
Trieste Lectures on Wall–Crossing

Invariants∗

Sergio Cecotti1†,

1Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34100 Trieste, ITALY

Abstract

We give a pedagogical introduction to wall–crossing for N = 2 theories in both
two and four dimensions from the point of view of the quantities whose BPS–chamber
invariance implies the wall–crossing formula. The basic such invariant is the conju-
gacy class of the quantum monodromy, which may be thought of as a generalization
of the Coxeter element in the Weyl group of a Lie algebra.

The relationships with singularity theory, quiver and algebras representation the-
ory, topological strings, (quantum) cluster algebras, the Thermodynamical Bethe
Ansatz, 2d CFT’s, and Number Theory are outlined.

November, 2010

∗Lectures given at the ICTP school and workshop on D–brane instatons, wall–crossing and
microstate counting, Trieste, November 15–20, 2010.

†e-mail: cecotti@sissa.it



Contents

1 Introduction 3

2 Two–dimensions revisited 4

2.1 Set–up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The superconformal limit . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 The massive theory . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Counting BPS states . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Zh–invariant BPS chambers . . . . . . . . . . . . . . . . . . . 10

2.3 Refining the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 The quiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Examples: perturbed ADE minimal models [16, 17] . . . . . . 16

2.4 The Coxeter element of the quiver . . . . . . . . . . . . . . . . . . . . 18

2.5 The WC group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 The three problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Proofs: R–Twisting 23

3.1 The index Ik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 An illuminating remark . . . . . . . . . . . . . . . . . . . . . . 24

3.2 A time–dependent supersymmetry . . . . . . . . . . . . . . . . . . . . 25

3.3 Computing the path–integral . . . . . . . . . . . . . . . . . . . . . . . 27

4 Interlude: equivalence and products of quivers 30

4.1 Equivalence classes of 2–acyclic quivers . . . . . . . . . . . . . . . . . 30

4.1.1 A remark on the Z2 cocyle . . . . . . . . . . . . . . . . . . . . 32

4.2 Products of 2–acyclic quivers . . . . . . . . . . . . . . . . . . . . . . . 32

5 4d: a simple set–up [6, 15] 33

5.1 N = 2 SCFT: first examples . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Deforming away from the SCFT point . . . . . . . . . . . . . . . . . 38

1



5.2.1 A word of caution . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 The three problems in d = 4 42

6.1 A more general class of models . . . . . . . . . . . . . . . . . . . . . . 42

6.2 The fractional monodromy Y(q) . . . . . . . . . . . . . . . . . . . . . 43

6.3 Back to the three problems . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Cluster algebras 46

7.1 Quivers again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Quantum mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2.1 Classical limits . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Cluster mutations vs. our ‘Diophantine’ equation . . . . . . . . . . . . 49

7.4 Cluster–mutations and Zh–symmetric chambers . . . . . . . . . . . . 51

8 Relation to the Thermodynamical Bethe Ansatz 51

8.1 Solution to the inverse problem . . . . . . . . . . . . . . . . . . . . 54

8.1.1 The BPS spectrum Ω(γ) . . . . . . . . . . . . . . . . . . . . . 55

8.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 ‘Level–rank’ duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.3 More fun with the (A2, A1) model . . . . . . . . . . . . . . . . . . . . 59

9 Connections with 2d RCFT’s 61

9.1 The parafermion characters . . . . . . . . . . . . . . . . . . . . . . . 61

9.2 Nahm’s conjectures [42] . . . . . . . . . . . . . . . . . . . . . . . . . 63

9.3 Level–rank duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9.4 Prediction of new RCFT dualities . . . . . . . . . . . . . . . . . . . . 64

9.5 General invariants Tr Yk . . . . . . . . . . . . . . . . . . . . . . . . . 64

9.6 Rogers–Ramanujan identities and generalization . . . . . . . . . . . . 65

10 Conclusion 66

2



1 Introduction

The first explicit Wall–Crossing Formula (WCF) for the change in the number of BPS

states across a wall of marginal stability was obtained in 1992 in the context of the

two–dimensional N = 2 models in reference [1]. The purpose of that paper was more

general and ambitious than just to get a wall–crossing formula: It was to classify and

characterize all the N = 2 models which are consistent as non–perturbative quantum

field theories (without making reference to specific Lagrangian realizations, which

may not exist). Such a program includes, in particular, the characterization of the

possible spectra of BPS states, and hence of their allowed changes under continuous

deformations of the theory, which is what we mean by a Wall–Crossing–Formula.

The 4d WCF was firstly formulated, in the context of some related mathematical

problems, by Kontsevitch and Soibelman in ref. [2] and Joyce and Song in ref. [3],

and then proved (or interpreted) as the physical 4d N = 2 WCF in many different

contexts and viewpoints in refs. [4–12].

The purpose of the present lectures is to discuss both the 2d and 4d cases in the

spirit of the original program, that is, with emphasis on the wall–crossing invariants.

In fact, as it will be clear, the change in the number of BPS states (with given

quantum numbers) across a wall may be regarded as the result of the adjoint action

on some ‘arithmetic’ group WC. The group WC may be characterized trough the set

of its invariants. These invariants encode physical information which do not jump

across the walls of marginal stability; this invariant physical information is, in a

sense, more fundamental and intrinsic that the chamber-dependent BPS spectrum.

In particular, given the invariants, it is elementary to construct the group WC (and

its action on the BPS multiplicities) and hence to deduce the WCF.

It should be emphasized that, so stated, the problem is much more difficult than

just deducing a WCF. E.g. the WCF for 2d was obtained in full generality in ref. [1],

but the general program was never completed even in two–dimension.

In its simplest form, the problem may be stated as follows. Let us start with a

N = 2 superconformal theory (SCFT) and deform it away from criticality by adding

some relevant coupling and/or switching on the vacuum expectation of some fields

(e.g. Coulomb branch parameters). The deformed theory will flow in the IR to

a non–conformal supersymmetric theory which typically possesses non–trivial BPS
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states — indeed, one of the consequences of the theory is that if we start from a

non–trivial SCFT in the UV we must necessarily have some BPS–saturated massive

state in the physical spectrum of the IR theory. The detailed BPS spectrum will

depend on the particular deformation we consider. One asks which characteristics

of the BPS spectra are ‘universal’, that is independent of the specific deformation.

Clearly, these universal characteristics should correspond to (possibly very subtle)

properties of the parent UV superconformal theory. However, it is not difficult to

extend the analysis to theories which are just asymptotically free in the UV, where

new phenomena appear (see ref. [1] for the 2d case).

For pedagogical purposes, we start the analysis in 2d and then go to the 4d case

(and also limit ourselves to a special class of ‘simple’ 4d theories). From an abstract

point of view, one may consider the 4d WCF as a special instance of the 2d one.

Indeed, we may consider a 4d theory as a 2d one with infinitely many fields; we shall

see that the WCF formula will have the same abstract form in both 4d and 2d (and

there are mixed ones [8, 13]). In particular, the general structure of the WCF is the

same in both dimensions.

A second reason for discussing the four–dimensional and two–dimensional is that

from the theory there emerge deep, beautiful and unexpected connection between 4d

and 2d which are also very useful for the actual computations.

2 Two–dimensions revisited

2.1 Set–up

Although the results are independent of the Lagrangian formulation of the theory1, to

keep the technicalities to the minimum, we use the language of the Landau–Ginzburg

(LG) models. Thus we have a 2d (2, 2) supersymmetric theory with action of the

1 Indeed they depend only on the fact that we may twist a (2, 2) supersymmetric theory in two
different ways tolopogical and, respectively, anti–topological, the two being interchanged by an anti–
linear involution (i.e. PCT). In the general case, the superpotential is replaced by the deformations
of the theory which are non–trivial in the topologically twisted theory, its Hermitian conjugate
by those non–trivial in the anti–topological twisted model, while by D–terms we mean everything
which is both topologically and anti–topological trivial.
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general form

S = D–terms +

∫
d2z d2θW (Xi) + H.c., (2.1)

where Xi are chiral superfields (not necessarily elementary, we only require them

not to be of the form D
2
V for some V ) and W (Xi) is a holomorphic function (the

superpotential). By ‘D–terms’ we mean any supersymmetric interaction which can-

not be written as an integral in d2θ (or dθ
2
). A basic result in supersymmetry is

the non–renormalization of the superpotential W : Under the renormalization group

flow (RG) the D–terms will evolve in some intricate way but W would remain the

same2.

2.1.1 The superconformal limit

Firstly, let us assume the above model is conformal invariant (and hence supercon-

formal) at the full quantum level. From the two–dimensional N = 2 superconformal

algebra we know that such a theory must have, in particular, an axial U(1) symmetry

rotating the two supercharges. We normalize the corresponding charge q in such a

way that the supercharges Qα have q = ±1
2
. Since the superpotential W is not cor-

rected by quantum effects, a necessary condition for the model to be superconformal

is that W (Xi) is invariant under this R–symmetry. Since d2θ has charge −1, this

requires

W (λqi Xi) = λW (Xi) ∀ λ ∈ C∗, (2.2)

where qi > 0 is the R–charge of Xi. [One consequence of the (2, 2) superconformal

algebra is that, for a chiral primary operator, the dimension and the R–charge are

equal, and this implies that the qi are positive]. A superpotential satisfying equation

(2.2) for positive real weights qi is called quasihomogeneous.

Conversely, let us start with a theory of the form (2.1) with a quasi–homogeneous

superpotential W (Xi), and assume it has a UV fixed point. This UV fixed point

should correspond to a N = 2 superconformal theory such that the Xi are chiral

primaries. Indeed, at the conformal point W should be marginal, and hence have

dimension 1. Then eqn.(2.2) implies that the chiral fields Xi have equal dimension

and R–charge, and this property is a characterization of the chiral primaries. The

2 Again, the non–renormaliztion theorem is actually the quantum topological invariance of the
twisyed theory.
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chiral primaries φi have the following remarkable properties [16–18]:

(Chiral ring) the chiral primary operators φi form an associative commutative C–

algebra with unit 1 (the identity operator), which we denote as R and call the

chiral ring. R has a multiplication table φi · φj = cij
k φk for certain complex

numbers cij
k = cji

k (in particular, the operator product φi(z)φj(z
′) is regular

as z → z′);

(Spectral flow) we have the isomorphism of R–modules

R ' HE=0, (2.3)

whereHE=0 is the space of states of zero–energy (≡ the supersymmetric states).

