Setting up Queue Systems
with TORQUE & Maui

Piero Calucci
Scuola Internazionale Superiore di Studi Avanzati
Trieste

November 2008
Advanced School
in High Performance and Grid Computing
Outline

1. Obtaining and compiling TORQUE and Maui
2. Configuration
3. Diagnostics & Troubleshooting
TORQUE Source Code

TORQUE is available from www.clusterresources.com
Building TORQUE

- `configure --prefix=/whatever/you/like`
- `make`
- `make install`

- not very clean, actually: quite a lot of important files go into `/var/spool` — including configuration files!

You can build only the server or MOM components, just tell --disable-mom or --disable-server.

My favorite install uses a directory that is shared among the masternode and the computing nodes, so that I need to build only once.
Building TORQUE

- `configure --prefix=/whatever/you/like`
- `make`
- `make install`

- not very clean, actually: quite a lot of important files go into `/var/spool` — including configuration files!

You can build only the server or MOM components, just tell `--disable-mom` or `--disable-server`

My favorite install uses a directory that is shared among the masternode and the computing nodes, so that I need to build only once.
Building TORQUE

- `configure --prefix=/whatever/you/like`
- `make`
- `make install`

- not very clean, actually: quite a lot of important files go into `/var/spool` — including configuration files!

You can build only the server or MOM components, just tell `--disable-mom` or `--disable-server`

My favorite install uses a directory that is shared among the masternode and the computing nodes, so that I need to build only once.
Maui Source Code

Maui too is available from www.clusterresources.com. You need to register to their site to download the code, and they may contact you later and ask what are you going to do with their software (and offer commercial support for it).
Building Maui

- **same** «configure; make; make install»
- maui build system need to know where TORQUE has been installed
- again, important files go into `/var/spool`
Building Maui

- **same** «configure; make; make install»
- maui build system need to know where TORQUE has been installed
- again, important files go into /var/spool
TORQUE Common Configuration Files

- **pbs_environment** contains the environment variables for TORQUE; any minimal set will do e.g.
  ```
  PATH=/bin:/usr/bin
  LANG=en_US
  ```

- **server_name** contains the «official» name of the machine where **pbs_server** runs (this is usually your master node).
 The server name must be identical to the FQDN e.g.
  ```
  cerbero.hpc.sissa.it
  ```

Both these files reside in the spool directory (/var/spool/torque)
TORQUE Common Configuration Files

- `pbs_environment` contains the environment variables for TORQUE; any minimal set will do, e.g.
  ```
  PATH=/bin:/usr/bin
  LANG=en_US
  ```
- `server_name` contains the «official» name of the machine where `pbs_server` runs (this is usually your master node)
 The server name must be identical to the FQDN, e.g.
  ```
  cerbero.hpc.sissa.it
  ```

Both these files reside in the spool directory (`/var/spool/torque`)
TORQUE Common Configuration Files

- `pbs_environment` contains the environment variables for TORQUE; any minimal set will do e.g.
 \[\text{PATH}=/bin:/usr/bin\]
 \[\text{LANG}=\text{en}_\text{US}\]
- `server_name` contains the «official» name of the machine where `pbs_server` runs (this is usually your master node)
 The server name **must** be identical to the FQDN e.g.
 \[\text{cerbero.hpc.sissa.it}\]

Both these files reside in the spool directory (`/var/spool/torque`)
###PBS Server Configuration

####The `nodes` file

The `nodes` file contains the list of available computing nodes and a list of attributes for each node.

<table>
<thead>
<tr>
<th>node name</th>
<th># of CPUs</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>node01</td>
<td>np=2</td>
<td>opteron myri</td>
</tr>
<tr>
<td>node02</td>
<td>np=2</td>
<td>opteron myri</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>node51</td>
<td>np=4</td>
<td>opteron IB</td>
</tr>
<tr>
<td>node52</td>
<td>np=4</td>
<td>opteron IB</td>
</tr>
</tbody>
</table>
pbs_server configuration

The nodes file

The `server_priv/nodes` file contains the list of available computing nodes and a list of attributes for each node.

