1([0, 1], X) with the uniform topology.

Define the evaluation map et(γ) by

(9.1)
e : [0, 1]×H → X

et(γ) 7→ γ(t)

It is immediate to see that et(γ) is continuous.
A dynamical transference plan Ξ is a Borel probability measure on H, and the path {ξt}t∈[0,1] ⊂ P2(X)

given by ξt = (et)]Ξ is called displacement interpolation associated to Ξ. We recall that P2(X) is the set
of Borel probability measures ξ satisfying

∫
X
d2(x, y)ξ(dy) <∞ for some (and hence all) x ∈ X.

Define for K ∈ R the function sK : [0,+∞) → R (on [0, π/
√
K) if K > 0)

(9.2) sK(t) :=


(1/

√
K) sin(

√
Kt) if K > 0,

t if K = 0,

(1/
√
−K) sinh(

√
−Kt) if K < 0,

and let N ∈ N.

Definition 9.1. A metric measure space (X, d, η) is said to satisfies the (K,N)-measure contraction
property (MCP (K,N)) if for every point x ∈ X and η-measurable set A ⊂ X with η(A) > 0 there exists
a displacement interpolation {ξt}t∈[0,1] associated to a dynamical transference plan Ξ = Ξx,A satisfying
the following:

(1) We have ξ0 = δx and ξ1 = η(A)−1ηxA;
(2) for t ∈ [0, 1]

η ≥ (et)]

(
t

{
sK(td(x, γ(1)))

sK(d(x, γ(1)))

}N−1

η(A)Ξ

)
,

where we set 0/0 = 1.

From now on we will assume the metric measure space (X, d, η) to satisfies MCP (K,N) for some
K ∈ R and N ∈ N. Recall that MCP (K,N) implies that (X, d) is locally compact, Lemma 2.4 of [14].

The strategy to prove Assumption 2 for any d-cyclically monotone plan is the following: first we prove
that for any π ∈ Π(µ, δx) d-monotone with x arbitrary, the marginal probabilities of η obtained by the
disintegration induced by the ray map g are absolutely continuous w.r.t. H1 and their densities satisfy
some uniform estimates. Then we observe that these estimates hold true also for any π ∈ Π(µ,

∑
i≤I ciδxi)

d-monotone. Finally we show that the same estimates hold for general transference plans and therefore
we deduce that the densities of the marginals obtained by disintegrating η w.r.t. any d-monotone plan π
are absolutely continuous w.r.t. H1.

By Lemma 8.8, it is enough to assume that there exists K1,K2 ⊂ X compact set, such that µ(K1) =
ν(K2) = 1 and dH(K1,K2) < +∞. Hence we can assume that diam (X) < +∞ and η(X) = 1.

Lemma 9.2. Consider x̄ ∈ X and let π ∈ Π(µ, δx̄) be the unique d-cyclically monotone transference
plan. Then η and the optimal flow induced by π verify Assumption 2: more precisely, η = g](qm ⊗ L1)
and the density q satisfies the estimate

(9.3) q(y, t) ≥
{
sK(d(g(y, t), x̄))

sK(d(g(y, s), x̄))

}N−1

q(y, s)
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for m-a.e. y ∈ S, for any s ≤ t such that d(g(y, t), x) > 0.

We recall that S is a section for the ray equivalence relation. Since µ � η, (9.3) implies that µ =
g](rm⊗ L1) with r ≤ q.

Proof. First observe that the potential for the transport problem is

ϕ(x) := ϕ(x̄) + d(x, x̄),

so that the geodesics used by π are exactly Hx̄ := H ∩ e−1
0 (x̄), in the sense that

G =
{(
γ(1− s), γ(1− t)

)
, s ≤ t, γ ∈ Hx̄

}
.

Step 1. We first prove that the set of initial points A = a(X) has η-measure zero. Suppose by
contradiction that η(A) > 0 and let Ξx̄,A be the dynamical transference plan associated: we can assume

that Ξx̄,A is supported on the set Hx̄,A := Hx̄ ∩ e−1
1 (A). Then the evolution of A by the geodesics of

Hx̄,A can be defined as

As := e1−s(Hx̄,A).

