Refined curve counting; Hilbert schemes, tropical Geometry and Fock space

Lothar Göttsche, joint works with Vivek Shende, Florian Block (in order of appearance) S proj. surface over \mathbb{C} ; L very ample line bundle on S |L| complete linear system L suff. ample $\Longrightarrow \delta$ -nodal curves occur in codimension δ in |L| Let $\mathbb{P}^{\delta} \subset |L|$ general δ -dimensional linear subspace

Severi degree:

$$n_{(\mathcal{S}, L), \delta} := \# ig\{ \delta ext{-nodal curves in } \mathbb{P}^\delta ig\}$$

Conjecture

There exists a universal polyn. $n_{\delta}^{(S,L)}$ in L^2 , LK_S , K_S^2 , $c_2(S)$ computing $n_{(S,L),\delta}$ for L-sufficiently ample (δ -very ample).

Proven by Tzeng, Kool-Shende-Thomas Kool-Shende-Thomas use Euler numbers of relative Hilbert schemes of points to define the polynomials $n_{\delta}^{(S,L)}$ Give refinement motivated by the K-S-T proof replacing Euler number by $\chi_{-\nu}$ -genus

 $S^{[n]}$ =Hilbert scheme of points on S

$$\mathcal{C} = \{(p,[C])|p \in C\} \subset \dot{S} \times \mathbb{P}^{\delta} \text{ universal curve } \mathcal{C}^{[n]} = \{([Z],[C])|Z \subset C\} \subset S^{[n]} \times \mathbb{P}^{\delta} \text{ relative Hilbert scheme } \mathcal{C}^{[n]} = \{([Z],[C])|Z \subset C\} \subset S^{[n]} \times \mathbb{P}^{\delta} \text{ relative Hilbert scheme } \mathcal{C}^{[n]} = \mathcal{C}^{[n]} = \mathcal{C}^{[n]} \times \mathbb{P}^{\delta} \text{ relative Hilbert scheme } \mathcal{C}^{[n]} = \mathcal{C}^{[n]} = \mathcal{C}^{[n]} \times \mathbb{P}^{\delta} \text{ relative Hilbert scheme } \mathcal{C}^{[n]} = \mathcal{C}^{[n]} = \mathcal{C}^{[n]} = \mathcal{C}^{[n]} \times \mathbb{P}^{\delta} \text{ relative Hilbert scheme } \mathcal{C}^{[n]} = \mathcal{C}^{[n]} = \mathcal{C}^{[n]} = \mathcal{C}^{[n]} \times \mathbb{P}^{\delta} \text{ relative Hilbert scheme } \mathcal{C}^{[n]} = \mathcal{C}$$

$$\mathcal{C}^{[n]} = \{([Z], [C]) | Z \subset C\} \subset S^{[n]} \times \mathbb{P}^{\delta} \text{ relative Hilbert scheme}$$

$$\chi_{-y}$$
-genus $\chi_{-y}(X) = \sum_{p,q} (-1)^{p+q} h^{p,q}(X) y^q$

Conjecture

There exist $N_0^{\mathcal{C}}(y), \ldots, N_{\delta}^{\mathcal{C}}(y) \in \mathbb{Z}[y]$ s.th.

$$\sum_{n \ge 0} \chi_{-y}(\mathcal{C}^{[n]}) t^n = \sum_{l=0}^{\delta} N_l^{\mathcal{C}}(y) t^l ((1-t)(1-yt))^{g(L)-l-1}$$

g(L) =genus of smooth curve in |L|

Refined curve counting

Conjecture

There exist $N_0^{\mathcal{C}}(y), \ldots, N_{\delta}^{\mathcal{C}}(y) \in \mathbb{Z}[y]$ s.th.

$$\sum_{n\geq 0} \chi_{-y}(\mathcal{C}^{[n]}) t^n = \sum_{l=0}^{\delta} N_l^{\mathcal{C}}(y) t^l ((1-t)(1-yt))^{g(L)-l-1}$$

Theorem

The conjecture is true

- If δ is replaced by g(L)
- $\circled{1}$ if K_S is numerically trivial
- modulo t¹¹ for all surfaces