<table>
<thead>
<tr>
<th>node name</th>
<th># of CPUs</th>
<th>«features»</th>
</tr>
</thead>
<tbody>
<tr>
<td>node01</td>
<td>np=2</td>
<td>opteron myri</td>
</tr>
<tr>
<td>node02</td>
<td>np=2</td>
<td>opteron myri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(list of arbitrary strings,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>can be used later to select a node</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type)</td>
</tr>
<tr>
<td>node51</td>
<td>np=4</td>
<td>opteron IB</td>
</tr>
<tr>
<td>node52</td>
<td>np=4</td>
<td>opteron IB</td>
</tr>
</tbody>
</table>
The `nodes` file

server_priv/nodes contains the list of available computing nodes and a list of attributes for each node.

<table>
<thead>
<tr>
<th>node name</th>
<th># of CPUs</th>
<th>features</th>
</tr>
</thead>
<tbody>
<tr>
<td>node01</td>
<td>np=2</td>
<td>opteron myri</td>
</tr>
<tr>
<td>node02</td>
<td>np=2</td>
<td>opteron myri</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>node51</td>
<td>np=4</td>
<td>opteron IB</td>
</tr>
<tr>
<td>node52</td>
<td>np=4</td>
<td>opteron IB</td>
</tr>
</tbody>
</table>
pbs_server configuration

The `nodes` file

`server_priv/nodes` contains the list of available computing nodes and a list of attributes for each node.

<table>
<thead>
<tr>
<th>node name</th>
<th># of CPUs</th>
<th>«features»</th>
</tr>
</thead>
<tbody>
<tr>
<td>node01</td>
<td>np=2</td>
<td>opteron myri</td>
</tr>
<tr>
<td>node02</td>
<td>np=2</td>
<td>opteron myri</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>node51</td>
<td>np=4</td>
<td>opteron IB</td>
</tr>
<tr>
<td>node52</td>
<td>np=4</td>
<td>opteron IB</td>
</tr>
</tbody>
</table>
pbs_server configuration

Creating the Configuration Database

The bulk of pbs_server configuration is written in a (binary) database. You first need to create the empty database with

```
pbs_server -t create
```

This will destroy any existing configuration, create the empty database and start a pbs_server.

Configuration can then be edited using the qmgr tool. Configuration data are written to server_priv/serverdb as well as in various other files.
The bulk of `pbs_server` configuration is written in a (binary) database. You first need to create the empty database with

```bash
pbs_server -t create
```

This will destroy any existing configuration, create the empty database and start a `pbs_server`.

Configuration can then be edited using the `qmgr` tool. Configuration data are written to `server_priv/serverdb` as well as in various other files.
qmgr doesn’t actually edit the configuration database. It only sends configuration commands to pbs_server which in turn writes the configuration.

This means that:

- you need a running pbs_server to use qmgr (no big issue)
- the pbs_server process needs write access to its own configuration files this is usually considered very bad in any security-conscious environment – unfortunately no easy workarounds are available
qbgr doesn’t actually edit the configuration database. It only sends configuration commands to pbs_server which in turn writes the configuration.