By Condition 2 of Definition 9.1 and the fact that e−1
1−s(A

s) = Hx̄,A

(9.4) η(As) ≥ η(A)

∫
Hx̄,A

(1− s)

{
sK((1− s)d(x̄, γ(1)))

sK(d(x̄, γ(1)))

}N−1

Ξx,A(dγ) > 0,

for all s ∈ [0, 1). Since all As are disjoint being the space non branching, it follows that η(A) = 0.
Step 2. For A with η(A) > 0 let Ξx̄,A be the dynamical transference plan concentrated on a set

Hx̄,A := Hx̄ ∩ e−1
1 (A). Denote as before As := e1−s(Hx̄,A).

Observe that since the set initial point has η-measure zero, we can disintegrate η w.r.t. the ray
equivalence relation: using the disintegration formula η =

∫
ηym(dy) the same estimate as in (9.4) yields∫

ηy(A
s)m(dy) ≥

∫
ηy(A)m(dy)

(∫
Hx̄,A

(1− s)

{
sK((1− s)d(x̄, γ(1)))

sK(d(x̄, γ(1)))

}N−1

Ξx̄,A(dγ)

)
.

By evaluating the above formula on sets of the form A = g(S× [t1, t2]), where g is the ray map such that
g(y, 0) = x̄ for all y, gives∫

S

ηy
(
g(y, [t1, t2](1− s))

)
m(dy) ≥

∫
S

ηy
(
g(y, [t1, t2])

)
m(dy)

·
(∫

Hx̄,A

(1− s)

{
sK((1− s)d(x̄, γ(1)))

sK(d(x̄, γ(1)))

}N−1

Ξx̄,A(dγ)

)
≥

∫
S

ηy
(
g(y, [t1, t2])

)
m(dy) min

c∈[t1,t2]

{
(1− s)

sK((1− s)|c|)
sK(|c|)

}N−1

.

and therefore for m-a.e. y and every t1, t2

(9.5) ηy
(
g(y, [t1, t2](1− s))

)
≥ ηy

(
g(y, [t1, t2])

)
min

c∈[t1,t2]

{
(1− s)

sK((1− s)|c|)
sK(|c|)

}N−1

.

Step 3. For t1 < 0 consider the family of disjoint open sets

t1

(
1− k

2n
, 1− k + 1

2n

)
, k = {0, 1, . . . , n− 1}.

The above estimate and the fact that ηy is probability yield

ηy

{
g

(
y, t1

(
1, 1− 1

2n

))}
≤ 1

n
max

c∈[t1,t1/2]

{
2
sK(|c|)
sK(2|c|)

}N−1

.

Hence ηy = qH1xg(y,R) and q satisfies (9.3). �
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Lemma 9.3. Let π ∈ Π(µ,
∑
i≤I ciδxi) d-cyclically monotone. Then the conditional probabilities of the

disintegration of η w.r.t. the ray equivalence relation induced by π are absolutely continuous w.r.t. H1

and the density q(y, ·) satisfies

q(y, t) ≥
{
sK(d(g(y, t), b(y)))

sK(d(g(y, s), b(y)))

}N−1

q(y, s).

Proof. Let ϕ be a potential for the transport problem with marginal µ and ν. Define

Ei :=

{
z ∈ Te : ϕ(z)− ϕ(xi) = d(z, xi)

}
.

Now each Ei is sent by the optimal geodesic flow to xi, so we can perform exactly the same calculations
done in Lemma 9.2. Indeed Ei ∩Ej ⊂ a(X) which has η-measure zero, ηxEi verifies (2) of Definition 9.1
along the geodesic flow connecting Ei to xi. �

Given H̃ ⊂ Lip1([0, 1], X) a set of geodesics and A ⊂ X, define

(9.6) As,H̃ := e1−s(e
−1
1 (A) ∩ H̃).

Lemma 9.4. Assume that there exists two compact sets K1,K2 ⊂ X such that

(1) µ(K1) = ν(K2) = 1;
(2) there exist 0 < a ≤ b < +∞ such that

a = min
x1∈K1,x2∈K2

d(x1, x2) ≤ max
x1∈K1,x2∈K2

d(x1, x2);

(3) K2 is a section of R.