Refined curve counting

Conjecture

$$\sum_{n\geq 0} \chi_{-y}(\mathcal{C}^{[n]}) t^n = \sum_{l=0}^{\delta} N_l^{\mathcal{C}}(y) t^l ((1-t)(1-yt))^{g(L)-l-1}$$

Definition

The refined invariant is $N_{\delta}^{(S,L)}(y) := N_{\delta}^{\mathcal{C}}(y)/y^{\delta}$ (symmetric Laurent polynomial)

If L suff. ample $N_{\delta}^{(S,L)}(1) = n_{(S,L),\delta}$ Severi degree What is counted at other values of y What is the meaning of the polynomial $N_{\delta}^{(S,L)}(y)$?

Conjectural generating function for refined invariants $N_{\delta}^{(S,L)}(y)$ Proven for K3- and Abelian surfaces

$$\Delta(y,q) := q \prod_{n \ge 1} (1 - q^n)^{20} (1 - q^n y)^2 (1 - q^n / y)^2$$

$$\widetilde{DG}_2(y,q) = \sum_{n \ge 1} q^n \sum_{d \mid n} \frac{(y^{d/2} - y^{-d/2})^2}{(y^{1/2} - y^{-1/2})^2}$$

Theorem

 $oldsymbol{0}$ (S_g, L_g) K3 surface with ample irred. I.b. of genus g

$$\sum_{g\geq k} N_{g-k}^{(\mathcal{S}_g,L_g)}(y)q^{g-1} = \frac{\widetilde{DG}_2(y,q)^k}{\Delta(y,q)}$$

 (A_g, L_g) Abelian surface with ample irred. I.b. of genus g

$$\sum_{q>k+2} N_{g-k-2}^{(A_g,L_g)}(y) q^{g-1} = \widetilde{DG}_2(y,q)^k q \frac{\partial}{\partial q} \widetilde{DG}_2(y,q)$$

Show: $N_{\delta}^{(S,L)}(y)$ related to real algebraic and tropical geometry

Let S real algebraic surface; complex conj. τ maps S to S real algebraic curve = curve C such that $\tau(C) = C$

Real locus of C: $C^{\mathbb{R}} = C^{\tau}$

P configuration of dim $|L| - \delta$ real points of *S*

Welschinger invariants: $W_{(S,L),\delta}(P) = \sum_{C} (-1)^{s(C)}$

sum is over all real δ -nodal curves C in |L| though P $s(C) = \#\{\text{isolated nodes of } C\}$

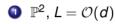
From now on S toric surface:

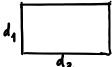
 $\mathbb{C}^* \times C^* \subset S$ open dense, action extends to S

Automatically real surface

Correspondence:

{Convex lattice polygons $\Delta \subset \mathbb{R}^2$ } \longleftrightarrow {pairs $(S(\Delta), L(\Delta))$ toric surface, ample toric line bundle} $S(\Delta)$ toric surface defined by the normal fan to Δ





$$\#(\Delta \cap \mathbb{Z}^2) = h^0(S(\Delta), L(\Delta)),$$

$$\#(\operatorname{int}(\Delta) \cap \mathbb{Z}^2) = g(L(\Delta))$$

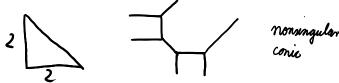
plane tropical curve of degree Δ (Δ conv. lattice polyg.): piecewise linear graph Γ immersed in \mathbb{R}^2 s.t.