This means that:

- you need a running pbs_server to use qmgr (no big issue)
- the pbs_server process needs write access to its own configuration files this is usually considered very bad in any security-conscious environment – unfortunately no easy workarounds are available
One of the most common configuration issues, that prevents the batch system from running any job, involves missing or incorrect set server managers and/or set server operators lines.
[root@borg]# qmgr
Qmgr: create queue batch
Qmgr: set queue batch queue_type = Execution
Qmgr: set queue batch resources_max.walltime = 01:00:00
Qmgr: set queue batch resources_default.nodes = 1
Qmgr: set queue batch resources_default.walltime = 00:01:00
Qmgr: set queue batch enabled = True
Qmgr: set queue batch started = True
Qmgr: set server managers = maui@borg.cluster
Qmgr: set server managers += root@borg.cluster
Qmgr: set server operators = maui@borg.cluster
Qmgr: set server operators += root@borg.cluster

One of the most common configuration issues, that prevents the batch system from running any job, involves missing or incorrect set server managers and/or set server operators lines.
pbs_server configuration
Sample Configuration

[root@borg]# qmgr
Qmgr: create queue batch
Qmgr: set queue batch queue_type = Execution
Qmgr: set queue batch resources_max.walltime = 01:00:00
Qmgr: set queue batch resources_default.nodes = 1
Qmgr: set queue batch resources_default.walltime = 00:01:00
Qmgr: set queue batch enabled = True
Qmgr: set queue batch started = True
Qmgr: set server managers = maui@borg.cluster
Qmgr: set server managers += root@borg.cluster
Qmgr: set server operators = maui@borg.cluster
Qmgr: set server operators += root@borg.cluster

One of the most common configuration issues, that prevents the batch system from running any job, involves missing or incorrect set server managers and/or set server operators lines.
One of the most common configuration issues, that prevents the batch system from running any job, involves missing or incorrect `set server managers` and/or `set server operators` lines.
One of the most common configuration issues, that prevents the batch system from running any job, involves missing or incorrect `set server managers` and/or `set server operators` lines.
pbs_server configuration
Sample Configuration

[root@borg]# qmgr
Qmgr: create queue batch
Qmgr: set queue batch queue_type = Execution
Qmgr: set queue batch resources_max.walltime = 01:00:00
Qmgr: set queue batch resources_default.nodes = 1
Qmgr: set queue batch resources_default.walltime = 00:01:00
Qmgr: set queue batch enabled = True
Qmgr: set queue batch started = True
Qmgr: set server managers = maui@borg.cluster
Qmgr: set server managers += root@borg.cluster
Qmgr: set server operators = maui@borg.cluster
Qmgr: set server operators += root@borg.cluster

One of the most common configuration issues, that prevents the batch system from running any job, involves missing or incorrect set server managers and/or set server operators lines.
pbs_mom configuration can be fairly minimal, the only thing the Mom needs to know is the hostname where pbs_server is running on.

Useful additions include log configuration, how to handle user file copy and which filesystem to monitor for available space.

mom_priv/config:

$clienthost master.hpc
$logevent 0x7f
$usecp */home /home
size[fs=/local_scratch]
pbs_mom configuration can be fairly minimal, the only thing the Mom needs to know is the hostname where pbs_server is running on. Useful additions include log configuration, how to handle user file copy and which filesystem to monitor for available space.

mom_priv/config:

$clienthost master.hpc
$logevent 0x7f
$usecp *:/home /home
size[fs=/local_scratch]
PBS_mom configuration can be fairly minimal, the only thing the Mom needs to know is the hostname where PBS_server is running on. Useful additions include log configuration, how to handle user file copy and which filesystem to monitor for available space.

mom_priv/config:

```
$clienthost master.hpc
$logevent 0x7f
$usecp */home /home
)size[fs=/local_scratch]
```
Maui Configuration

How to Connect to Resource Manager

- simpler approach: a single configuration file
 (maui.cfg)

- Maui needs to know what RM to connect to and how

 SERVERHOST borg.cluster
 RMCFG[BORG.CLUSTER] TYPE=PBS
 RMPOLLINTERVAL 00:00:30
 SERVERPORT 42559
 SERVERMODE NORMAL
 ADMIN1 root
Maui Configuration
How to Connect to Resource Manager

- simpler approach: a single configuration file (maui.cfg)
- Maui needs to know what RM to connect to and how

```
SERVERHOST          borg.cluster
RMCFG[BORG.CLUSTER] TYPE=PBS
RMPOLLINTERVAL     00:00:30
SERVERPORT         42559
SERVERMODE         NORMAL
ADMIN1             root
```
Job priority is recomputed at each scheduler iteration, according to site-defined parameters. If no parameters are set only queue time is taken into account, i.e. the scheduling is strictly FIFO.

