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Severi degrees

S proj. surface over C; L very ample line bundle on S

|L| complete linear system

L suff. ample = §-nodal curves occur in codimension § in |L|
Let P? C |L| general §-dimensional linear subspace

Severi degree:

Nis.1).5 = #10-nodal curves in P }

Conjecture

There exists a universal polyn. n'>") in L2, LKs. K2, cx(S)
computing nis) s for L-sufficiently ample (5-very ample).

Proven by Tzeng, Kool-Shende-Thomas
Kool-Shende-Thomas use Euler numbers of relative Hilbert
schemes of points to define the polynomials ngs-‘”



Give refinement motivated by the K-S-T proof

replacing Euler number by x_,-genus

Sl —Hilbert scheme of points on S

C = {(p.[C])|p € C} C S x P° universal curve

¢l = {([2].[C])|Z c C} c S x P’ relative Hilbert scheme
X-y-genus x—y(X) = 32, o(=1)PTIhP9(X)y9

Conjecture
There exist NS (y).....NS(y) € Z[y] s.th.

)

Do xy(CMen =3 NF()E((1 = 1)(1 = yt))oD "

n>0 1=0

g(L) =genus of smooth curve in |L]|



Refined curve counting

There exist NS (y), ..., NS(y) € Z[y] s.th.

)

ZX—y(C[nJ)rn _ Z N;C(y)r‘r((1 —H(1 - yr))g(f_)—i—1

n>0 =0

The conjecture is true

@ /fs is replaced by g(L)

Q if Kg is numerically trivial
© modulo t'" for all surfaces



ounting

Refined curve counting

)
D xy (€T =" NF(y)t((1 - t)(1 — yt))dBT

n>0 =0

-

Definition

The refined invariantis N> (y) := NS(y)/y® (symmetric
Laurent polynomial)

-

If L suff. ample N> (1) = ng , 5 Severi degree
What is counted at other values of y
What is the meaning of the polynomial N{>*)(y)?



Conjectural generating function for refined invariants Nfss’“ (¥)
Proven for K3- and Abelian surfaces

A(y.q):=q]J(1 - —q")*(1 - q"/y)?
n=1 d,fz o _]/_d*fz)z
DGy(y,q) = Zq Z Y17z y-1/2)2
n=1 d|n

@ (Sy.Ly) K3 surface with ample irred. |.b. of genus g
SN NSe-bo)(y)go-1 = DGa(y, )

P Aly.q)

© (Ay. Ly) Abelian surface with ample irred. I.b. of genus g

— ==
Z N(Ag f-g) ¥)q% ' = DGa(y, q)kq%DGE‘(%Q)
g=k+2



Welschinger invariants

Show: Nés’t)(y) related to real algebraic and tropical geometry

Let Sreal algebraic surface; complex conj. r maps Sto S
real algebraic curve = curve C such that 7(C) = C

Real locus of C: C* = C™

P configuration of dim |L| — ¢ real points of S
Welschinger invariants: W(s ) s(P) = > (—1)%¢

c
sum is over all real -nodal curves C in |L| though P
= #{isolated nodes of C}

O Q< s()=2



r invariants and tropical geometry

Toric surfaces

From now on S toric surface:

C* x C* C S open dense, action extends to S
Automatically real surface

Correspondence:

{Convex lattice polygons A C R?} «—

{pairs (S(A), L(A)) toric surface, ample toric line bundle}
S(A) toric surface defined by the normal fan to A

Q@ P, L=0(d) —=
7
Q@ P' x P!, L=0(d. &) ; /\\\\
‘ N4
da

#(ANZR) = W(S(A).L(A)),  #(int(A) NZ2) = g(L(D))




invariants and tropical geometry

Tropical curve counting

plane tropical curve of degree A (A conv. lattice polyg.):
piecewise linear graph I immersed in R? s.t.

@ the edges e of I have rational slope

© they have weight w(e) € Z-q

© balancing condition:
let p(e) primitive integer vector in direction of e;
for all vertices v of I':
> p(e)w(e) = 0.
eatv
© for every edge of A (of lattice length n) I has n unbouded
edges in corresponding outer normal direction

_/ |
N N
Core,
ba




invariants and tropical geometry

Tropical curve counting

There is notion of number of nodes of tropical curve I

A simple tropical curve is trivalent

Known: through #(A N Z?) — 1 — § general points in R?, there
are finitely many d-nodal degree A tropical curves, all simple
Tropical Severi degree: Let I simple tropical curve, v vertex,
e1, e, €3 edges at v

m(v) := w(ei)w(ez)|det(p(er),p(e2)),  m(N)= [ m(v)

w/o.)p(( v vertex
/]

wi(e,) e\

Tropical Severi degree: nj% := >~ m(r)
r

sum over all 5-nodal, degree A tropical curves through
#(ANZ?) —1 —§ general points in R2.



