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1 Introduction

These notes have developed from the text of a talk1 where Duistermaat’s global theory

of action-angle variables [6] was expounded. An obvious motivation for this theory is to

understand the global structure of integrable systems, but one should also mention a recent

renewal of interest due to the relevance of this theory to the approaches to string-theoretic

mirror symmetry for Calabi-Yau varieties à la Strominger-Yau-Zaslow [12], especially in

connection with the attempt to construct a mathematical theory of mirror symmetry [9,

10, 1, 4]. In turn, the possibility of associating a torus-fibred mirror complex manifolds to a

Lagrangian torus fibration prospects intriguing scenarios for possible dualities of integrable

systems.

We shall assume a basic knowledge of the local integrability result usually referred to as

the Liouville-Arnold theorem [2, 5]. The main mathematical tools we shall need are fibre

bundle theory and sheaf cohomology (at a very basic level). Useful references on these

topics are [11, 7, 8, 3].

Let us summarize the main idea of Duistermaat’s construction. Assume one is given

a symplectic manifold M which is fibred on a base manifold B in such a way that the

fibres are compact Lagrangian submanifolds. These data define intrinsically a “relative

lattice” on B — more precisely, a covering Λ → B which is contained in the cotangent

bundle T ∗B as a Lagrangian submanifold and intersects every cotangent space in a lattice.

Then one compares the fibration M → B with the torus bundle T ∗B/Λ, which carries a

natural symplectic structure such that the toric fibres and the zero section are Lagrangian.

Whether the two fibrations are isomorphic just as smooth fibrations, or as symplectic

manifolds fibred in Lagrangian submanifolds, or are topologically trivial, depends on the

value and properties of an invariant of the fibration M → B (its Chern class) and on

1Department of Mathematics, University of Genoa, 10 November 2000.



the monodromy of the fibration. One is also able to spell out the conditions for the

existence of global action-angle variables (topological triviality of the fibration π : M → B

and exactness of the symplectic form of M). One should notice that in general these

action-angle variables are not global coordinates.

Additional topics we consider are the construction of the complex manifold “mirror

dual” to the Lagrangian torus fibration and the Gauss-Manin connection in its various

personifications.

Acknowledgements. I am grateful to Marco Pedroni for pointing out some inaccuracies

and to Fabio Pioli for discussions on these topics.

2 The basic constructions

Let (M,ω) be a connected symplectic manifold of dimension 2n which supports a fibration

π : M → B such that for every b ∈ B the fibre Fb = π−1(b) is a compact connected

Lagrangian submanifold of M . We may assume that π is surjective.

Proposition 2.1. Let B0 ⊂ B be an open subset supporting a map χ : B0 → Rn which is

a coordinate system. Then the functions fi = χi ◦ π are in involution.

Proof. The 1-forms dfi are normal to the tangent spaces TxFb for all x ∈ π−1(B0). The

associated Hamiltonian vector fields Xdfi
lie in the symplectic orthogonal spaces, which,

since the fibres are Lagrangian, coincide with the tangent spaces. Therefore,

{fi, fj} = LXdfi
dfj = Xdfi

(fj) = 0.

Lemma 2.2. The map π is submersive.

Proof. Since the duals of the vector fields Xdfi
generate the cotangent spaces to the fibres,

for every p ∈M one has

T ∗
pM ' T ∗

pFb ⊕ T ∗
b B

with b = π(p), and the map π∗ is the inclusion of the second summand, so that it is

injective.

By the local Liouville-Arnold theorem, the fibres Fb are tori. The flows of the vector

fields Xdfi
define an action of Rn on every fibre Fb. This action depends of the choice

of the map χ, but the (finite-dimensional) vector space Cb formed by the vertical vector
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fields invariant under this action does not depend on the choice of χ. This defines a vector

bundle C on B. For every b, let Γb be the space of vector fields in Cb which are periodic

with period 1; Γb is a lattice. By considering the sections of C which restricted to every

fibre satisfy this condition, we obtain a sheaf Γ, called the period lattice of the fibration

π : M → B. For every λ ∈ Γb let γ(λ) be the integral curve of λ which is periodic of period

1. Then by taking the homology class of γ(λ) we obtain a homomorphism

Γb → H1(Fb,Z)

λ 7→ [γ(λ)].