In particular dimCR is equal to the number of susy vacua;

(Central charge) the Virasoro central charge is

ĉ ≡ c

3
= max

φ∈R
q(φ). (2.4)

These properties (together with PCT) imply that the U(1) R–charge of the super-

symmetric vacuum corresponding to the chiral operator φ under the isomorphism

(2.3) is [18]

q(φ)− ĉ/2. (2.5)

They also imply

dimHE=0 = 1 ⇔ the only chiral primary is the identity ⇔
⇔ ĉ = 0 ⇔ the SCFT is trivial.

From these facts, it is clear that the chiral ring R and the U(1) charges q(φi) are

the basic physical invariants characterizing the superconformal theory.

It should be stressed that the first two properties (Chiral ring) and (Spectral

flow) do not really depend on the theory being critical [18]: they really reflect the

topological nature of the chiral sector of any (2, 2) supersymmetric theory, critical

or not. In particular, the chiral ring R must be independent of the D–terms, and
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hence totally determined by the superpotential W (Xi). By the non–renormalization

theorem, it can be determined at the classical level, getting

R ' C[Xi]/〈∂iW 〉, (2.6)

where 〈∂iW 〉 stands for the Jacobian ideal of W (i.e. the set of the polynomials of

the form
∑

i Pi(Xj) ∂W/∂Xi, for Pi ∈ C[Xi]). Notice that the classical vacua are

precisely the configuration Xi = Xα
i where ∂iW (Xα) = 0, that is the affine variety

associated with the Jacobian ideal, classical vacua = V (〈∂iW 〉).

In this form the properties (Chiral ring) and (Spectral flow) hold in general,

even for massive theories. The LG model has a mass–gap precisely when the vacuum

variety V (〈∂iW 〉) is reduced (that is, R has no nilpotent elements) and of pure

dimension zero (i.e. it is a set of isolated points). Let |Xα〉 be the quantum vacuum

corresponding3 to the α–th classical vacuum configuration, Xi = Xα
i . Then the

isomorphism (2.3) is just

C[Xi]/〈∂iW 〉 → HE=0 (2.7)

P (Xi) 7→
∑

α

P (Xα
i ) |Xα〉, (2.8)

(in other words, the vector space HE=0 is the linear space of regular functions on

V (〈∂iW 〉); this is true in general).

2.1.2 The massive theory

From the previous discussion it follows that, in the present language, a deformation

away from criticality amounts essentially to adding to the superpotential W (Xi)

monomials of total U(1) charge less than 1

W (Xi)→ W (Xi) +
∑

~n·~q <1

t~n X
n1
1 Xn2

2 · · ·X
n`
` , (2.9)

in fact, the condition of charge less than 1 is precisely the condition for the corre-

sponding perturbation to be relevant in the IR, i.e. of dimension less than 2. Notice

3 That we have a one–to–one correspondence between classical and quantum vacua is guaranteed
by the Witten index, and — in a stronger sense — by the spectral–flow isomorphism.
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that any D–term operator has dimension at least 2, so it cannot be IR relevant.

By adding suitable relevant couplings t~n (in particular, mass parameters) we get

a massive theory. This is equivalent to ask that the critical points of W , i.e. the

solutions to the equations ∂W/∂Xi = 0 are isolated and of multiplicity one. The

number of these critical points, i.e. the number of supersymmetric vacua is equal to

the Witten index of the UV superconformal theory, m ≡ dimR, and (in particular)

larger than 1 (since the UV theory is non–trivial).

The Hilbert space H of the theory quantized on the line R splits into several

superselected sectors: The condition of finite energy requires the field configuration

to approach a vacuum as x → ±∞, and the multiplicity of vacua corresponds to a

multiplicity of possible boundary conditions at infinity. We write Hαβ for the space

of states approaching the α–th vacuum as x → −∞ and the the β–th vacuum as

x → +∞. Clearly the fundamental state in the diagonal sector Hαα is the α–th

vacuum. However, for α 6= β, the sector Hαβ cannot contain any zero–energy state;

thus its fundamental state must have some positive energy Eαβ > 0. All other states

in that sector will have energies E ≥ Eαβ.

Since nothing depends on theD–terms, let us compute the Eαβ using conventional

D–terms, that is
∫
d4θ K(Xi, Xj) where K is the potential of some Kähler metric

gij̄ = ∂i∂j̄K. The classical energy of a x–dependent configuration Xi(x) in the (α, β)

sector is

+∞∫
−∞

dx
{
gij̄∂xX

i ∂xX
j
+ gij̄ ∂iW ∂j̄W

}
≡

=

+∞∫
−∞

dx gij̄
(
gik̄ ∂xX

k − eiθ ∂iW
)(
gjl̄ ∂xX

l − eiθ ∂iW
)
+

+ 2 Re
{
eiθ
(
W (x = +∞)−W (x = −∞)

)}
≥ 2

∣∣∣W (Xβ)−W (Xα)
∣∣∣,

(2.10)
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with equality if and only if

• eiθ
(
W (Xβ)−W (Xα)

)
∈ R+ (2.11)

• gik̄ ∂xX
k

= eiθ ∂iW ∀x ∈ R. (2.12)

A configuration satisfying the second condition is annihilated by two linear com-

binations of the supercharges namely Qα + e−iθ Qα and hence is a (classical) BPS

configuration. Thus we interprete eqn.(2.10) as the BPS inequality and identify the

central charge in the superselected sector Hαβ as

Zαβ = 2
(
W (Xβ)−W (Xα)

)
. (2.13)

The discussion was classical, but the non–renormalization of W and supersymmetry

promote everything to fully quantum equalities.

In the W plane the description of a BPS configuration is very easy. One has

∂x

(
eiθ W (Xi)

)
= eiθ ∂iW ∂xX

i = gij̄ ∂iW ∂j̄W ≥ 0, (2.14)

so the image of the BPS state in the W plane is a straight line of slope e−iθ connecting

the critical values W (Xα) and W (Xβ). A BPS state in the sector (α, β) is just an

inverse image of this segment under the map Xi 7→ W (Xi) which is a connected

curve starting and ending at the corresponding classical vacua. This description, in

particular, shows that the number of (α, β) BPS states is indepedent of the D–terms.

2.2 Counting BPS states

Let Nαβ be the number of BPS states in the (α, β) sector. We wish to compute the

Nαβ’s and relate them to the invariants of the parent UV SCFT.

The Nαβ’s are non–negative integers. Hence they must be locally constant func-

tions of the continuous deformation parameters t~n. At first sight, one would expect

them to be also globally constant in deformation space, since the possibility that new

fundamental states appear in the sector Hαβ under mild (that is, soft) deformations

of the theory looks physically unsound, violating Dirac’s physical continuity prin-

ciple. (Mild, in particular, means that the perturbations preserve the sectors Hαβ,
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while smoothly changing the value of the corresponding central charge Zαβ).

However, the previous description of the Hilbert space sector Hαβ implies that

the numbers Nαβ cannot be globally constant as functions of the complex couplings

t~n (unless Nαβ 6≡ 0 which we shall show momentarily is also excluded). This follows

from a simple symmetry argument that we now review (since it will apply also in

4d).

2.2.1 Zh–invariant BPS chambers

The Hagg–Lopuszanski–Sohnius theorem [19] states that the central charge operator

Z commutes with all the continuous symmetries of the S–matrix. In N = 2 it must

also commute with all simple non–Abelian discrete symmetries (since they have no

no–trivial representation of dimension 1). However, some discrete Abelian symmetry

may still act non–trivially on Z (e.g. PCT acts as Z 7→ −Z). Any such group may

be written as a product of Zh’s.

If we may deform the UV SCFT in such a way that the deformed theory has a Zh

symmetry acting on the central charge as Z 7→ e2πi`/h Z, the BPS spectrum {Nα,β}
must also be Zh invariant. Starting with a given SCFT we may easily construct two

different deformation which have different cyclic symmetries, in such a way that no

set of BPS multiplicities {Nα,β} is consistent with both symmetries. Since the two

theories are obtained one from the other by a variation of the marginal couplings t~n,

we conclude that the {Nα,β} should jump somewhere in coupling space.

Example. We illustrate the above symmetry argument in an easy example4.

Consider then the critical model defined by the homogeneous superpotential

W (X) = Xm+1/(m + 1) (the Am minimal SCFT), and focus on the following two

4 This example was, historically (1991), the first motivation for the development of WCF.
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marginal deformations of it5:

1) W (X) =
Xm+1

m+ 1
− tX (2.15)

2) W (X) =
t(m+1)/2

2m (m+ 1)
Tm+1(t

−1/2X) =
Xm+1

m+ 1
+

[(m+1)/2]∑
k=1

ck t
k Xm+1−2k (2.16)

where Tn(z) is the n–th Chebyshev polynomial of the first kind: Tn(x) = cos(n y)

with x = cos y. These two massive deformations preserve different discrete subgroups

of the UV U(1) R–symmetry: 1) the Zm symmetry X 7→ e2πi/mX, and 2) the Z2

symmetry X 7→ −X. In the model 1) the critical values in the W–plane are at the

vertices of a regular m–gon

Wα ≡ W (Xα) = − m

m+ 1
t1+1/m e2πiα/m, α = 1, 2, . . . , α. (2.17)

and the Zm symmetry implies

Nα+γ,β+γ = Nα,β (2.18)

(where the indices are identified mod m). In the model 2) the classical vacua

W ′(Xα) = 0 are given by

tm/2

2m

sin((m+ 1)yα)

sin yα
= 0 ⇒ Xα = t1/2 cos

(
π α

m+ 1

)
, α = 1, 2, . . . ,m,

while the critical values are

Wα =
t(m+1)/2

2m (m+ 1)
(−1)α. (2.19)

In particular, Zαβ = 0 for α = β mod 2. Then, in these sectors, the BPS states must

have zero energy, hence be vacua, which is absurd because the boundary conditions

break translational invariance. Therefore, in the sectors Hαβ with α 6= β, we must

5 These two particular N = 2 massive theories may be both explicitly solved in terms of (two dif-
ferent families of) Painlevé transcendent (see [20]). The explicit solutions confirm the expectations
from the symmetry argument.