- the edges e of Γ have rational slope
- 2 they have weight $w(e) \in \mathbb{Z}_{>0}$
- balancing condition:

let p(e) primitive integer vector in direction of e; for all vertices v of Γ :

$$\sum_{e \text{ at } v} p(e)w(e) = 0.$$

of for every edge of Δ (of lattice length n) Γ has n unbouded edges in corresponding outer normal direction



There is notion of number of nodes of tropical curve Γ A **simple** tropical curve is trivalent

Known: through $\#(\Delta \cap \mathbb{Z}^2) - 1 - \delta$ general points in \mathbb{R}^2 , there are finitely many δ -nodal degree Δ tropical curves, all simple **Tropical Severi degree:** Let Γ simple tropical curve, v vertex, e_1, e_2, e_3 edges at v

$$m(v) := w(e_1)w(e_2)|\det(p(e_1), p(e_2))|, \qquad m(\Gamma) = \prod_{v \text{ vertex}} m(v)$$

Tropical Severi degree: $n^{trop}_{\Delta,\delta} := \sum_{\Gamma} m(\Gamma)$

sum over all δ -nodal, degree Δ tropical curves through $\#(\Delta \cap \mathbb{Z}^2) - 1 - \delta$ general points in \mathbb{R}^2 .

Let Γ simple tropical curve, ν vertex

$$\omega(v) := egin{cases} (-1)^{(m(v)-1)/2} & m(v) \text{ odd} \\ 0 & m(v) \text{ even} \end{cases}$$
 $\omega(\Gamma) = \prod_{v \text{ vertex}} \omega(v)$

Tropical Severi degree: $W^{trop}_{\Delta,\delta}:=\sum_{\Gamma}\omega(\Gamma)$ sum over all δ -nodal, degree Δ tropical curves through $\#(\Delta\cap\mathbb{Z}^2)-1-\delta$ general points in R^2 .

Tropical curve counting

Mikhalkin: The Severi degree is equal to the tropical Severi degree and the Welschinger invariants are equal to the tropical Welschinger invariants.

$$n_{\mathcal{S}(\Delta), L(\Delta), \delta} = n_{\Delta, \delta}^{trop}$$

$$W_{S(\Delta),L(\Delta),\delta} = W_{\Delta,\delta}^{trop}$$

We know, for Δ sufficiently ample $N_{\delta}^{(S,L)}(1) = n_{S(\Delta),L(\Delta),\delta}$,

Conjecture

For
$$\Delta$$
 sufficiently ample $N_{\delta}^{(S,L)}(-1) = W_{S(\Delta),L(\Delta),\delta}$.

Refined Severi degree

quantum number:
$$[n]_y := \frac{y^{n/2} - y^{-n/2}}{y^{1/2} - y^{-1/2}}$$

By definition
$$[n]_1 = n$$
, $[n]_{-1} = \begin{cases} (-1)^{(n-1)/2} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$

Let Γ simple tropical curve, ν vertex

$$M(v) := [m(v)]_y, \qquad M(\Gamma) = \prod_{v \text{ vertex}} M(v)$$

Tropical Severi degree:

$$N^{trop}_{\Delta,\delta}(y) := \sum_{\Gamma} M(\Gamma)$$

sum as above

By definition
$$N_{\Delta,\delta}^{trop}(1) = n_{\Delta,\delta}^{trop} = n_{(S(\Delta),L(\Delta)),\delta}, N_{\Delta,\delta}^{trop}(-1) = W_{\Delta,\delta}^{trop}$$

Conjecture

For
$$\triangle$$
 sufficiently ample $N_{\delta}^{(S,L)}(y) = N_{\Delta}^{trop}(y)$

H deformed Heisenberg algebra for hyperbolic lattice, i.e. gen. by $a_n, b_n, n \in \mathbb{Z}$ a_{-n}, b_{-n} with n > 0 are called **creation operators** a_n, b_n with n > 0 are called **annihilation operators** commutation relations

$$[a_n, a_m] = 0 = [b_n, b_m], \qquad [a_n, b_m] = [n]_y \delta_{n,-m}$$

Fock space: F generated by **creation operators** a_{-n} , b_{-n} acting on vacuum vector v_{\emptyset} H-module by $a_n v_{\emptyset} := 0$, $b_n v_{\emptyset} := 0$ for $n \ge 0$ (concatenate and apply commutation relations)