Then if

(9.7) H(G) :=
{
γ ∈ H : ∃y ∈ K2

(
ϕ(γ(0))− ϕ(γ(1)) = d(γ(0), γ(1)) ∧ γ(0) = y

)}
,

where ϕ is the potential for the transport problem with marginal µ and ν, then

η(K
s,H(G)
1 ) ≥ η(K1) min

a≤c≤b

{
(1− s)

sK((1− s)c)

sK(c)

}N−1

.

Proof. Step 1. It follows directly from Lemma 9.3 that the statement holds for ν =
∑
i≤I ciδyi .

We thus consider the sequence of approximating problem constructed as follows: let {yi}i∈N be a dense
sequence in K2 and for I ∈ N define

ϕI(x) := min
{
ϕ(y) + d(x, y), y ∈ {y1, · · · , yI}

}
,

Ei,I :=
{
x ∈ X : ϕI(x)− ϕI(yi) = d(x, yi), i ≤ I

}
,

νI =
∑
i≤I

ci,Iδyi , where ci,I = µ

(
Ei,I \

⋃
j 6=i

Ej,I

)
.

Clearly ϕI is a potential for the transport problem with marginal µ and νI and let

H(GI) :=
{
γ ∈ H : ϕI(γ(0))− ϕI(γ(1)) = d(γ(0), γ(1)) ∧ γ(0) ∈ {y1, · · · , yI}

}
.

Step 2. Observe that K
s,H(G)
1 is compact. In fact, since K1 and K2 are compact, H(G) ∩ e−1

1 (K1) is

compact and since e1−s is continuous K
s,H(G)
1 = e1−s(H(G)) is compact. For the same reasons the sets

K
s,H(GI)
1 are compact.

Step 3. K
s,H(GI)
1 is contained in a compact set and ϕI → ϕ as I → +∞, so that up to subsequences

K
s,H(GI)
1 converges in Hausdorff distance to a compact subset of K

s,H(G)
1 . By the upper semicontinuity

of Borel bounded measures with respect to Hausdorff convergence for compact sets the claim follows. �
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Theorem 9.5. If π ∈ Π(µ, ν) d-monotone then ηxTe= g](qm ⊗ L1), where Te is the transport set with
end points (3.5b), and for m-a.e. y and s ≤ t it holds

(9.8)

{
sK(d(g(y, t), b(y)))

sK(d(g(y, s), b(y)))

}N−1

≤ q(y, t)

q(y, s)
≤

{
sK(d(g(y, t), a(y)))

sK(d(g(y, s), a(y)))

}N−1

Proof. Step 1. We first show that the set of initial points has η-measure zero. In fact suppose by
contradiction that η(a(S)) > 0, where S is a section for the ray equivalence relation of π. Hence we can
assume that S and a(S) are compact and at strictly positive distance.

Applying Lemma 9.4 to the transport problem with marginals ηxa(S) and f]η, where f is the quotient
map, it follows that η(a(S)) = 0.

Step 2. Since the initial points have η-measure zero, we can disintegrate ηxTe w.r.t. the ray equivalence
relation obtaining ηxTe=

∫
ηym(dy). By a standard covering argument, it is enough to prove the statement

on the set

Dε :=
{
x : d(x, b(x)) ≥ ε

}
.

For any 0 < δ < ε we can take the section S compact such that d(f(x), b(x)) = δ, in particular we have
g(y, δ) = b(y).

For S′ ⊂ S and t1 < t2 consider ηxg−1(S′×[t1,t2]). Applying Lemma 9.4 with

µ =
ηxg−1(S′×[t1,t2])

η(g−1(S′ × [t1, t2]))
, ν = f]µ

where f is the quotient map for the ray equivalence relation R, it holds∫
S′
ηy
(
g(y, [t1, t2](1− s))

)
m(dy) ≥ min

c∈[t1,t2]

{
(1− s)

sK((1− s)|c|)
sK(|c|)

}N−1 ∫
S′
ηy
(
g(y, [t1, t2])

)
m(dy).