11



have

Nα,β = 0 for α 6= β and α ≡ β mod 2. (2.20)

Eqns.(2.18)(2.20) are incompatible (take e.g. m = 3) unless Nαβ ≡ 0 (which is

impossible).

Therefore, the BPS multiplicities Nαβ must jump somewhere in coupling constant

space. The jumping locus should have real codimension 1, they are the walls of

marginal stability. The WCF formula describe the exact jumps of the integers Nα,β

when we cross the wall.

2.3 Refining the problem

In order to get a nice theory, and in particular to define WCF invariants which may

be of use to classify the possible UV critical behaviors, we have to refine our problem

and replace the non–negative integers Nα,β with signed multiplicities µα,β such that

|µα,β| = Nα,β. Indeed, there exist pairs of models having the same set of absolute

BPS multiplicities {Nα,β} but quite different UV physics (e.g. one model may have

a minimal N = 2 SCFT as UV limit while the other one is asymptotically free6).

Thus the signs of µα,β include crucial physical informations.

The reason the BPS multiplicities carry a sign is that the correct way of counting

BPS states in a susy theory is trough the appropriate supersymmetry indices. The

one appropriate to count BPS states in 2d is7 [21]

Qα,β(T ) = lim
L→∞

β

2L
Tr(α,β)

[
(−1)F F e−βH

]
, (2.21)

(to define the rhs we quantize the model at finite temperature T = β−1 in a segment

of length L with boundary conditions at the two ends corresponding, respectively,

to the supersymmetric vacua |β〉 and |α〉, and then take the infinite volume limit

6 A simple example is the LG model with superpotential W (X) = X4 − λX versus the LG
model W (X) = eX − λ e−2X , where the field X takes values on the cylinder X ∼ X + 2πi. Both
models have a Z3 R–symmetry permuting the vacua and acting on the central charge. Both have
one BPS soliton between each pair of vacua, but they are certainly different theories (the Hilbert
space of the second model has winding sectors while the first one has not them).

7 F is the Fermi number operator. The equation below are valid for the standard definition of
F , such that the eigenvalues of (−1)F are real in all sectors Hα,β .
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L→∞; the factor 1/L is needed to cancel the trivial infinite volume factor from the

translational invariance of the b.c.).

Notice that PCT gives Qβ,α = −Qα,β.

Qα,β receives contributions only from BPS states. The deep reason behind this

property is the independence of this index from the couplings entering in the D–

terms; the energies of non–BPS states do depend on these couplings (and we may

always go to a limit where all these states have infinite energies and thus decou-

ple). Naively, only single–particle BPS states contribute to the index Qα,β(T ), but a

careful computation shows that all multi–BPS states (with the appropriate quantum

numbers) contribute to the the index Qα,β(T ). In particular,

Nα,β ≡ 0 ⇒ Qα,β(T ) ≡ 0. (2.22)

In the zero temperature limit, β → ∞, only the fundamental state of the sector

Hα,β contributes to the index8

Qα,β(T → 0) ≈ −µα,β

2π

(
|Zα,β|T−1

)
K1(|Zα,β|T−1), (2.23)

for a real integer µα,β (with sign) which satisfies

µα,β + µβ,α = 0. (2.24)

It is clear that Nα,β = |µα,β|; the sign of µα,β is however physically relevant. We are

free to redefine the sign of the α–th vacuum, with the effect {µα,β} → {sα µα,β sβ}
where sα = ±1; thus it is the cohomology class of the Z2 1–cocycle {signµα,β} which

carries invariant physical information.

We claim the following

Fact. (‘Zamolodchikov theorem’ [20, 21]) Let λ(T ) be the largest eigenvalue of the

Hermitian m×m matrix i Qα,β(T ) as a function of the temperature. Then

1. λ(T ) is monotonically increasing;

8 K1(·) is the usual Bessel function.
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2. the CFT central charge of the UV fixed point9 is

ĉUV = 2 lim
T→∞

λ(T ). (2.25)

Combining with eqn.(2.22), we see that if the theory has no BPS–saturated states,

Qαβ ≡ 0 and ĉUV = 0, as claimed above.

It follows from the quantum action principle that Qα,β(T ) is a smooth function

of the couplings t~n. Then we may have discontinuity of the multiplicities µα,β only

at loci in coupling space where the single BPS states of may mix with multi–BPS

states, i.e. places where multi–BPS states may give a contribution to the T → 0

limit of Qα,β(T ) of the same order as the single BPS state of central charge Zα,β.

Then both the energy and the central charge of the two configuration should match

Zα,β = Zα,α1 + Zα1,α2 + · · ·+ Zα`,β (2.26)

|Zα,β| = |Zα,α1|+ |Zα1,α2|+ · · ·+ |Zα`,β| (2.27)

which may be both satisfied if and only if the BPS phases θα,β = −argZα,β are all

equal

θα,β = θα,α1 = θα1,α2 = · · · = θα`,β. (2.28)

Such a locus is called a wall of marginal stability and corresponding jump in the

µ’s is the wall–crossing phenomenon. [Generically, only two–particle BPS states

degenerate with single–particle BPS states; however one may construct non–generic

deformations in which higher multi–particle BPS states enter in the WCF].

We do not prove the above claims at this point since they are a special case

of other relations we shall show below from a different viewpoint, which is more

convenient in view of the generalization to 4d. See section 3.

2.3.1 The quiver

The BPS multiplicities µα β are conveniently represented by a quiver. The nodes of

the quiver are labelled by the supersymmetric vacua of the model. If µα β > 0 we

9 If the theory is asymptotically free, replace by the ĉUV of the corresponding free theory.
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Name WG(X1, X2, X3) Dynkin diagram/Resolution graph

An X2
1 +X2

2 +Xn+1
3 ◦ ◦ ◦ · · · · · · ◦

Dn X2
1 +X2

2 X3 +Xn−1
3 ◦ ◦ ◦ · · · · · · ◦

◦
E6 X2

1 +X3
2 +X4

3 ◦ ◦ ◦ ◦ ◦

◦
E7 X2

1 +X3
2 +X2X

3
3 ◦ ◦ ◦ ◦ ◦ ◦

◦
E8 X2

1 +X3
2 +X5

3 ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Table 1: N = 2 minimal SCFT ≡ Du Val (a.k.a. minimal) singularities of hypersur-
faces in C3. The fields X, Y , Z, entering quadratically in W are massive and may
be integrated away (that is, they may be ignorated).

draw µα,β arrows from the node α to the node β; if µα,β < 0 we draw |µα,β| arrows

from the node β to the node α. The resulting quiver is always 2–acyclic10.

As we have remarked above, the signs of the BPS multiplicities µα,β are defined

only up to a Z2 coboundary, µα,β → sα µα,β sβ. So the association of a quiver to a

massive (2, 2) model is partly conventional. However, as we shall illustrate in the

examples, one may fix these conventions in a canonical way, using some extra struc-

ture of the problem (which is more transparent from the 4d perspective) obtaining

a better behaved correspondence.

10 A quiver is 2–acyclic if it has no closed cycle of length ≤ 2, that is, if it has no loops (arrows
starting and ending in the same node) and if all the arrows between any two nodes point in the
same direction.
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2.3.2 Examples: perturbed ADE minimal models [16,17]

As a preparation to the 4d case, we consider the minimal N = 2 SCFT deformed

by (relevant) perturbations. The N = 2 minimal models follow an ADE classifica-

tion scheme, i.e. they are in one–to–one correspondence with the finite–dimensional

simply–connected simply–laced Lie groups, see table 1.

The Am minimal model: a special Z2 deformation

As mentioned above, the Am minimal model may be realized as the Landau–

Ginzurg (LG) model with superpotential W (X) = Xm+1. Let us deform it to to the

Chebyshev superpotential W (X) = const. Tm+1(X). Writing X(s) = cos y(s) for the

BPS configuration, the BPS equations (2.14) require W (X(s)) ≡ cos[(m+1)y(s)] to

be real and bounded in absolute value by 1; so, for all s ∈ R, y(s) ∈ R. Then a BPS

configuration which starts at s = −∞ from the α vacuum should end up to the vacua

α ± 1 at s = +∞ (as it is easy to check by solving explicitly the BPS equations11).

Comparing with the last column of table 1, we see that the graph underlying12 the

quiver of the massive Chebyshev model is precisely the Dynkin graph of the Lie

algebra Am labelling its UV critical fixed point.

We choose conventions in such a way that the quiver is oriented in such a way

that each node of the quiver is either a source (all arrows going out) or a sink (all

arrows going in). This is the physically natural convention; e.g. the orientation of the

arrows correlates with the direction of the forward (resp. backward) BPS gradient

flow (2.12). Nothing depends (of course) of this convention.

General massive deformations of ADE minimal SCFT

More generally, for the minimal SCFT associated to the Lie group G (of ADE

type) there is a ‘simpler’ massive deformation whose BPS quiver QG is the Dynkin

diagram of the corresponding Lie algebra, again oriented in such a way that we have

only sources and sinks13. Since we shall need this fact in 4d, we sketch a purely

geometric proof of this fact. It follows from Milnor’s theorem.

11 Or by solving the tt∗ equations (they were solved explicitly, for this particular class of models,
in sect. 8 of ref. [20]).

12 The graph underlying a quiver is the unoriented graph obtained by forgetting the orientations
of the arrows.

13 This is always possible, since Dynkin graphs of finite Lie algebras are trees, and hence bipartite
graphs.
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Milnor theorem [22, 23]. Let MG (G = ADE) be the hypersurface in C3 of

equation

WG(X1, X2, X3) +
∑

~n·~q<1

t~nX
n1
1 Xn2

2 Xn3
3 ≡ W (X1, X2, X3) = const. (2.29)

where the leading polynomial WG(X1, X2, X3) is as in Table 1. Then dimH2(MG,Z) =

rankG, and we may choose the generators γi ∈ H2(MG,Z) in such a way that their

intersection matrix is equal to minus the Cartan matrix CG of the Lie algebra G,

γi · γj = −(CG)ij. (2.30)

Then, consider two critical points (classical vacua), Xα andXβ, with critical value

of the superpotential Wα and Wβ, respectively. Let Mα,β ⊂ C3 be the hypersurface

of equation W (X, Y, Z) = (Wα +Wβ)/2. Consider the locus Sα ⊂ Mα,β of points P

in this hypersurface such that there exists a solution to the equation

gij̄∂sX
j
= eiθα,β ∂iW where e−iθα,β = phase of (Wα −Wβ), (2.31)

starting at s = 0 from that point P and approaching the α–th classical vacuum as

s → −∞. Sα ⊂ Mα,β is a 2–sphere which represents a class in H2(MG,Z) with14

[Sα] · [Sα] = −2. By construction, |µα,β| = [Sα] · [Sβ]. On the other hand, comparing

with the Milnor’s theorem, we see that the cycle [Sα] is identified with a root of

the Lie algebra of G, and hence the BPS multiplicities — whiuch are equal to the

inner products of the corresponding roots — may be read directly from the Dynkin

diagram of G.