F has $\mathbb{Q}[y^{\pm 1/2}]$ basis paramtr. by pairs of partitions $\mu = (1^{\mu_1}, 2^{\mu_2}, \ldots), \ \nu = (1^{\nu_1}, 2^{\nu_2}, \ldots)$ $a_{\mu} := \prod_i \frac{a_{i}^{\mu_i}}{\mu_i!}, \ a_{-\mu} := \prod_i \frac{a_{-i}^{\mu_i}}{\mu_i!}, \text{ similarly for } b_{\nu}, \ b_{-\nu}$ $v_{\mu,\nu} := a_{-\mu}b_{-\nu}v_{\emptyset}$ basis for F inner product $\langle v_{\emptyset} | v_{\emptyset} \rangle = 1$; a_{n}, b_{n} adjoint to a_{-n}, b_{-n} .

Cooper-Pandharipande:

For $S = \mathbb{P}^1 \times \mathbb{P}^1$ formula for $n_{(S,L),\delta}$ in terms of Fock space Generalize this to refined Severi degrees and to large class of toric surfaces (h-transversal lattice polygons) I will state only for \mathbb{P}^2 and rational ruled surfaces.

Case of \mathbb{P}^2

$$H(t) := \sum_{k>0} b_k b_{-k} + t \sum_{\|\mu\| = \|\nu\| - 1} a_{\nu} a_{-\mu}$$

$$\|\mu\| := \sum_i i\mu_i;$$
 sum includes $\mu = \emptyset$

Theorem

$$N_{d,\delta}^{trop}(y) = \langle v_{\emptyset} | \operatorname{Coeff}_{t^d} H(t)^{d(d+3)/2-\delta} v_{(1^d),\emptyset} \rangle$$

$$\sum_{d,a} N_a^{g,trop}(y) \frac{t^d u^{3d-1+g}}{(3d-1+g)!} = \langle v_{\emptyset} | \exp(uH(t)) \exp(a_{-1}) v_{\emptyset} \rangle$$

$$g = d(d-1)/2 - \delta$$

Heisenberg algebra

Hirzebruch surface Σ_e

F fibre; let *E* section with self intersection -e; H = E + eF

$$H_{e}(t) = \sum_{k>0} b_k b_{-k} + t \sum_{\|\mu\| = \|
u\| - e} a_{
u} a_{-\mu}$$

Theorem

$$N_{(\Sigma_e,dH+mF)}^{g,trop}(y) = \langle v_{(1^m,\emptyset)} | \operatorname{Coeff}_{t^d}[H_e(t)^{g+2(d+m)+ed-1}] v_{(1^{m+ed},\emptyset)} \rangle$$

Idea of proof: Feynman diagrams = floor diagrams

Feynman diagrams: To each monomial *M* in the $b_k b_{-k}$, $a_{\nu} a_{-\mu}$ associate diagrams:

- for $b_k b_{-k}$ write $\frac{k}{2}$ e.g. for $a_{(1^2,2)} a_{-(1^3)}$

- write vertices in order they are in the monomial
- connect all vertices so that edges connect only vertices of different colour, and the weights match

$$(b_1) A_{(1^2)} a_{-1} b_1 b_{-1} a_1$$

count the diagrams with multiplicity $m(\Gamma) := \prod_{e \text{ edges}} [w(e)]_y$.

Proposition (Wicks Theorem)

$$\langle v_{\emptyset} | M v_{\emptyset} \rangle = \sum_{\Gamma \text{ Graphs for } M} m(\Gamma)$$

 $\label{loss_equation} \mbox{Idea of proof: Feynman diagrams} = \mbox{floor diagrams}$

To Γ tropical curve through horizontally stretched conf. of points associate marked floor diagram.

escalators: horizontal segments of Γ

floors: conn. comp. of complem. of escalators. One marked point on each floor and escalator

Floor diagram: black vertex for escalator

white vertex for floor

connect if escalator connects to floor, keep

weight

Put
$$m(\Lambda) := \prod_{e \text{ edges}} [w(e)]_y$$

Proposition

$$extstyle extstyle N_{\Delta,\delta}^{trop}(y) = \sum_{\Lambda ext{ floor diagrams}} extstyle m(\Lambda)$$

Claim: floor diagrams = Feynman diagrams