This is easily shown to be an isomorphism.2

We have isomorphisms

Γ⊗Z C∞B ' C, π∗C ' vert(TM). (1)

Let us fix a basis {ej} of sections of Γ over B0 (possibly after shrinking B0); so for

every b ∈ B0, {ej(b)} is a basis of H1(Fb,Z). Every ej may be regarded as a vertical vector

field Xj on π−1(B0). Moreover, choose in every fibre Fb angle coordinates φj, smoothly

depending on b, such that
1

2π

∫
Xj

dφk = δj
k.

The following is then a restatement of a classical result (cf. [2]).

Proposition 2.3. 1. The vector fields Xj are Hamiltonian, and their Hamiltonian func-

tions are constant along the fibres Fb, so that they can be written as Ij ◦ π, where the

functions Ij are coordinates in B0;

2. the collection {I1, . . . , In, φ1, . . . , φn} is a system of local Darboux coordinates, i.e.

ω =
∑

j

dIj ∧ dφj

on suitable open subsets of M .

These are of course the action-angle coordinates. A further restatement of this is that

the 1-forms ξ̃j = ω(Xj) are horizontal (indeed ξ̃j(Xdfi
) = dfi(Xj) = 0 since the dfi are

horizontal and the Xj vertical), and are constant along the fibres, so that

ξ̃j = π∗ξj

2Globally this means that the sheaf Γ∗ = HomZ(Γ, Z) is isomorphic to R1π∗Z.
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for some well-defined 1-forms ξj on B. Locally one has

ξj = dIj.

At every b ∈ B the 1-forms ξj(b) are a basis of T ∗
b B (over R), and generate over Z a

lattice Λb ⊂ T ∗
b B.

Remark 2.4. A consequence of this fact is that if I ′j is another set of local action coordinates,
the transition function has the form

I ′j =
n∑

k=1

ajk Ik + bj ,

where the bj are real numbers, while the matrix a is in Gl(n, Z) (the (group of integer-valued
matrices with determinant ±1). As a consequence, the base manifold B is affine (it may be given
an atlas whose transition functions are affine transformations).

Moreover, identifying the Xj with the forms ξj we obtain an isomorfism C|B0 ' T ∗B0,

but since this is independent of the choices made, one actually has an isomorphism of

vector bundles C ' T ∗B.3 The image of Γ under this isomorphism is a submanifold Λ of

T ∗B which covers B, and is such that Λ ∩ T ∗
b B = Λb. Let p : T ∗B → B be the bundle

projection. The sheaf of sections of the restriction p|Λ : Λ → B, that we shall again denote

by Λ, is a sheaf of abelian groups on B, and it has an action on T ∗B (which is simply the

addition of differential forms). As a sheaf, Λ is a subsheaf of the sheaf L̃ of Lagrangian

sections of T ∗B. The quotient T ∗B/Λ is a torus bundle on B.

Lemma 2.5. The Lagrangian sections of T ∗B are the closed 1-forms on B.

In other terms, L̃ is the sheaf of closed 1-forms on B.

Proof. Let us denote by τ the canonical symplectic form of T ∗B. If (x1, . . . , xn, y1, . . . , yn)

are fibred coordinates on T ∗B, we have τ = dyj ∧ dxj. A section of T ∗B is a 1-form

η = ηi(x) dx
i, i.e., in local coordinates, yi = ηi(x). The Lagrangian condition is

0 = τ|η =
∂ηi

∂xj
dxj ∧ dxi = dη.

Proposition 2.6. 1. Λ is a Lagrangian submanifold of T ∗B.

2. The vertical transformation induced in the fibres of T ∗B by a section are symplectic

if and only if the section is Lagrangian.

3Together with the isomorphisms (1) and Γ ⊗Z C∞B ' C, we also obtain an isomorphisms TB '
R1π∗R⊗R C∞B .
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Proof. 1. Λ is formed by the sections of T ∗B corresponding to the closed 1-forms ξi, so

that it is Lagrangian.

2. Given a section of T ∗B, i.e. a 1-form η = ηi(x) dx
i, this induces the transformation

yi 7→ yi + ηi(x). The symplectic form of T ∗B is preserved exactly when η is closed.

As a consequence of 2, the canonical symplectic structure of T ∗B is invariant under the

action of the lattice Λ, and therefore induces a symplectic structure on T ∗B/Λ.

We have a canonical section on T ∗B/Λ, image of the zero section of T ∗B, and this

is Lagrangian. This induces a structure of Abelian group on the space of Lagrangian

sections of T ∗B/Λ → B, and allows us to introduce the sheaf L of Lagrangian sections of

T ∗B/Λ → B, which is a sheaf of Abelian groups.