However, as we saw above for the deformed A3 model, the numbers |µα,β| must

jump somewhere in coupling constant space even for the (perturbed) ADE minimal

theories. How this happens?

The Milnor theorem states that the 2–cycles vanishing at the classical vacua,

γα ' [Sα] form a basis of the root lattice ΓG of G and |µα,β| = |γα · γβ|. But it is not

14 This follows from the following facts: 1) Sα is a holomorphic Π1 embedded in the complex
hypersurface. Sα may be contracted (indeed the BPS solution contracts its to a point, the α–th
classical vacuum. Hence, by the adjunction formula, −2 ≤ [Sα]2 ≤ −1. Since its contraction leaves
a singularity, [Sα]2 = −2 by the Castelnuovo criterion [24].
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necessarily true that this basis corresponds to the set of simple roots of G. In some

region in coupling constant space (as in the Chebyshev example) this is true, and

the BPS quiver is just (an oriented version of) the Dynkin diagram of G. In other

regions, we may get a different basis of ΓG.

We may go from a basis of ΓG to any other one by a sequence of elementary

basis–mutations, in which we change just one element of the basis at the time. The

Weyl group Weyl(G) acts transitively on the set of roots; and Weyl(G) is generated

by the simple reflections. Therefore, the changes of bases in the root lattice are

obtained by repeated applications of basic modifications, in which we change just

one element of the basis, say γα, by replacing it with its image under an elementary

reflection15 sβ ∈Weyl(G), i.e.

γα → γ′α = γα − (γα · γβ)γβ

γδ → γ′δ = γδ δ 6= α.
(2.32)

The corresponding change of the BPS multiplicities is

|µ′α,δ| = γ′α · γ′δ = γα · γδ − (γα · γβ)(γβ · γδ) = |µα,δ| − |µα,β| · |µβ,δ| (2.33)

which must be precisely the wall crossing formula [1] at the wall of marginally stability

where

|Zα,δ| = |Zα,β|+ |Zβ,δ| (2.34)

(we shall prove this physically below).

Thus we see that the BPS chambers should, in this class of models, be identified

with the Weyl chambers, and the walls of marginaly stability with the Weyl walls.

2.4 The Coxeter element of the quiver

At a generic value of the marginal couplings t~n, the BPS quiver of a perturbed ADE

model, looks quite different from a Dynkin diagram (however, it is still a graphical

representation of the same Cartan matrix, albeit written in a different basis). One

may ask whether there is some invariant of the set of quivers one obtains by repeated

crossing at the various walls (this is called a mutation–class of quivers). According

15 The action on H2(M,Z) of this change of basis is called a Picard–Lefshetz transformation [23].
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to our general phylosophy such an invariant would be a property of the original

undeformed N = 2 SCFT.

In fact, the identification of BPS walls and Weyl walls makes it clear that —

for the deformed ADE models — the wall–crossing invariants are the same objects

as the Weyl chambers invariants. These last invariants are well–known, and we

may borrow them from the standard Lie algebra textbooks. The basic result is the

following (cfr. Bourbaki, [25] §.V.6, Proposition 1):

Proposition. The conjugacy class in Weyl(G) of the Coxeter element Cox is

independent of the ordered Weyl chamber.

More generally, in the mathematics literature there is a definition of the Coxeter

matrix, Cox, for a larger class of quivers, see, e.g., Definition III.3.14 and Propo-

sition VII.4.7 in ref. [26]. In these cases, Cox is always an integral m×m matrix,

where m is the number of nodes in the quiver. The conjugacy class of Cox is again

a quiver mutation–class invariant.

Below we shall introduce a generalized Cox for all two–dimensional (2, 2) theories,

and an even more exoteric extension for the 4d N = 2 theories. In all cases, the

requirement that Cox is invariant (up to conjugacy) determines the wall–crossing

formula, which is precisely the (unique) jump in the BPS multiplicities which keeps

Cox invariant. Thus, just as in the ADE examples, we have in full generality16

Cox invariant up to conjugacy ⇐⇒ WCF

Thus, the (conjugacy class of) Cox is the fundamental invariant characterizing

the UV SCFT fixed point. As always, physicists and mathematicians adopt opposite

sign conventions for the same objects, so in physics we use the invariant17 M :=

−Cox, which is called the quantum monodromy.

M may seem a rather unlikely SCFT invariant. We are more accustomed to

conformal invariants like the central charge c, the conformal dimensions and U(1)

16 We shall present general definitions, proofs, and further examples momentarily.
17 In reality, in most of the physical applications we know only the adjoint action of M on

the quantum operator–algebra. Since Cox and −Cox have the same adjoint action, we typically
identify them.

19



charges of primary operators hα and qα, or the operator product coefficients Cαβγ,

etc. So we may ask: How we extract the conventional SCFT invariants out of M?

The obvious conjugacy invariants of the m×m matrix M = −Cox are its eigen-

values λi. In the particular case of the Dynkin quiver of G, QG, (G = ADE) we

know that the eigenvalues are [25]

λi = exp

{
2πi

(
`i(G)

h(G)
− 1

2

)}
,

∣∣∣∣∣h(G) = Coxeter number of G,

`i(G) = exponents of G.
(2.35)

It is trivial to show that the UV U(1) charges of the elements φi of the chiral

ring RG are given by (`i(G) − 1)/h(G), i = 1, . . . , rank(G). For instance, for Am

we have W = Xm+1, so q(X) = 1/(m + 1) and the chiral primaries are Xk, for

k = 0, 1, 2, . . . ,m − 1, which have charge k/(m + 1). Then, by spectral flow (cfr.

eqn.(2.5)), the U(1) charges of the RR–vacua are

q(|φi〉) = q(φi)−
ĉ

2
=
`i(G)

h(G)
− 1

2
(2.36)

so, up conjugacy, we have the equality

M(QG) = e2πiR
∣∣∣
HE=0

, (2.37)

where R is the U(1) symmetry generator in the UV SCFT. The rhs of eqn.(2.37)

encodes the charges and conformal dimensions of the chiral primary fields which are

the usual invariants of an N = 2 SCFT. The above formula allows to pass from the

superconformal invariant given by the conjugacy class of M to the standard ones.

2.5 The WC group

The above situation may be rephrased in a form which applies to any N = 2 two–

dimensional model. To each value of the BPS angle θ ∈ {θα,β} (which are not

supposed to be necessarily distinct) we associate an element of SL(m,Z)

g(θ)α,β = δα,β −
∑

θα,β=θ

µα,β (2.38)
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where in the rhs we sum over the BPS multiplicities of all BPS states with the given

BPS phase θ. The subgroup of SL(m,Z) generated by all such matrices g(θ) is the

WC group.

We define the quantum monodromy matrix

M = T

2π∏
θ=0

g(θ), (2.39)

where the symbol T means that the product of matrices is ordered in increasing

‘time’, where we identify the BPS angle θ with periodic time.

Our previous discussion is equivalent to the following Fact:

Fact. The conjugacy class of M is a wall–crossing invariant, and conversely the

WCF is just the condition of invariance of its conjugacy class. Its eigenvalues are

equal to exp(2πiqα) with {qα} the U(1) charges of the supersymmetric vacua in the

UV fixed theory.

Let us check that we get the previous ‘Weyl reflection’–like WCF formula for the

particular case of a wall where just two BPS states get aligned (see figure)

γ

α

β

OOGG�����������������

??���������

g(θαγ) g(θβγ) g(θβα)

BPS geometry before the wall–crossing

γ

α

β

??���������

GG�����������������

OO

g(θβα) g(θβγ) g(θαγ)

BPS geometry after the wall–crossing

Equating the elements of SL(2,m) before and after the wall–crossing which are

written below the corresponding picture (to avoid cluttering, we write (1, 2, 3) instead
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of (α, β, γ))
1 0 −µ13

0 1 0

0 0 1




1 0 0

0 1 −µ23

0 0 1




1 0 0

−µ21 1 0

0 0 1

 =

=


1 0 0

−µ̃21 1 0

0 0 1




1 0 0

0 1 −µ̃23

0 0 1




1 0 −µ̃13

0 1 0

0 0 1

 (2.40)

which gives µ13 = µ̃13, µ21 = µ̃21, and

µ23 = µ̃23 − µ̃21 µ̃13, (2.41)

which is our WCF (now with signs). Notice, however, that the formulation given in

eqns.(2.38)(2.39) and the Fact is more general that this example, since it holds also

for the (non–generic) case in which many (even infinitely many) BPS states align at

the wall.

2.6 The three problems

From eqn.(2.39) and the Fact, we see that the integral SL(m,Z) matrix M ≡
T
∏2π

θ=0 g(θ) satisfies

det
[
z −M

]
=

∏
UV Ramond vacua

(
z − e2πi qα

)
, (2.42)

where the lhs is determined by two discrete IR data:

IR1. the BPS multiplicities µα,β ∈ Z;

IR2. a (cyclic) ordering of the BPS phase ≺.

Armed with eqn.(2.42) we may study three problems:

• Direct problem. We are given the UV SCFT, and in particular the U(1)

charges qα. We ask for the set of possible BPS spectra ({µα,β},≺) that we
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can get by deforming the superconformal theory by relevant operators. In this

problem, (2.42) is seen as an equation for the IR unknown ({µα,β},≺);

• Inverse problem. We are given the BPS data ({µα,β},≺) of a massive N = 2

theory. We determine the UV SCFT fixed point. In this case we see eqn.(2.42)

as an equation for the unknowns qα;

• The classification problem [1]. We consider both ({µα,β},≺) and qα as un-

knowns, and look for the most general consistent N = 2 theory. The equation

(2.42) says that the monodromy, M ∈ SL(m,Z), has a spectrum belonging to

the unit circle |λα|2 = 1, and this gives a (set of) Diophantine equations for the

integral entries of M, generalizing the famous Markoff equation for m = 3 [1].