Priority components include:

- **Queue Time**: how long the job has been idle in the queue
- **Credentials**: a static priority can be assigned on a user, group, queue basis
- **Fair Share**: historical usage data
- **Resources** requested for the job
Job priority is recomputed at each scheduler iteration, according to site-defined parameters. If no parameters are set only queue time is taken into account, i.e. the scheduling is strictly FIFO.

Priority components include:

- **Queue Time**: how long the job has been idle in the queue
- **Credentials**: a static priority can be assigned on a user, group, queue basis
- **Fair Share**: historical usage data
- **Resources** requested for the job
Maui Configuration
Job Prioritization

Job priority is recomputed at each scheduler iteration, according to site-defined parameters. If no parameters are set only queue time is taken into account, i.e. the scheduling is strictly FIFO.

Priority components include:

- **Queue Time**: how long the job has been *idle* in the queue
- **Credentials**: a static priority can be assigned on a user, group, queue basis
- **Fair Share**: historical usage data
- **Resources** requested for the job
Job priority is recomputed at each scheduler iteration, according to site-defined parameters. If no parameters are set only queue time is taken into account, i.e. the scheduling is strictly FIFO.

Priority components include:

- **Queue Time**: how long the job has been idle in the queue
- **Credentials**: a static priority can be assigned on a user, group, queue basis
- **Fair Share**: historical usage data
- **Resources** requested for the job
Maui Configuration
Job Prioritization

Job priority is recomputed at each scheduler iteration, according to site-defined parameters. If no parameters are set only queue time is taken into account, i.e. the scheduling is strictly FIFO.

Priority components include:

- **Queue Time**: how long the job has been idle in the queue
- **Credentials**: a static priority can be assigned on a user, group, queue basis
- **Fair Share**: historical usage data
- **Resources** requested for the job
Maui Configuration

Job Prioritization: Queue Time and Credentials

```
QUEUETIMEWEIGHT       1
XFACTORWEIGHT         10
CLASSCFG[batch]       PRIORITY=1
CLASSCFG[fast]        PRIORITY=1000
GROUPCFG[guests]      PRIORITY=1
GROUPCFG[users]       PRIORITY=1000
GROUPCFG[devel]       PRIORITY=10000
USERCFG[DEFAULT]      PRIORITY=2000
USERCFG[luser1]       PRIORITY=0
```
Maui Configuration

Job Prioritization: Queue Time and Credentials

QUEUETIMEWEIGHT 1

XFACTORWEIGHT 10

CLASSCFG[batch] PRIORITY=1
CLASSCFG[fast] PRIORITY=1000
GROUPCFG[guests] PRIORITY=1
GROUPCFG[users] PRIORITY=1000
GROUPCFG[devel] PRIORITY=10000
USERCFG[DEFAULT] PRIORITY=2000
USERCFG[luser1] PRIORITY=0
Maui Configuration

Job Prioritization: Queue Time and Credentials

QUEUETIMEWEIGHT = 1
XFACTORWEIGHT = 10
CLASSCFG[batch] PRIORITY=1
CLASSCFG[fast] PRIORITY=1000
GROUPCFG[guests] PRIORITY=1
GROUPCFG[users] PRIORITY=1000
GROUPCFG[devel] PRIORITY=10000
USERCFG[DEFAULT] PRIORITY=2000
USERCFG[luser1] PRIORITY=0
Maui Configuration