Lemma 2.7. The sections of L act fibrewise on M . If U is small enough, given two

Lagrangian sections σ, σ′ : U → M , there is a unique Lagrangian section µ ∈ L(U) such

that σ′(b) = µ(b)(σ(b)).

3 The Chern class of the fibration π : M → B

We may cover the base manifold B with open sets {Bα} which support some fixed coordi-

nate systems. Once these data are fixed, specifying angle coordinates (coordinates on the

fibres Fb) is equivalent to specifying Lagrangian sections σα : Bα → π−1(Bα) ⊂M , and on

the overlaps by Lemma 2.7 one has

σα(b) = µαβ(b)(σβ(p)) (2)

where the Lagrangian sections µαβ ∈ L(Bα ∩Bβ) define a 1-cocycle of the sheaf L.

We shall not enter into details about this issue, but one can easily check that the class

of the cocycle µ determines the structure of the bundle M → B as a symplectic manifold

with Lagrangian fibres; locally, M → B is just isomomorphic to the bundle T ∗B/Λ, but

its “local pieces” are glued in a different way, as prescribed by µ.

Let again L̃ denote the sheaf of Lagrangian sections of T ∗B. One has the commutative

diagram of exact sequences

0 // Λ //

��

L̃ //

��

L //

��

0

0 // Λ // T ∗B // T ∗B/Λ // 0

;
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here T ∗B, T ∗B/Λ denote the sheaves of smooth (not necessarily Lagrangian) sections of

the corresponding bundles. By going to the associated long exact cohomology sequences4

we obtain a commutative diagram5

H1(B, L̃) //

��

H1(B,L)
δ //

��

H2(B,Λ)

��
0 = H1(B, T ∗B) // H1(B, T ∗B/Λ)

δ′ // H2(B,Λ) // 0

where δ : H1(B,L) → H2(B,Λ) and δ′ are the so-called connecting morphisms. The

rightmost vertical arrow in the last diagram is an isomorphism, and δ′ is an isomorphism

as well. This means that as a smooth bundle (forgetting the symplectic structure), M is

just classified by the class ν. In particular we have:

Lemma 3.1. ν = 0 if and only if M ' T ∗B/Λ as fibre bundles (regardless of the symplectic

structures).

The image

ν = δ([µ]) ∈ H2(B,Λ)

is called the Chern class of the fibration π : M → B.

Remark 3.2. In view of Lemma 2.5 there is an isomorphism

Hk(B, L̃) ' Hk+1(B,R), k ≥ 1

(cf. e.g. [8]).

Theorem 3.3. The following statements are equivalent.

1. M ' T ∗B/Λ as fibre bundles.

2. The bundle π : M → B admits a global section s : B →M .

3. The Chern class ν = δ([µ]) vanishes.

Proof. (1⇔2) If M → B has a section, by identifying this with the zero section of T ∗B/Λ

and using the torus actions on the two sides, we get an isomorphism M ' T ∗B/Λ. The

converse is obvious.

(2⇔3) This is Lemma 3.1.

4The cohomology groups we are introducing are Čech cohomology groups, cf. e.g. [8, 7].
5In the bottom line we have H1(B, T ∗B) = H2(B, T ∗B) = 0 because, due to the existence of partitions

of unity, the sheaf T ∗B is acyclic, i.e., it has nonvanishing cohomology only in degree zero.
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Theorem 3.4. The following statements are equivalent.

1. M ' T ∗B/Λ as symplectic manifolds fibred over B in Lagrangian submanifolds.

2. The bundle π : M → B admits a global Lagrangian section σ : B →M .

3. The Chern class ν = δ([µ]) vanishes, and for any section s : B →M , the 2-form s∗ω

on B is exact.

Proof. (1⇔2) As in the previous theorem, but noting that since the section is Lagrangian,

the identification is by symplectomorphisms.

(2⇒3) The existence of the Lagrangian section σ implies [µ] = 0, hence ν = 0. As for

the exactness of s∗ω, we may identify M with T ∗B/Λ, so that the section s is represented

by a 1-form on B, s̃ =
∑

j sj dI
j. Then

s∗ω = s∗

(∑
j

dIj ∧ dφj

)
=
∑

j

dIj ∧ dsj = −d(
∑

j

sj dIj).