Both in two and four dimensions, we are interested in all these three problems.

For what is known for the 2d classification problem see ref. [1].

3 Proofs: R–Twisting

Until now we have made many claims and suggested many natural correspondences,

but we have given no proofs. It is time to fill the gap. We shall give an argument

which works (essentially) also in 4d. It also shed light why physically a relation as

equation (2.42) should be true.

Clearly, it is enough to show the Fact stated in §. 2.5. It is a matter of connecting

the IR (zero temperature) quantities (µα,β,≺) with the UV (infinite temperature)

charges qα.

In supersymmetry one usually works as follows: one writes the quantity one is

interested to study as a protected index, independent of some class of parameters,

and then compute it in some convenient limit of these parameters.

In the present case we have two possibilities: we can use the BPS counting index

Qα,β(T ), and study its T → ∞ limit. This is the way the WCF was obtained in

the ‘90s [1, 21]. It is mathematically a very rigorous argument, but not physically

illuminating. Its 4d counterpart is even more technically sophisticated (it can be

done, in fact it was done by Gaiotto, Moore and Neitzke [4,5] in the QFT case, and

generalized to supergravity in ref. [27]). The second possibility is to devise an index

23



computing our UV data, and then look for a deformation of it that localizes on the

IR configurations we wish to capture.

3.1 The index Ik

We are interested in the eigenvalues of exp(2πiR) on the Ramond vacua of the UV

SCFT. We claim that for all k ∈ Z the following objects

Ik = Tr
[
e2πik R (−1)(k−1)F e−βH

]
(3.1)

where Tr[· · · ] means the trace over the Hilbert space of the UV SCFT quantized on

a circle (Ramond–Ramond sector) are susy indices. In fact the supercharges have

U(1) charges ±1
2
, therefore ∀ k ∈ Z, the operators e2πikR(−1)kF generate a symmetry

commuting with all supercharges. Ik is then a standard twisted Witten index [28].

Only the Ramond vacua contribute to Ik, so

Ik =
∑

α

e2πik qα , (3.2)

encode our UV data (U(1) charges of chiral primaries).

Our claim is equivalent to the equality [14]

Ik = tr

(
T

2πk∏
θ=0

g(θ)

)
, (3.3)

where g(θ) ∈ SL(2,Z) is as in §. 2.5 and tr(· · · ) stands for the trace of m × m

matrices.

3.1.1 An illuminating remark

As the notation T for the operator–ordering in θ suggests, and as the arguments

of section 3.3 would make precise, the angle θ is interpreted as a kind of periodic

Euclidean time. Then the rhs of eqn.(3.3) may be interpreted as a kind of quantum

partition function provided:

• our quantum system has a finite–dimensional Hilbert space H ' Cm, on which
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it acs an algebra of operators isomorphic to the matrix algebra M(m,C);

• we have the identificationT θf∏
θ=θi

g(θ)


α β

= 〈α, θf | β, θi〉 (3.4)

where in the rhs we have the quantum evolution amplitude from the initial

time θi to the final one θf (both sides of the equation are m×m matrices).

Now, for the LG models at hand, Cm is precisely the quantum Hilbert space

of the topological field theory obtained by twisting it. We expect that this will

remain true in the general case — including the four–dimensional one — namely

that the relevant quantum monodromy M will be realized as (a time–ordered product)

of quantum operators acting on the Hilbert space of the corresponding topological

quantum theory. However, the amplitude itself is not the topological one (as it is

obvious from the fact that it is explicitly time–dependent).

For other proofs of the identity (3.3) see refs. [1, 29].

3.2 A time–dependent supersymmetry

Since Ik is independent of the length of the circle L on which we quantize the the-

ory, we may take L → 0, i.e. the index Ik may be equivalently computed in the

dimensional reduced to 1d theory, i.e. in SQM. The computation in 2d dimension is

essentially the same (see the paper [14]), while the 1d notation allows to write more

compact expressions.

The index Ik is represented by a path–integral with the boundary conditions

Xi(β) = e2πikqi Xi(0) (3.5)

ψi(β) = e2πikqi ψi(0), (3.6)

under which the critical quasi–homogeneous superpotential is periodic. Using the
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periodicity of W , we may rewrite the action in the form

β∫
0

dt
(
Ẋi + ∂iW

)(
Ẋ∗

i + ∂iW
)

+ fermions. (3.7)

We may also rewrite the fields as

Xi(t) = e2πikqit/β Yi(t) (3.8)

ψi(t) = e2πikqit/β χi(t) (3.9)

where Yi(t) and χi(t) are strictly periodic. In the new variables, the bosonic action

becomes
β∫

0

∑
i

∣∣∣Ẏi + 2πikqi

β
Yi + e−2πikt/β ∂iW (Yi)

∣∣∣2 dt. (3.10)

Even though the original path-integral was defined in the conformal theory, where

W is quasi-homogeneous, the path-integral we have ended up makes sense even when

W is deformed by relevant terms away from the quasi-homogeneous limit. We thus

consider the above action for arbitrary deformed W (Yi)
18.

The resulting path integral is an invariant index. This follows from the fact that

it has still a supersymmetry, albeit not of the standard kind19: Our path integral is

invariant under a time–dependent generalization of the Parisi–Sourlas supersymme-

try [30–33].

Indeed, writing

hi = Ẏi + 2πikqi

β
Yi + e−2πikt/β ∂iW (Yi) (3.11)

18Rewriting this action in terms ofXi, ψi gives the usual LG Lagrangian with two differences: The
superpotential W is now time-dependent, and we have an additional term given by [−

∫
dt eiα ∂W

∂t +
c.c.].

19 The system is not invariant under time translations, so the square of a supersymmetric trans-
formation is not a translation in time.
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the bosonic action (3.10) becomes simply

SB =

β∫
0

∑
i

|hi|2 dt, (3.12)

while the fermionic action is

SF =

β∫
0

(
χ̃j χ̃j̄

) δhj̄

δYi

δhj̄

δYī

δhj

δYi

δhj

δYī

(χi

χī

)
dt. (3.13)

The action S = SB + SF is invariant under the supersymmetry

δYi = χi ε δY ī = χī ε (3.14)

δχ̃j = hj ε δχ̃j̄ = h∗j̄ ε (3.15)

δχj = 0 δχj̄ = 0. (3.16)

where hj (resp. h∗j̄) stands for the rhs of eqn.(3.11) (resp. its complex conjugate).

It is elementary to show that the above path–integral — which is the Witten

index for this peculiar time–dependent supersymmetric theory — is invariant under

the continuous deformations of the superpotential which do not change its leading

behavior at infinity.

3.3 Computing the path–integral

To compute the path integral, we replace W (Yi) by λW (Yi) and exploit its indepen-

dence from the continuous parameter λ.

In the limit λ → 0, corresponding to the extreme UV regime, our path integral

reproduces the original definition of the index Ik in the UV SCFT.

The limit λ → ∞ corresponds to the IR limit and should give the same answer
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for the index Ik. The bosonic action is rewritten as

β∫
0

λ2
∣∣∣1
λ

dYi

dt
+ 2πikqi

βλ
Yi + e−2πikt/β ∂iW (Yi)

∣∣∣2 dt, (3.17)

and, in the limit λ→∞, the path–integral should be saturated by the configurations

satisfying
1

λ

dYi

dt
+ 2πikqi

βλ
Yi + e−2πikt/β ∂iW (Yi) = 0. (3.18)

Let us consider the (Euclidean) transition amplitudes

〈Y ′
i , t0 + t | Yi, t0 − t〉 =

Y ′
i , t0−t∫

Yi t0+t

[d(fields)] e−SE (3.19)

from a configuration Yi at time t0 − t to a configuration Y ′
i at t0 + t defined by the

above path integral.

As λ → ∞ the rhs of eqn.(3.19) gets saturated by the solutions to eqn.(3.18)

having the right boundary conditions. We set τ = 2πkλ(t− t0)/β, θ̂ = 2πkt0/β, and

µ = β/(2πk). Then

dYi

dτ
+ i

qi
λ
Yi + µ e−i(τ/λ+θ̂) ∂iW (Yi) = 0. (3.20)

As λ → ∞, this equation becomes the one describing a BPS soliton of phase eiθ̂.

Writing Yi(τ) = e−iqiτ/λXi(τ),

dXi

dτ
+ µe−iθ̂

∑
q

ei(q−1)τ/λ ∂iWq(Xi) = 0. (3.21)

One looks for an asymptotic solution as λ → ∞. If t in the lhs of (3.19) is much

smaller than β, so that τ/λ� 1 everywhere along the paths contributing to the path

integral in the rhs of eqn.(3.19), the O(λ−1) corrections to the BPS soliton equation

(3.20) remain small as the fields go from one vacuum to the other. Measured in units

of τ , the small time 2t becomes of order O(λ), and hence infinitely long as λ→∞,

so there is plenty of τ time to complete the transition from one asymptotic vacuum
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to the other one interpolated by the given BPS soliton. Indeed, there is plenty

of rescaled time to accomodate a chain of BPS kinks, corresponding to multiple

jumps from one vacuum to the next one, provided all the involved solitons have the

(same) appropriate BPS phase. The saturating configuration differs from a classical

vacuum by a quantity of order O(e−Mτ ) = O(e−Cλ(t−t0)). Therefore, as λ → ∞
the saturating configuration is a vacuum, except for a time region of size O(1/λ)

(measured in ‘physical’ time t) around the special times t0 at which eiθ̂ = e2πikt0/β is

the phase of a BPS soliton.