As in Step 2 of the proof of Lemma 9.2, the estimate (9.5) holds for m-a.e. y and every t1 < t2 and we
deduce {

sK(d(g(y, t), b(y))− δ)

sK(d(g(y, s), b(y))− δ)

}N−1

≤ q(y, t)

q(y, s)
.

Letting δ → 0, we obtain the left hand side of (9.8).
Step 3. The right hand side of of (9.8) is obtained by the same procedure taking

Fε :=
{
x : d(d, a(x)) ≥ δ

}
and the section S such that d(y, a(y)) = δ for all y ∈ S. �

Since µ � η, it follows that also the densities of the conditional probabilities of µ are absolutely
continuous w.r.t. H1, and therefore we have the following corollary.

Corollary 9.6. Let (X, d, η) satisfies MCP (K,N), let µ, ν ∈ P(X) with µ � η, then there exists a
µ-measurable map T : X → X such that T]µ = ν and∫

d(x, T (x))µ(dx) = min
π∈Π(µ,ν)

∫
d(x, y)π(dxdy).

We can obtain additional regularity of the conditional probabilities ηy underMCP (K,N): in particular
we deduce that the conclusion of Corollary 7.6 holds and if the support of µ and ν are compact sets with
empty intersection the statements of Lemma 7.2 and Remark 7.3 are true.

Lemma 9.7. The marginal densities(
− d(a(y), y), d(y, b(y)

)
3 t 7→ q(y, t) ∈ R+

are strictly positive Lipschitz continuous for m-a.e. y ∈ S, and for some costant C > 0

Tot.Var.
(
q(y, ·)

)
≤ C

d(a(y), b(y))
.
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)N−1

q(y, t̄)
−d(y, a(y))
d(y, b(y))

t̄

Figure 4. The region where q(y, t) takes values.

Proof. From (9.8) it follows immediately that the function q(y, t) > 0 and Lipschitz continuous for
t ∈ (−d(y, a(y)), d(y, b(y))) and m-a.e. y. By differentiating it follows that

(9.9) − (N − 1)
s′K(d(g(y, t), b(y)))

sK(d(g(y, t), b(y)))
≤ q′(y, t)

q(y, t)
≤ (N − 1)

s′K(d(g(y, t), a(y)))

sK(d(g(y, t), a(y)))
.

In particular q(y, ·) is Lipschitz.
For notational convenience let us assume that d(a(y), y) = d(y, b(y)) = l. From (9.8) one can prove

that

q(y, t) ≥ q(y, 0) ·


sK(l − t)

sK(l)
, t ≥ 0

sK(−l + t)

sK(−l)
, t ≤ 0

Since
∫
q(y, t)dt = 1 it follows that

q(y, 0) ≤ cK(d(a(y), b(y))),

where

cK(t) :=
sk(t/2)

N−1

2

(∫ t/2

0

sK(τ)N−1dτ

)−1

≤ C

t
,

being C a constant depending only on K.
To show that ∫ l

−l
|q′(y, t)|dt < +∞,

it is enough to prove ∫ 0

−l
|q′(y, t)|dt < +∞,

From (9.9) it follows

ω′(y, t) := q′(y, t) + (N − 1)
s′K(l − t)

sK(l)
q(y, 0) ≥ 0

so that

Tot.Var.
(
ω(y, ·)) ≤

(
1 + (N − 1)

(
sK(2l)

sK(l)
− 1

))
q(y, 0).
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Hence

Tot.Var.
(
q(y, ·), (−`, 0]

)
≤ Tot.Var.

(
ω(y, ·), (−`, 0]

)
+Tot.Var.

(
(N − 1)

s′K
sK

, (−`, 0]
)
q(0, y)

≤ Tot.Var.
(
ω(y, ·), (−`, 0]

)
+ (N − 1)

s′K(2l)

sK(l)
q(0, y)

≤
(
1 + 2

(
sK(2l)

sK(l)
− 1

)
q(y, 0).

Collecting all the estimates, we get

Tot.Var.
(
q(y, ·)

)
≤ 2

(
1 + 2

(
sK(2l)

sK(l)
− 1

)
cK(2l).

�

In general, the current ġ is not normal, as one can easily verify in T2 with the standard distance.