(3⇒2) The vanishing of ν implies that we may identify M with T ∗B/Λ as fibre bundles.

Moreover, [µ] lies in the image of the map H1(B, L̃) → H1(B,L), i.e., [µ] = [Ω] mod Λ

where the cocycle Ω = {Ωαβ} is a collection of closed 1-forms on the intersections Bα∩Bβ.

In action-angle coordinates the section s provides maps sα : Bα → (R/Z)n such that Ωαβ =

sα − sβ mod Zn (cf. equation (2). The differentials dsα piece together to a closed 2-form

ρ on B which represents [Ω] under the isomorphism H1(B, L̃) ' H2(B,R). But we also

have dsα = s∗αω, so that

ρ = s∗ω. (3)

So, [µ] is the image in H1(B,L) of the class in H1(B, L̃), which, under the isomorphism

H1(B, L̃) ' H2(B,R), corresponds to the de Rham class [s∗ω]. Since by hypothesis the

latter vanishes, we have [µ] = 0, i.e., π : M → B admits a global Lagrangian section.

4 Monodromy

Whether the fibration M → B is topologically trivial, and global action-angle variables

exist, depend on the monodromy of the covering Λ → B. For every b ∈ B one has a

representation, called the monodromy of the covering,

Mb : π1(B, b) → Aut(Λb) ' Aut(H1(Fb,Z)). (4)
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This is defined as follows. Given Z ∈ π1(B, b), represent Z by a loop γ in B based at

b, and lift it to a continuous path γ̃ in M starting at a point p ∈ Λp. Assume that γ is

parametrized so that γ(0) = γ(1) = b. We have a map

M̃b : π1(B, b)×H1(Fb,Z) → H1(Fb,Z)

(Z, p) 7→ γ̃(1).

This also defines a map as in (4). If we choose a basis in Λp, the representation Mb maps

π1(B, b) to the group Gl(n,Z).

We say that the monodromy is trivial if Mb(π1(B, b)) = 1 for all b ∈ B. If the covering

Λ → B is trivial, then its monodromy is trivial as well; indeed, since the fibres of the

covering are discrete, the curve γ̃ cannot but go back and terminate at its starting point.

The covering Λ is indeed trivial if and only if so is its monodromy.

Theorem 4.1. The fibration M → B is topologically trivial if and only if its Chern class

and its monodromy are trivial.

Proof. If the fibration M → B is topologically trivial, the claim is obvious. Conversely, if

the Chern class is zero, we may identify M with T ∗B/Λ. The triviality of the monodromy

implies the triviality of Λ as a bundle over B, and since T ∗B ' Λ⊗ZC
∞
B , also the cotangent

bundle to B is trivial.

One should notice that T ∗B may be trivial, and Λ not be so: the phase space of the

spherical pendulum [6] provides an example of such a situation.

Let us assume the triviality of the monodromy and of the Chern class. A chosen basis

in a fibre Λb0 extends globally, therefore (in conformity with Theorem 4.1) one gets a

trivialization of T ∗B by n closed 1-forms ξi. We wish to show that if the symplectic form

ω of M is exact then the forms ξi are exact as well. Under these conditions, the fibrations

M → B and T ∗B/Λ are symplectic isomorphic. Let γ be a loop in B based at b, and let

ε a lift to M . This can be completed to a closed curve ε0 by joining a curve completely

contained in Fb. Let Ψi
s be the flow of the locally Hamiltonian vector field ω−1(π−1(ξi)),

which leaves the fibre Fb invariant and is periodic. One can define a 2-cycle βi on Fb by

letting

β : (R/Z)2 → M

βi(t, s) = Ψi
s(ε0(t)).

Then,

〈[ξi], [γ]〉 = 〈[ω], [βi]〉
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so that, if ω is exact, we have [ξi] = 0.

So, if ω is exact, there exist globally defined functions Ij on B such that ξj = dIj (global

action coordinates). These define a map B → Rn which is a “local diffeomorphism” (i.e.,

its tangent map is bijective at every point). Moreover, there exists functions φj on the

fibres, having values in (R/Z)n, such that

Xπ∗ξj
=

∂

∂φj
.

All this can be summarized as follows.

Theorem 4.2. The following two conditions are equivalent.

1. The fibration M → B is topologically trivial and the symplectic form ω is exact.

2. There exist a smooth map (I, φ) : M → Rn × (R/Z)n such that

• ω = dIj ∧ dφj;

• the functions Ij are constant on the fibres of π : M → B;

• the functions φj are injective on the fibres of π : M → B.