In conclusion, in the limit λ→∞, for almost all times t, t′, with t− t′ � β, one

may effectively replace the quantum amplitude (3.19) with a finite m × m matrix

(where m is the number of supersymmetric vacua)

〈Yi, t
′|Yi, t〉 → (gt′,t)

α
β = δα

β − (µt′,t)
α
β (3.22)

where the integer −(µt′,t)
α
β counts with signs the number of different BPS kink

chains connecting vacuum β to vacuum α though a sequence of intermediate vacua

of the form

β ≡ β0 → β1 → β2 → · · · → βm ≡ α, (3.23)

where each vacuum transition βi → βi+1 is triggered by a BPS state of the appro-

priate phase which is monotonically increasing with ‘time’. The signs arise because

we are computing a (generalized) Witten index which is an integer, but may be a

positive or negative (for the sign rule, see ref. [14]).

If the time interval t′ − t is small enough that the angular sector(
e2πikt/β, e2πikt′/β

)
(3.24)

contains only one BPS phase eiθ we have(
gt′,t

)α
β

=
(
g(θ)

)α
β
. (3.25)

where g(θ) ∈ SL(m,Z) is as in eqn.(2.38), and the BPS phase θ gets effectively

identified with Euclidean time up to a finite rescaling

θ =
2πk

β
t. (3.26)
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A period in time, β, corresponds to a BPS angle 2πk. Hence the full path integral

Ik = Tr〈Y, β|Y, 0〉 = tr

(
T

2πk∏
θ=0

g(θ)

)
, (3.27)

which is our claim. More precise derivations in references [1, 14,29].

The rhs of the above equation is deformation–invariant and hence does not jump

across a wall. However the various factors in the trace get reordered (because the

BPS phase order changes) and the BPS multiplicities µ should jump to keep the full

expression invariant. See §. 2.5.

The above argument is based on two main ideas:

1. twisting the original theory by the action of the R–symmetry in a time–

dependent fashion;

2. the identification of time and BPS phase. Thus, the time–ordered prescription

T , which is automatically implemented by the path integral, reproduces the

order in increasing BPS phase of the BPS group elements g(θ) which is the

tricky aspect in the WCF.

The same R–twisting strategy works in d = 4, at least formally. Before going to

4d we pause a while to discuss some mathematical technology we will be useful for

analyzing the explicit 4d examples and which helps to clarify some deep, beautiful,

and unexpected correspondence between the 2d and 4d theories.

4 Interlude: equivalence and products of quivers

4.1 Equivalence classes of 2–acyclic quivers

In the mathematics literature on (2–acyclic) quivers there is a notion of equivalence

(mutation–equivalence). When interpreted as BPS quivers, two mutation–equivalent

quivers, are in particular wall–crossing equivalent, i.e. they arise from the same UV

theory. The inverse statement is not true: mutation–equivalence is (generally) finer

than 2d wall–crossing equivalence. However, the result of the mathematical theory

30



are helpful in organizing the physical computation, and are crucial in making the

connection between the 2d and 4d corresponding models. In the context of quiver

gauge theory the mutation–equivalence of quivers is known as Seiberg duality.

One defines a basic mutation mα(Q) of the quiver Q at the α–th vertex by

performing the following two operations [34,35]:

1. reverse all arrows incident with the vertex α;

2. for all vertices β 6= γ distinct from α, modify the numbers of arrows between

β and γ as shown in the box

Q mα(Q)

β γ

α

//
r

��
??

??
?

s

??����� t

β j

α

//
r+st

����
��

�
γ

__?????s

β j

α

//
r

����
��

�
γ

__?????s

β γ

α

//
r−st

��
??

??
?

s

??����� t

where r, s, t are non-negative integers, and an arrow β
l−→ γ with l ≥ 0 means

that l arrows go from β to γ while an arrow i
l−→ j with l ≤ 0 means |l| arrows

going in the opposite direction.

Notice that the definition implies that mα is an involution:

(mα)2 = identity. (4.1)

Two quivers are said to be in the same mutation–class (or mutation–equivalent) if

one can be transformed into the other by a finite sequence of such quiver mutations.

It is natural to identify quivers which differ only by a relabelling of the nodes. So

a permutation of the node labels α = 1, 2, . . . ,m may be also seen as a quiver–

mutation.

From the diagrams in the box, we see that a basic quiver mutation is, for a BPS

quiver, a special case of a wall–crossing transformation, in which the node α crosses

31



once all the possible marginal stability walls (in a direction defined by the orientation

of the arrows).

Therefore, any wall–crossing invariant should be, in particular, a quiver mutation–

invariant. This is why the theory of the latter invariants comes to help. The Coxeter

element (and its variants) is an example.

4.1.1 A remark on the Z2 cocyle

As we have noticed above, the BPS quiver Q of a given N = 2 model is unique only

up to µα,β → sα µα,β sβ. In particular, if the underlying un–oriented graph has no

closed loops — as it is the case for the BPS quivers of any deformed ADE minimal

models — all orientations should be equivalent. Indeed, the corresponding quivers

are in the same mutation–equivalence class, see Proposition 9.2 in the second paper

of ref. [34].

4.2 Products of 2–acyclic quivers

Given two (2–acyclic) quivers Q1 and Q2 we may form a new quiver by taking their

‘product’. In fact, in the math literature one finds many different notions of product

of quivers [35]. For our present purposes (in 4d) two products are relevant the square

one, Q1�Q2, and the triangle one Q1 � Q2. The two products are in the same

mutation class.

We may give a physical interpretation to these quiver products [15]. Let Q1, Q2

be the BPS quivers of the N = 2 specified by the superpotential W1(Xi) and W2(Yj),

respectively. The square product corresponds to the BPS quiver of the theory with

decoupled superpotential W (Xi) + eiαW (Yj) where the phase eiα is chosen general

enough for no BPS state of the W1(Xi) model to be aligned with a BPS state of

a the W2(Yj) model. The canonical square product comes with a particular sign

convention. E.g. if we have two ADE Dynkin quivers — which we denote by the

same symbol as the corresponding Lie group — the quiver G�G′ is oriented in such

a way that each row/column of nodes sink and sources alternate, while the arrow

form a closed cycle around each ‘plaquete’ (see figure 1 for the Am�An) case.

Notice that G′�G = (G�G′)∨, where ∨ denotes the dual quiver (the one ob-

tained by reversing all arrows).
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1, 1 2, 1 3, 1 4, 1 · · · · · · m, 1

1, 2 2, 2 3, 2 4, 2 · · · · · · m, 2
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// oo // oo

Figure 1: The Am�An quiver.

The triangle product has a similar definition but with the phase eiα chosen in

such a way of getting suitable alignements between the BPS states of the two sectors

of the decoupled model. For Am � An, see figure 2.

Thus, from the 2d QFT viewpoint, square and triangle products are obtained one

from the other by (repeated) wall–crossing.

5 4d: a simple set–up [6, 15]

We start from M -theory on flat space

R4 × C2
x,y × (Cz × Rp)

(subscripts give the coordinates we will use on the space), with anM5-brane wrapped

on the locus

R4 × Σ× {z = 0, p = 0}
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Figure 2: The Am � An quiver. Mutation at the nodes ⊗ gives back Am�An.

where Σ is a (non-compact) Riemann surface

Σ = {f(x, y) = 0} ⊂ C2
x,y.

This gives an N = 2 theory in the last R4 [36, 37], where Σ is the Seiberg-Witten

curve, and λ = ydx is the Seiberg-Witten differential.

We compactify on two circles, thus replacing R4 by

R4  R2 × S1 × S1,

and further modify the geometry as follows. Let g be some symmetry of C2
x,y pre-

serving Σ (thus g induces a symmetry of the N = 2 theory in R4.) As we go around

the first circle, we make a twist of C2
x,y by g. We write the resulting 11d spaceM11
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and M5–brane world–volume as

M11 : R2 × S1 ×
(
S1 ×g C2

x,y

)
× (Cz × Rp) (5.1)

M5: R2 × S1 × (S1 ×g Σ)× {z = 0, p = 0}, (5.2)

where S1×g stands for the mapping torus of g.

Let us view S1 as the small M -theory circle. Then, reducing to Type IIA, we get

the 10d space and D4 brane world–volume

M10 : R2 ×
(
S1 ×g C2

x,y

)
× (Cz × Rp) ≡

(
R2 × Cz

)
×K (5.3)

D4: R2 × (S1 ×g Σ)× {z = 0, p = 0} =
(
R2 × {z = 0}

)
× L. (5.4)

Where

K =
(
S1 ×g C2

x,y

)
× Rp (5.5)

L =
(
S1 ×g Σ) ⊂ K. (5.6)

We wish do indentify K with a Calabi–Yau 3–fold, and L ⊂ K with a Lagrangian

submanifold. However we do not yet specify g or the Calabi-Yau structure on K.

Next, we now consider the topological A model on K, with a brane on L.

By the general properties of the topological strings, the open topological partition

function may be written as a trace in the Hilbert space of Chern–Simons theory

quantized on Σ,

Zopen
top (K,L) = TrCS

[
Mg

]
(5.7)

where the operator implementing the g–twist has the form

Mg = T (
∏
α

Oα) (5.8)

with the Oα the operators induced by the instanton corrections in the given g–twisted

geometry.
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By gluing together two such geometries we see that

Mgg′ = Mg Mg′ (5.9)

Mid = 1. (5.10)

Then assume g has finite order,

gr = 1.

we get

M r
g = 1. (5.11)

5.1 N = 2 SCFT: first examples

Let us specialize to the case where Σ is singular and our theory in R4 is actually an

N = 2 SCFT. g is chosen to be an appropriate element of the R-symmetry group of

the SCFT, or, when there are extra symmetries, a certain fractional power of it.

The simplest class of examples are the model with (singular) SW curves

f(x, y) = ym − xn (5.12)

which correspond to 4d SCFTs. The case (m,n) = (2, 3) and its generalization to

(2, n) are the original SCFTs studied by Argyres-Douglas [38]. In this case, fol-

lowing [39] we assign R-charges to the coordinates (x, y), in such a way that f is

homogeneous (to get a symmetry) and dx ∧ dy has charge 1 (to have a canonically

normalized R–symmetry). We take g = exp(2πiR) (i.e. the U(1) monodromy), or

explicitly,

g : (x, y) 7→ (ωmx, ωny), with ωm+n = 1. (5.13)

It is easy to see that the order r of g is precisely

r =
(m+ n)

gcd(m,n)
. (5.14)

In Table 2 we list the orders r of the R–monodromies g = exp(2πiR) of all the

singular SW curves f(x, y) = 0 where f(x, y) is an ADE canonical singularities (of
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singularity f(x, y) r = order g

An−1 y2 − xn

{
n n odd

n/2 n even

Dn xn−1 + xy2

{
n n odd

n/2 n even

E6 x3 + y4 7

E7 x3 + xy3 5

E8 x3 + y5 8

Table 2: The order of the R–monodromy for the ADE Argyres–Douglas theories.

course, they are the same functions we used as UV superpotentials in the 2d minimal

models). It is easy to show (for details see ref.) that the dimensions and R–charges

of the SCFT operators are all integral multiples of 1/r.