Job Prioritization: Queue Time and Credentials

```plaintext
QUEUETIMEWEIGHT 1
XFACTORWEIGHT 10
CLASSCFG[batch] PRIORITY=1
CLASSCFG[fast] PRIORITY=1000
GROUPCFG[guests] PRIORITY=1
GROUPCFG[users] PRIORITY=1000
GROUPCFG[devel] PRIORITY=10000
USERCFG[DEFAULT] PRIORITY=2000
USERCFG[luser1] PRIORITY=0
```
Maui Configuration

Job Prioritization: Queue Time and Credentials

```
QUEUETIMEWEIGHT       1
XFACTORWEIGHT         10
CLASSCFG[batch]       PRIORITY=1
CLASSCFG[fast]        PRIORITY=1000
GROUPCFG[guests]      PRIORITY=1
GROUPCFG[users]       PRIORITY=1000
GROUPCFG[devel]       PRIORITY=10000
USERCFG[DEFAULT]      PRIORITY=2000
USERCFG[luser1]       PRIORITY=0
```
The FS priority component must be explicitly enabled by setting its weight to a non-zero value.

<table>
<thead>
<tr>
<th>Configuration Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSINTERVAL</td>
<td>86400</td>
<td>duration of each FS window</td>
</tr>
<tr>
<td>FSDEPTH</td>
<td>30</td>
<td>number of FS windows</td>
</tr>
<tr>
<td>FSDECAY</td>
<td>0.90</td>
<td>decay factor applied to older FS windows</td>
</tr>
<tr>
<td>FSWEIGHT</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FSGROUPWEIGHT</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>FSUSERWEIGHT</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
The FS priority component must be explicitly enabled by setting its weight to a non-zero value.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSINTERVAL</td>
<td>86400</td>
<td>duration of each FS window</td>
</tr>
<tr>
<td>FSDEPTH</td>
<td>30</td>
<td>number of FS windows</td>
</tr>
<tr>
<td>FSDECAY</td>
<td>0.90</td>
<td>decay factor applied to older FS windows</td>
</tr>
<tr>
<td>FSWEIGHT</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FSGROUPWEIGHT</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>FSUSERWEIGHT</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Usage targets can be set on a per-user, per-group and per-queue basis.

```plaintext
USERCFG[DEFAULT]  FSTARGET=1
GROUPCFG[users]  FSTARGET=30
GROUPCFG[devel]  FSTARGET=40
```

You can set also FS floors or caps so that priority is affected only when usage drops below the floor or goes above the cap:

```plaintext
GROUPCFG[guests]  FSTARGET=-5  give a negative priority component if usage is above 5%
USERCFG[master]  FSTARGET=20+  give a priority boost if usage is below 20%
```
Maui Configuration

Job Prioritization: Fair Share

Usage targets can be set on a per-user, per-group and per-queue basis.

```
USERCFG[DEFAULT]   FSTARGET=1
GROUPCFG[users]   FSTARGET=30
GROUPCFG[devel]   FSTARGET=40
```

You can set also FS floors or caps so that priority is affected only when usage drops below the floor or goes above the cap:

```
GROUPCFG[guests]   FSTARGET=5-  give a negative priority component if usage is above 5%
USERCFG[master]   FSTARGET=20+  give a priority boost if usage is below 20%
```
Prologue & Epilogue scripts

`pbs_mom` looks for scripts in its configuration directory `mom_priv`. If found, the prologue script is executed just before job start and the epilogue script at job termination. The prologue script performs any initialization that is required on the node for the job to run, while the epilogue undoes the modifications.