5 The Gauss-Manin connection

We consider the fibration M → B in the general case where it has no sections. We

may show that the manifolds B and M are naturally endowed with a flat, torsion-free

linear connection, called the Gauss-Manin connection. One possible way for defining this

connection is to use the isomorphism

TB ' R1π∗R⊗ C∞B . (5)

The connection

∇GM : TB → TB ⊗ T ∗B

is defined by letting ∇GM = 1⊗d under the isomorphism (5). This connection is obviously

flat. Let us compute its coefficients in action coordinates. The vector fields ∂
∂Ij

provide a

Z-basis of Γ∗ ' R1π∗Z and hence an R-basis {ej} of R1f∗R; in this basis, the isomorphism

(5) is
∂

∂Ij
7→ ej ⊗ 1.
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Therefore we have

∇GM ∂

∂Ij
= 0

and the connection coefficients in the action coordinates vanish. As a consequence, ∇GM

is torsion-free.

We may look at this connection in a different way. A local section of the lattice Λ

over an open set U ⊂ B provides an identification of the cotangent spaces to B at all

b ∈ U . This identification does not depend on the chosen section, and therefore defines

a connection on T ∗B. In action coordinates the geodesics of this connection are straight

lines, and therefore this connection is the Gauss-Manin connection.

Proposition 5.1. The holonomy of the connection ∇GM coincides with the monodromy of

the covering Λ.

Proof. The monodromy representation of the fundamental group of B defines a bundle with

a flat connection. The holonomy of this connection is the monodromy of Λ by construction.

On the other hand, the bundle we have obtained in this way is isomorphic to the cotangent

bundle T ∗B, and the connection coincides with the Gauss-Manin connection, in view of

the new description we have given of the latter.

If π : M → B has a section (not necessarily Lagrangian), the Gauss-Manin connection

can be lifted to a connection on M . The Gauss-Manin connection provides a splitting of

the Atiyah sequence of the bunle T ∗B

0 → vert(TT ∗B) → TT ∗B → p∗TB → 0

where p : T ∗B → B is the bundle projection. We have therefore an isomorphism

TT ∗B ' vert(TT ∗B)⊕ p∗TB .

If π : M → B has a section, we have an isomorphismM ' T ∗B/Λ. Let ρ : T ∗B →M be the

induced projection. One has a canonical isomorphism ρ∗TM ' TT ∗B, so that the previous

splitting, together with the equality p∗ = ρ∗ ◦π∗ and the isomorphism vert(TM) ' π∗T ∗B,

yields

ρ∗TM ' ρ∗vert(TM)⊕ (ρ∗ ◦ π∗)TB ' (ρ∗ ◦ π∗)T ∗B ⊕ (ρ∗ ◦ π∗)TB.

This implies a splitting

TM ' π∗T ∗B ⊕ π∗TB, (6)

so that the Gauss-Manin connection induces a connection on TM .
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6 The mirror manifold

The relative Jacobian of M — i.e., the manifold obtained by taking the fibrewise dual of

M — may be endowed with a complex structure. Given a real torus T , the dual torus may

be defined as H1(T,R)/H1(T,Z). The relative analogue of this is the fact that the sheaf

of sections of the relative Jacobian of f : M → B is the sheaf R1π∗R/R1π∗Z. We therefore

define the relative Jacobian, or dual fibration, as

M̂ = TB/Λ∗

(whose sheaf of sections is exactly R1π∗R/R1π∗Z due to the isomorphisms discussed in

section 2). Irrespective of the fact that π : M → B may have a section or not, the relative

Jacobian always has a section. We denote π̂ : M̂ → B the projection. From (6) we have

TM̂ ' π̂∗TB ⊕ π̂∗TB. (7)

The map TM̂ → TM̂ given by (α, β) 7→ (−β, α) (with reference to the splitting (7)) is a

complex structure on M̂ . We call M̂ with this complex structure the mirror manifold to

M . If {ψj} are angle coordinates on M̂ , fibrewise dual to the angle coordinates {φj} of

M , the functions

zj = Ij + i ψj

are local holomorphic coordinates on M̂ .

The splitting (7) also tells us that the Gauss-Manin connection induces a connection

on M̂ (regardless of the existence of a section of f : M → B). This is compatible with the

complex structure.
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