invariants and tropical geometry

Tropical curve counting

Let I' simple tropical curve, v vertex

o (=1)m=1/2 m(v) odd
V)= 0 m(v) even

v vertex
Tropical Severi degree: Wi% := " w(I)

-
sum over all 5-nodal, degree A tropical curves through
#(ANZ?) —1 —§ general points in R2.



invariants and trop

Tropical curve counting

Mikhalkin: The Severi degree is equal to the tropical Severi
degree and the Welschinger invariants are equal to the tropical
Welschinger invariants.

troy
Ns(a).L(a)s = Na s

Wsia).La)s = W%

We knOW, for A SUﬁiCienﬂy ample N(ESL}(1) = nS(A},L(A},(g,

Conjecture

For A sufficiently ample N§S-“(—1 ) = Ws(a)L(n).5-




Refined Severi degree

quantum number: [n], :

ni2_,—n/2

- yiZ=y=ir2
(—=1)("=1)/2 " n odd

0 n even
Let I' simple tropical curve, v vertex

M(v) = [mv)l,. M) = [] M)

v vertex

By definition [n]y = n, [n]_4 =

Tropical Severi degree:
Np5(y) = M(T)
r
sum as above
By definition NiF(1) = N5 = n(s(a).c(ay).s: Nas(—1) = Wa%

Conjecture

For A sufficiently ample N (y) = Ngc_.?(y )




Heisenberg algebra

H deformed Heisenberg algebra for hyperbolic lattice, i.e.
gen. by an.bn, ncZ

a_p, b_pwith n > 0 are called creation operators

an, b, with n > 0 are called annihilation operators
commutation relations

[@n, am] = 0 = [bn. bm). [@n, bm] = [N]ydn,—m

Fock space: F generated by creation operators a_,, b_p
acting on vacuum vector v

H-module by a,v; := 0, b,vy :=0forn>0

(concatenate and apply commutation relations)



Heisenberg algebra

F has Q[y*'/?] basis paramtr. by pairs of partitions
p= (18,20 ) = (14,2, ..)

g ai ..
a, =11 s 8y = I ﬁ similarly for b,, b_,,
vp._.p‘ = a—lu.b—p Vﬂ baSiS fOf F
inner product (vy|vy) = 1; an, b, adjoint to a_,, b_p.

Cooper-Pandharipande:

For S =P' x P! formula for ng ;) 5 in terms of Fock space
Generalize this to refined Severi degrees and to large class of
toric surfaces (h-transversal lattice polygons)

| will state only for P? and rational ruled surfaces.



Heisenberg algebra

Case of P?

H(t):=> bkbx+t > aa,

k>0 [l =l[w][ =1

el = > iuis sum includes p = ()

Q
NEP(y) = (vp|Coeffys H(t)@HI/20y 1y )

2]

> NG TP( )ﬁ = (vy| exp(uH(t)) exp(a_1)vy)
o d y (30(_1+g)|_ 0 p p —1/vp

g=dd-1)/2-35



Heisenberg algebra

Hirzebruch surface X,
F fibre; let E section with self intersection —e; H = E + eF

He(r) — Z bkb_k + r Z aua—lu.

k=0 [ll[=lv||—e
b ~
Nfz'nger,c)(J/) = (V(1m g)|Coeffya[He(t)IH2(@TMTEI ]y 1oy )

J
r,




ldea of proof: Feynman diagrams = floor diagrams

Feynman diagrams: To each monomial M in the bxb_x, a,a_,,
associate diagrams:

@ for _k Wi ioi .g. for
(0] bkb k te e.g. 10 5(12,2}5_(13} z%—
@ write vertices in order they are in the monomial
@ connect all vertices so that edges connect only vertices of
different colour, and the weights match
(b‘}’j&‘“z)aq bib_1a4

¢ 80—+

count the diagrams with multiplicity m(T") := [T, egges[W(€)]y-

Proposition (Wicks Theorem)

M) = > m(r)

I" Graphs for M



ldea of proof: Feynman diagrams = floor diagrams

To I tropical curve through horizontally stretched conf. of points

associate marked floor diagram. ’/
escalators: horizontal segments of I &
floors: conn. comp. of complem. of —

escalators. Onemarked point m each ffoor and escafator
Floor diagram: black vertex for escalator

white vertex for floor /‘\‘__O s

connect if escalator connects to floor, keep

weight
Put m(A) := [ eages[W(€)]y
Proposition
NS = D0 m(n)

A floor diagrams

Claim: floor diagrams = Feynman diagrams