For defineteness, let us return to the example (5.12). Writing ζ = ep+iϕ, K may

be seen as a C2–bundle over C×
ζ , locally identified with C×

ζ ×C2
x,y, with the transition

function

(ζ, x, y) ∼ (e2πiζ, ωmx, ωny).

Now we can specify the Calabi-Yau structure of K. We choose local complex coor-

dinates to be

(w1 = x+ y, w2 = y − x, ζ)

with the holomorphic 3-form

Ω = dζ ∧ dw1 ∧ dw2

and Kähler form

k = i
dζ ∧ dζ
ζζ

+ i dwi ∧ dwi.

Note that even though wi are not global coordinates, Ω and k is globally defined

(indeed dwi ∧ dwi = dx ∧ dy + dx̄ ∧ dȳ which is invariant under g.)
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One can check directly that our brane, given locally by

L = Σ× {|ζ| = 1} ⊂ C2
x,y × C×

ζ ,

is Lagrangian as required.

5.2 Deforming away from the SCFT point

The curve Σ is singular. We deform the theory away from the conformal point,

replacing Σ with the smooth curve

Σ̃ = {ym − xn +
∑

0≤k<n, 0≤l<m

ck,lx
kyl = 0} ⊂ C2

x,y. (5.15)

In the four-dimensional language ck,l are parameters which move the theory away

from the conformal point (Coulomb branch vevs and/or mass deformations).

Naively this deformation would not be allowed: Σ̃ is not g-invariant, precisely

because the R–symmetry is only present at the conformal point. The construction

we used in 2d suggests a way around this difficulty: make a ‘time’–dependent R–

twist, i.e. replace f by

f̃ = ym − xn +
∑

0≤k<n, 0≤l<m

ζ
mn−km−ln

m+n ck,lx
kyl.

The brane L = {f̃ = 0} is now nonsingular. It is convenient to change variables to

x̃ = ζ
m

n+mx, ỹ = ζ
n

n+my.

The new x̃, ỹ are globally defined, and

f̃(x̃, ỹ) = ζnm(ỹm − x̃n +
∑

0≤k<n, 0≤l<m

ck,lx̃
kỹl).

So at any fixed ζ, L looks complex-analytically like a copy of the deformed Seiberg-

Witten curve Σ̃ from (5.15). Moreover, at fixed ζ the Kähler form k restricts to

−i k = dwi ∧ dwi = ζ dx̃ ∧ dỹ − c.c.
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The BPS states correspond to holomorphic curves C ⊂ K ending on L — where

“holomorphic” refers to the complex structure on K, in which w1, w2, ζ are complex

coordinates. Such a holomorphic curve necessarily sits at some fixed ζ = eit, has

boundary on Σ̃, and has20∫
C
k = i ζ

∫
C
dx̃ ∧ dỹ = i ζ Z > 0, (5.16)

where Z is the BPS central charge. We thus see that the phase of the corresponding

BPS charge correlates with the phase of ζ, i.e. the choice of point θ1 on S1. Thus,

the situation is exactly parallel to that in 2d R–twisting.

As before, let us label the various holomorphic curves C by the index α; they sit

at various ζα = eitα . The topological partition function is [15]

Zopen
top (K,L) = TrMg

where

Mg = T
(∏

α

Oα(γ, s)(tα)
)
. (5.17)

The rhs is a time–ordered product of contributions from the 4d BPS states. Since

time and BPS phase are correlated (just as in 2d R–twisting) this, again, is order in

BPS phase.

It remains to describe the operators Oα which are operators acting on the Hilbert

space of the SL(1,C) Chern–Simons theory quantized on Σ̃.

Remark. Notice that the SL(1,C) Chern–Simons theory is precisely the TFT

on whose Hilbert space our monodromy operators act, in perfect analogy with the

2d case.

The operator algebra is as follows. We have the charge lattice Γ ∈ H1(Σ̃,Z)

endowed with a skew–symmetric pairing 〈γ, γ′〉, namely the intersection. For each

element γ ∈ Γ we have an operator Xγ, corresponding to the SL(1,C) holonomy

along the cycle γ. The quantization of Chern–Simons produces the quantum torus

20 To get this equation we use the fact that dw1 ∧ dw2

∣∣
C = 0.
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algebra associated with the lattive Γ, TΓ:

Xγ Xγ′ = q〈γ,γ′〉 Xγ′ Xγ (5.18)

Xγ+γ′ = N [Xγ Xγ′ ] ≡ q−〈γ,γ′〉 Xγ Xγ′ , (5.19)

where q = e−~ and N [· · · ] denotes ‘normal order’.

The standard results of topological string theory then gives

Oγ = Ψ(qsγ Xγ; q)
Ω(γ,sγ) ∈ T×Γ (5.20)

where (as in 2d)

Ω(γ, sγ) =

{
signed ‘number’ of BPS stateswith charge γ,

spin sγ, and BPS phase exp(iθγ) ≡ Zγ/|Zγ|
, (5.21)

and

Ψ(X; q) =
∞∏

n=0

(1− qn+1/2X) ‘quantum dilogarithm’ . (5.22)

Putting everything together, the quantum monodromy M(q), which was a finite

matrix in 2d, is now a quantum operator in a separable Hilbert space,

M(q) = T
∏

θγ

Ψ(qsγ Xγ; q)
Ω(γ,sγ) ∈ T×Γ , (5.23)

but has otherwise the same abstract structure. Formally, we just passed from

SL(m,Z) to a (subgroup of) SL(∞,Z).

As in the case of the 2d R–twisting, the conjugacy class of the quantum mon-

odromy M(q) is independent of the (relevant/marginal) deformations of the theory,

and hence a wall–crossing invariant. In fact, the (refined) Kontsevich–Soilbelmann

(KS) wall–crossing formula for d = 4 N = 2 field theory [2] is equivalent to this

statement

KS WCF ⇐⇒

∣∣∣∣∣the conjugacy class of M(q) in T×Γ
is a chamber–mutation invariant

(5.24)
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In this way R–twisting gives us a physical argument for the KS WCF.

Therefore, the basic wall–crossing invariants we wish to study are

TrCS M(q)`, (5.25)

where a priori ` ∈ Z but we shall show that in many models we get good invariants

also taking certain fractional values of ` of the form ` = n/h where h is the Coxeter

number of some symmetry group acting on the non–singular SW curve Σ̃.

According to our general phylosophy, the invariants TrCS M(q)` should be seen as

property of the parent UV SCFT.

5.2.1 A word of caution

Contrary to the 2d case, in 4d there is no known precise construction of a time–

dependent topological supersymmetry. Thus, while when Σ is singular our brane

L is Lagrangian, this is no longer the case after the deformation. Then, while the

argument for the invariance of the conjugacy class of M(q) is still valid (since it

depends only on the IR asymptotics of the path integral21), it is no longer true that

what we are computing is a protected index, as it is obvious from the fact that its

depends explicitly on q, that is on ~.

Nevertheless, the claim that the invariants (5.25) probe properties of the UV

SCFT rests on their universality under all its deformations, not on their nature of

indices. This is a lucky turn: we get as WC invariants interesting functions (with

remarkable modular properties) rather than boring numbers.

The drawback is that it is less clear how to interprete this invariants in the parent

SCFT. However, we shall see that they have rather magical properties, and encode

many physical properties of the critical theories, as well as yet to be descovered

wonders.

21 Besides, there are by now many proofs of the KS WCF, which is verbatim the invariance of
M(q).
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6 The three problems in d = 4

What is our quantum monodromy M(q) good for?

Again, as in d = 2 we may think of three different problems.

Direct problem. For a few cases, as for the perturbed An model the BPS

spectrum is known (in some ‘canonical’ chamber, corresponding to the ‘Chebyshev’

chamber of d = 2) [40]. We may use eqn.(5.23) to determine the properties of the

UV theory.

Inverse problem. For many models, including the ADE Argyres–Douglas (and

the more general to be discussed momentarily) we know the order of the monodromy

r. Explicitly M(q)r = 1 reads(
T
∏

γ
Ψ(Xγ; q)

Ω(γ)
)r

= Identity on T×Γ for all q ∈ C× (6.1)

which is quite a remarkable and strong equation. In the inverse problem the un-

knowns are the BPS multiplicities Ω(γ) (and BPS phase–order). Solving this opera-

tor equation we get the BPS spectrum (up to WCF mutation equivalence) out of the

totally trivial UV datum r. Using this technique we have confirmed the previously

known BPS spectra and computed (infinitely many) new ones;

Classification. Find all integers {r,Ω(γ)γ∈Γ} such that the above identity holds

for all q ∈ C×. In particular, it must hold as q1/2 → ±1 (classical limits); already

in this limit — and even restricting oneself to the very simplest situations — the

classification problem seems to be related to many deep theories such as the Bloch

group in Number Theory [41], the Nahm conjectures in RCFT [42], ect.

Before going to discuss the above problems, it is better to enlarge both our supply

of (simple) examples and the set of objects to be studied. We do this in the next

two subsections.

6.1 A more general class of models

The previous ADE AD theories may be seen as the result of the compactification of

Type IIB on the local CY

f(x, y) + u2 + v2 = 0. (6.2)
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We may consider the compactification on more general hypersufaces

W (x, y, u, v) = 0 (6.3)

If the ‘superpotential’ W is quasi–homogeneous, W (λqixi) = λW (xi), (∀λ ∈ C)

the hypersurface is singular. It corresponds to a singularity at finite distance in CY

moduli space iff ĉ := 4 − 2
∑4

i=1 qi < 2 [43], where ĉ is the central charge of the 2d

model defined by the superpotential W . Thus, the condition is
∑4

i=1 qi > 1.