10. Examples

We end this paper with some examples which shows how the different hypotheses of Section 2.4 enter
into the analysis. In the following we denote the standard Euclidean scalar product in Rd as · and the
standard distance in Td by | · |. We will also denote points by p = (x, y, z, . . . ) ∈ Rd, and α a fixed
constant in [0, 1] \Q.

Example 1 (Non strongly consistent disintegration along rays). Consider the metric space

(X, d) =
(
T2, | · |

)
and the l.s.c. distance in the local chart X = {(x, y) : 0 ≤ x, y < 1}

dL(p1, p2) :=

{
|x1 − x2 + i| y1 − y2 = α(x1 − x2) + iα+ n

+∞ otherwise

for i, n ∈ Z. The sets DL are given by

DL(p1) =
{
(x, y) : y = y1 + α(x− x1 + i) mod 1, i ∈ N

}
,

so that it is easy to see that the partition {DL(p)}p∈X does not yield a strongly consistent disintegration.
Since t 7→ (t mod 1, αt mod 1) is a continuous not locally compact geodesic, Condition (5) is not verified
in this system.

Consider the measures µ = L2xT and the map T : (x, y) 7→ (x, y + α mod 1): being µ invariant w.r.t.
translations, one has T]µ = µ, and moreover∫

dL(x, T (x))µ(dx) = 1.

If we consider points (pi, (xi, yi +α mod 1)), i = 1, . . . , I, then the only case for which dL(pi+1, pi) <
+∞ is when pi+1 = (xi + t mod 1, yi + αt mod 1) for some t ∈ R, i.e. they belong to the geodesic

R 3 t 7→ (xi + t mod 1, yi + αt mod 1) ∈ X.

Hence, to prove dL-cyclical monotonicity, it is sufficient to consider path which belongs to a single
geodesic, where dL reduces to the the one dimensional length:

dL
(
(x, y), (x+ t mod 1, y + αt mod 1)

)
= |t|.

Since translations in R are cyclically monotone w.r.t. the absolute value, we conclude that T is dL-
cyclically monotone.

The fact that the optimal rays coincide with the sets DL yields that the disintegration is not strongly
consistent, in particular there is not a Borel section up to a saturated negligible set. Note that every
transference plan which leaves the common mass in the same place has cost 0, so that this example shows
the necessity of Condition (5) for Proposition 4.7.
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Figure 5. The metric space of Example 1

Example 2 (Non optimality of transport map). Consider the space R2 with the distance

M(x, y) :=

[
m(y) 0
0 1

]
.

The basic assumption is that

(1) m is a symmetric bell shaped function such that ym′(y) < 0 for all y 6= 0,
(2) m(0) = 1, m(y) = (1 + y2)−1 for |y| ≤ 1
(3) m ≥ (1 + y2)−1 and

lim
|y|→+∞

m(y) =
1

4
.

The only non zero Christoffel symbols of the Levi-Civita connection are

Γ1
12 = Γ1

21 =
m′

2m
, Γ2

11 = −m
′

2
,

and the equation for geodesics can be computed explicitly to be

ẍ+
m′(y)

m(y)
ẋẏ = 0, ÿ − m′(y)

2
(ẋ)2 = 0.

The first can be integrated into

ẋm(y) = C,

and substituting into the second we obtain

ÿ − C2m′(y)

2m2(y)
= 0, ẏ2 +

C2

m(y)
= D.

In the case m(y) = (1 + y2)−1 we have the explicit solution

ÿ + C2y = 0, y = a sin(Ct) + b sin(Ct).

x = x0 + C

(
1 +

a2 + b2

2

)
t+

a2 − b2

4
sin(2Ct)− ab

2
cos(2Ct).
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In particular, if the initial point is (0, 0) an ẋ0 = 1, ẏ0 = p

(10.1) x =

(
1 +

p2

2

)
t− p2

4
sin t, y = p sin t.

Note that this curve hits the line y = 0 in the point x = π(1 + p2/2).
We can compute the lenght of a geodesic by

L(γ) :=

∫ t

0

√
m(ẋ)2 + ẏ2dτ =

∫ t

0

∫ √
C2

m
+D − C2

m
dτ

= t
√
D = t

√
m(y0)(ẋ0)2 + (ẏ0)2.