/etc/security/access.conf

before prologue

```
-:ALL EXCEPT root:ALL
```

disallows login to everybody except root, from anywhere

after prologue

```
-:ALL EXCEPT root
someuser:ALL
```

now allows `someuser` to login
Prologue & Epilogue scripts

`pbs_mom` looks for scripts in its configuration directory `mom_priv`. If found, the `prologue` script is executed just before job start and the `epilogue` script at job termination. The `prologue` script performs any initialization that is required on the node for the job to run, while the `epilogue` undoes the modifications.

```
/etc/security/access.conf
```

before `prologue`

```
-:ALL EXCEPT
root:ALL
```

disallows login to everybody except root, from anywhere

after `prologue`

```
-:ALL EXCEPT root
someuser:ALL
```

now allows someuser to login
Query and control remote `pbs_mom`:

```
# momctl -d3 -h i602
```

```
Host:  i602/i602.hpc  Server:  master.hpc  Version:  1.2.0p6
HomeDirectory:  /var/spool/PBS/mom_priv
MOM active:  6907718 seconds
Last Msg From Server:  213582 seconds (DeleteJob)
Last Msg To Server:  1 seconds
Server Update Interval:  45 seconds
Init Msgs Received:  10 hellos/2 cluster-addrs
Init Msgs Sent:  190 hellos
LOGLEVEL:  0 (use SIGUSR1/SIGUSR2 to adjust)
Communication Model:  RPP
TCP Timeout:  20 seconds
Prolog Alarm Time:  300 seconds
Alarm Time:  0 of 10 seconds
Trusted Client List:  ...
JobList:  NONE
diagnostics complete
```
Query and control remote `pbs_mom`:

```
# momctl -d3 -h i602
Host:  i602/i602.hpc  Server:  master.hpc  Version:  1.2.0p6
  HomeDirectory: /var/spool/PBS/mom_priv
  MOM active:  6907718 seconds
  Last Msg From Server:  213582 seconds (DeleteJob)
  Last Msg To Server:  1 seconds
  Server Update Interval:  45 seconds
  Init Msgs Received:  10 hellos/2 cluster-addrs
  Init Msgs Sent:  190 hellos
  LOGLEVEL:  0 (use SIGUSR1/SIGUSR2 to adjust)
  Communication Model: RPP
  TCP Timeout:  20 seconds
  Prolog Alarm Time:  300 seconds
  Alarm Time:  0 of 10 seconds
  Trusted Client List: ...
  JobList:  NONE
```
Check who is doing what on a node and show node capabilities

```
# checknode a034
```

checking node a034
State: Busy (in current state for 1:13:38:12)
Configured Resources: PROCS: 2 MEM: 3949M SWAP: 7242M DISK: 59G
Utilized Resources: PROCS: 2 DISK: 10G
Dedicated Resources: PROCS: 2
Opsys: DEFAULT Arch: [NONE]
Speed: 1.00 Load: 2.000 (ProcSpeed: 2600)
Network: [DEFAULT]
Features: [myri][opteron][opteron-sc]...
Attributes: [Batch]
Classes: [smp2 2:2][smp4 2:2][mpi4 0:2][mpi8 2:2]...
Total Time: 25:14:33:36 Active: 25:04:53:26 (98.43%)
Reservations:
Job '30069'(x2) -1:13:38:44 -> 2:10:20:16 (3:23:59:00)
JobList: 30069
Check who is doing what on a node and show node capabilities

```bash
# checknode a034
```

Checking node a034
State: Busy (in current state for 1:13:38:12)
Configured Resources: PROCS: 2 MEM: 3949M SWAP: 7242M DISK: 59G
Utilized Resources: PROCS: 2 DISK: 10G
Dedicated Resources: PROCS: 2
Opsys: DEFAULT Arch: [NONE]
Speed: 1.00 Load: 2.000 (ProcSpeed: 2600)
Network: [DEFAULT]
Features: [myri][opteron][opteron-sc]...
Attributes: [Batch]
Classes: [smp2 2:2][smp4 2:2][mpi4 0:2][mpi8 2:2]...
Total Time: 25:14:33:36 Active: 25:04:53:26 (98.43%)
Reservations:
Job '30069'(x2) -1:13:38:44 -> 2:10:20:16 (3:23:59:00)
JobList: 30069
"That's all Folks!"