We are thus ready to prove the first property of our space.

Lemma 10.1. The minimal geodesics are not horizontal.

Proof. From

ẏ2 +
C2

m(y)
= D

it follows that if ẏ = 0 then m(y) = C2/D. Computing in those points

d2y

dx2
=

ÿ

(ẋ)2
− ẏẍ

(ẋ)3
=
m′

2
+
m′

m

(ẏ)2

(ẋ)2
=
m′

2
6= 0, y 6= 0.

In the other case y = 0, and thus the curve is x = t, y = 0. Computing the lenght of this curve starting
from x0 = 0 we obtain L = x, while if |x| > π we can arrive from one of the curves (10.1) obtaining

L(γ) = π
√
1 + p2 < π

(
1 +

p2

2

)
= |x|.

Hence also {y = 0} is a geodesic only for a lenght 2π. �

We can characterize more precisely the distance

d̃
(
(x, y), (x′, y′)

)
:= inf

{
L(γ), γ(0) = (x, y), γ(1) = (x′, y′)

}
on the line {y = 0} as follows.

Lemma 10.2. The distance function d̃ restricted on y = 0 is a concave function with the following
properties:

(1) it is translation invariant,

(2) d̃(0, x) ≥ |x|/4,
(3) d̃(0, x) = |x| for |x| ≤ π,

(4) d̃(0, x) =
√
2πx− π2 for |x| ∈ (π, 3π/2).

Proof. The first two points are trivial since M ≥ I/4. For the second, observe that we can lower the
distance by taking m = (1 + y2)−1, for which we can explicitly compute the distance as

d̃(x, 0) =

{
|x| |x| ≤ π,√
2πx− π2 |x| > π.

Since for p < 1 the solutions remains in the strip {|y| ≤ 1}, which corresponds to the solution (10.1) with
p = 1, also the third point follows. �

We now restrict the analysis to y = 0, consider the function φa, a < 1, defined up to a constant by

φ′(x) =

{
1 x ∈ [z.z + a],

−1 x ∈ (z + a, z + 1).

Lemma 10.3. For a < 5/9 the function φ is a potential, i.e.∣∣φ(x′)− φ(x)
∣∣ ≤ d̃

(
(x, 0), (x′, 0)

)
.
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Figure 6. The metric space of Example 2.

Proof. By translation and symmetry, the only case to study is x = 0, x′ > 0. For a < 5/9 we have that
at the maximum points

φ(n+ a)− φ(0) = n(2a− 1) + a =
n

9
+

5

9
,

and thus

φ(n+ a)− φ(0) ≤

{
n+ a n ≤ 2,

(n+ a)/4 n ≥ 3.

This concludes the proof by Points (2), (3) of Lemma 10.2. �

The key point of the above lemma is that in the geodesic space (R2, d̃) if µ, ν are two probability
measures such that

µ
(
[n, n+ 5/18]

)
= ν

(
[n+ 5/18, n+ 5/18]

)
,

then the usual monotone transport is d̃-monotone.
The space (X, d, dL). Consider the space

(X, d) :=
(
T2 × R, | · |

)
, w = (x, y, z),

and for α ∈ [0, 1] \Q define

dL(w,w
′) :=

{
d̃
(
(0, z), (t, z′)

)
x′ − x = t mod 1, z′ − z = αt mod 1,

+∞ otherwise.

Clearly the set {w′ : dL(w,w
′) < +∞} is the image of (R2, d̃) by the map

R2 3 (t1, t2) 7→

 x′

y′

z′

 =

 x+ t1 mod 1
y + αt1 mod 1

z + t2

 .

Since no geodesics are horizontal by Lemma 10.1, it follows that the local compactness condition is
satisfied.

Consider now the (not renormalized) measures

µ = H2x[0,1/18]×[0,1]×{0}, µ = H2x[1/2,5/9]×[0,1]×{0},
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and the transport maps

T1(x, y, z) :=

(
x+

1

2
, y +

α

2
, z

)
, (x, y, z) ∈ [0, 1/18]× [0, 1]× {0},

T2 :=

{(
x+ 17

36 , y +
17α
36 , z

)
(x, y, z) ∈ [1/36, 1/18]× [0, 1]× {0},(

x− 17
36 mod 1, y − 17α

36 mod 1, z
)

(x, y, z) ∈ [0, 1/36)× [0, 1]× {0}.
Clearly the conditions on the absolute continuity of the disintegration is satisfied, and the transport costs
can be computed to be ∫

dL(x, T1(x))µ(dx) =
1

2
,

∫
dL(x, T2(x))µ(dx) =

17

36
.

Nevertheless T1 is dL monotone, because of Lemma 10.3, and the disintegration along the transport set
is clearly a.c. w.r.t. H1.

Appendix A. Notation

Pi1...iI projection of x ∈ Πk=1,...,KXk into its (i1, . . . , iI) coordinates, keeping order
P(X) or P(X,Ω) probability measures on a measurable space (X,Ω)
M(X) or M(X,Ω) signed measures on a measurable space (X,Ω)
fxA the restriction of the function f to A
µxA the restriction of the measure µ to the σ-algebra A ∩ Σ
Ld Lebesgue measure on Rd
Hk k-dimensional Hausdorff measure
Π(µ1, . . . , µI) π ∈ P(ΠIi=1Xi,⊗Ii=1Σi) with marginals (Pi)]π = µi ∈ P(Xi)
I(π) cost functional (2.7)
c cost function : X × Y 7→ [0,+∞]
I transportation cost (2.7)
φc c-transform of a function φ (2.8)
∂cϕ d-subdifferential of ϕ (2.9)
Φc subset of L1(µ)× L1(ν) defined in (2.10)
J(φ, ψ) functional defined in (2.11)
Cb or Cb(X,R) continuous bounded functions on a topological space X
(X, d) Polish space
(X, dL) non-branching geodesic separable metric space
DL(x) the set {y : dL(x, y) < +∞}
L(γ) length of the Lipschitz curve γ, Definition 2.8
γ[x,y](t) geodesics γ : [0, 1] → X such that γ(0) = x, γ(1) = y
γ(x,y), γ[x,y] open, closed geodesics (2.6)
Br(x) open ball of center x and radius r in (X, d)
Br,L(x) open ball of center x and radius r in (X, dL)
K(X) space of compact subsets of X
dH(A,B) Hausdorff distance of A, B w.r.t. the distance d
Ax, A

y x, y section of A ⊂ X × Y (2.3)
B, B(X) Borel σ-algebra of X Polish
Σ1

1, Σ
1
1(X) the pointclass of analytic subsets of Polish space X, i.e. projection of Borel sets

Π1
1 the pointclass of coanalytic sets, i.e. complementary of Σ1

1

Σ1
n, Π

1
n the pointclass of projections of Π1

n−1-sets, its complementary
∆1
n the ambiguous class Σ1

n ∩Π1
n

A σ-algebra generated by Σ1
1

A-function f : X → R such that f−1((t,+∞]) belongs to A
h]µ push forward of the measure µ through h, h]µ(A) = µ(h−1(A))
graph(F ) graph of a multifunction F (2.1)
F−1 inverse image of multifunction F (2.2)
Fx, F

y sections of the multifunction F (2.3)
Lip1(X) Lipschitz functions with Lipschitz constant 1
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Γ′ transport set (3.2)
G, G−1 outgoing, incoming transport ray, Definition 3.2
R set of transport rays (3.4)
T , Te transport sets (3.5)
a, b : Te → Te endpoint maps (3.8)
Zm,e, Zm partition of the transport set Γ (4.1), (4.2)
S cross-section of RxT ×T
g = g+ ∪ g− ray map, Definition 4.5
At evolution of A ⊂ Zk,i,j along geodesics (5.1)
ġ current on (X, d) corresponding to the flow along geodesics, Definition 7.1
∂ġ boundary of the current γ̇ (7.1)
H be the set of all geodesics as a subset of Lip1([0, 1], X)
et(γ) evaluation map (9.1)
Ξ dynamical transference plan
sK the map defined in (9.2)

As,H̃ the evolution of the set A along the geodesics H̃ ⊂ H (9.6)
H(G) the set of geodesics used by G (9.7)
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