The ADE singularities, eqn.(6.2) automatically satisfies the condition. A more

general class of solutions to this condition are

W (x, y, u, v) = WG(x, y) +WG′(u, v) (6.4)

where G = ADE and WG(x, y) is the canonical singularity associated to the given

simply–laced Lie algebra as in the second column of Table 2. We call the corre-

sponding 4d field theories the (G,G′) N = 2 SCFT, the previous ADE models being

(G,A1). As we already saw, for the (An−1, Am−1) model, xn− ym +u2 + v2 the order

r of the quantum monodromy is

r = (n+m)/ gcd(n,m), (6.5)

while in the general case we have

r =

1
4

h(G)+h(G′)
gcd(h(G)/2,h(G′)/2) G,G′ = A1, D2n, E7, E8

h(G)+h(G′)
gcd(h(G),h(G′)) otherwise,

(6.6)

where h(G) denotes the Coxeter number of the Lie algebra G.

6.2 The fractional monodromy Y(q)

Assume we may deform the UV singular curve Σsing to a smooth curve (or, more

generally, a smooth local 3–CY) while preserving some discrete Zh R–symmetry.

This assumption selects a class of deformations, and hence a class of compatible
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BPS chambers, and the objects we costruct will be wall–crossing invariant only with

respect to wall–crossing between these Zh–symmetric chambers. Nevertheless these

restricted invariants will turn out to be very interesting.

The symmetry Zh is required to act on the central charge as Z → e2πi/hZ and

on the quantum torus algebra (i.e. on the algebra of CS quantum operators) TΓ by

some operator U Xγ → U Xγ U
−1 with Uk = 1.

For instance, for the smooth deformation of the (Ah−1, An−1) curve,

yh + xn + a1x
n−1 + a2x

n−2 + · · ·+ an = 0, (6.7)

we may consider the symmetry

y → e2πi/hy, x→ x λ ≡ y dx→ e2πi/h λ. (6.8)

Then the element of the quantum KS group T×Γ associated to the angular sector

(θ′, θ),

KS(θ′, θ) = T
θ′∏

θBPS=θ

Ψ(Xγ; q)
Ω(γ), (6.9)

has the Zh symmetry property

KS(θ′ + 2π/h, θ + 2π/k) = U KS(θ′, θ)U−1. (6.10)

Taking the product of all KS elements for the angular sectors (2π(k + 1)/h, 2πk/h,

M(q) =
(
U−1KS(2π/h, 0)

)h
(6.11)

The operator

Y(q) = U−1KS(2π/h, 0) (6.12)

is what we mean by the quantum 1/h–monodromy since

M(q) = Y(q)h. (6.13)
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6.3 Back to the three problems

For the (simple22) class of (G,G′) theories the seemingly impossibly hard ‘Diophan-

tine’ equation23(
T≺
∏

γ
Ψ(Xγ; q)

Ω(γ)
)r

= Identity on T×Γ for all q ∈ C× (6.14)

may be put in a ‘canonical’ form using the machinery of cluster algebras [34,35]. Not

only this technology allows to manage the problem, but also uncovers some beau-

tiful and totally unexpected connections with the corresponding d = 2 BPS/SCFT

problems (see ref. [15] for a detailed discussion).

For simplicity, I illustrate the ideas in the language of the inverse problem. I

limit myself to the (G,G′) models (where G,G′ = ADE) which are the only ones for

which the WC invariants are understood in some detail.

In the inverse problem we are given the order r of the quantum monodromy

M(q) (which, in fact, we know for all (G,G′) models, see eqn.(6.6)) and we wish to

compute the BPS multiplicities24 Ω(γ) (for which no direct computation exists in the

literature, but for the (Am, A1) models in some special BPS chamber [40]) as well as

their phase–order ≺.

In practice, we may approach the formidable looking equation (6.14) in two steps:

1. find a particular solution;

2. argue that it is the only solution up to KS WCF.

Cluster algebras give a particular solution and suggests it is the unique one (up

to WC equivalence).

22 These N = 2 theories are simple in what they have in the spectrum only BPS hypermultiplets
and no BPS vector multiplets.

23 We write T≺ to make explicit the dependence of the phase–order T from the cyclic ordering
≺ of the BPS phases.

24 For this class of models, we may omit the datum of the spin of the BPS states since they are
all ‘scalar’ hypermultiplets.
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7 Cluster algebras

7.1 Quivers again

To the quantum torus algebra TΓ defined by the lattice Γ with skew–symmetric

pairing 〈·, · · · 〉 ∈ Z one naturally associates a 2–acyclic quiver QΓ by the rules

• to each generator of Γ, γi, (i = 1, 2, . . . , `) associate a node of QΓ;

• if 〈γi, γj〉 > 0 we draw 〈γi, γj〉 arrows from node i to node j;

• if 〈γi, γj〉 < 0 we draw |〈γi, γj〉| arrows from node j to node i

In other words, one sets

Bij = −Bji ≡ 〈γi, γj〉 exchange matrix of the quiver QΓ (7.1)

For the particular case of an ADE Argyres–Douglas model, (G,A1), the quiver

QΓ is just the Dynkin quiver, that is the Dynkin diagram with arrows oriented in

such a way that the nodes are, alternatively, sinks and sources. Needless to say, it

is the same as the BPS quiver of the 2d N = 2 model with the superpotential W

equal to the defining equation of the Seiberg–Witten curve.

For the general (G,G′) model the quiver (in some ‘generic’ chamber) is equal to

the square product of the G, G′ Dynkin quivers

G�G′ = (G′�G)∨ B∨ = −B, (7.2)

that is, again, the BPS quiver of the 2d LG model with superpotential the defining

equation of the local CY 3–fold

W (x, y, u, v) = WG(x, y) +WG′(u, v) = 0. (7.3)

To each node of QΓ we associate the corresponding generator of the quantum

torus algebra TΓ

Xi ≡ Xγi
. (7.4)
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7.2 Quantum mutations

A quantum mutation in TΓ is an (ordered) sequence of elementary mutations [44].

The elementary quantum mutation, Qk, at the k–th node of QΓ is the composition

of two transformations:

1. a basic quiver mutation mk at the k–th vertex (as introduced in the context

of 2d wall–crossing). As we discussed in the context of the Weyl group, mk is

identified with a identified with a change of the (root) lattice Γ. This change

of basis in Γ corresponds to choosing a different set of generators of the algebra

TΓ according to the rule

Xi → X ′
i = q−〈γi,γk〉 [〈γi,γk〉]+/2 Xi (−Xk)

[〈γi,γk〉]+ i 6= k (7.5)

Xk → X ′
k = X−1

k where [a]+ ≡ max{a, 0}. (7.6)

Notice that m2
k is the identity on the quiver, but a non–trivial transformation

on the set of generators of TΓ

m2
k : Xi 7→ (−1)〈γ,γk〉 q−〈γi,γk〉2/2XiX

〈γi,γk〉
k . (7.7)

Remark. mk is not an automorphism of the algebra TΓ; a composition of mk’s

is an algebra automorphism iff it is the identity on the underlying quiver since

in this case it leaves invariant the commutation relations.

2. the adjoint action on TΓ of the quantum dilogarithm25 of Xk ≡ Xγk

Xγ 7→ Ψ(Xk; q)
−1Xγ Ψ(Xk; q). (7.8)

Thus, explicitly,

Qk(Xγ) = Ad[Ψ(Xk; q)
−1]mk(Xγ) ≡ mk

(
Ψ(X−1

k ; q)−1Xγ Ψ(X−1
k ; q)

)
i.e. Qk = mk ◦ Ad[Ψ(X−1

k ; q)].
(7.9)

25 In ref. [15] one uses a different sign convention for the argument of the quantum dilogarithm.
The two conventions are related by a different choice of the sign of the square root

√
q. This explains

the ‘strange’ sign in eqn.(7.5).
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For our present purposes, it is important that the elementary quantum mutations

are involutions26 of TΓ

Q2
k = identity on TΓ, (7.10)

and hence the elementary mutations Qk may be seen as the analogue of the ‘elemen-

tary reflections’ sk generating the Weyl group Weyl(G) for the 2d deformed ADE

models, cfr. §. 2.3.2.

From eqn.(7.9) one gets for a generic quantum mutation27

−→∏
s

Qks =
−→∏

s

mks ◦ Ad

−→∏
s

Ψ

(−→∏
`≤s

mk`

)−1(
Xks

)
; q

−1  , (7.11)

and hence −→∏
s

Qks(Xγ) =
−→∏

s

mks

(
U−1Xγ U

)
, (7.12)

where U ∈ TΓ is a product of the form
∏

s Ψ(Xγs ; q)’s for certain γs ∈ Γ. If, moreover,

the quiver mutation
−→∏

smks acts as the identity on the underlying quiver, it can be

represented as the adjoint action of some operator V ∈ TΓ and eqn.(7.12) reduces

to

Xγ 7→ V U−1Xγ U V −1. (7.13)

26 Proof: One has

Q2
k(Xγ) = m2

k

(
Ψ(Xk)−1Ψ(X−1

k )−1XγΨ(X−1
k )Ψ(Xk)

)
= m2

k

(
Θ(−Xk; q)−1Xγ Θ(−Xk; q)

)
,

where Θ(z; q) =
∑

m∈Z z
mqm2/2 and we used Jacobi triple product. From the identity

Xγ Θ(Xk;−q) = q−〈γ,γk〉2/2 Θ(Xk; q) (−Xk)−〈γ,γk〉Xγ

and using eqn.(7.7) one gets

Q2
k(Xγ) = (−1)〈γ,γk〉 q−〈γ,γk〉2/2 m2

k

(
X
−〈γ,γk〉
k Xγ

)
= q−〈γ,γk〉 X

−〈γ,γk〉
k Xγ X

〈γ,γk〉
k ≡ Xγ .

27 Here and below the over–arrow means that the non–commuting elementary mutations Qk are
supposed to be suitably ordered; an over–arrow in the opposite direction stands for the opposite
order of the operators.
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7.2.1 Classical limits

As q1/2 → ±1, the algebra TΓ becomes classical (i.e. commutative), in fact the

algebra of functions on the character torus of Γ, and correspondingly the quantum

mutations reduces to the classical ones (more widely studied in the mathematical

literature) which are rational maps.

7.3 Cluster mutations vs. our ‘Diophantine’ equation

As shown in eqn.(7.12), a quantum cluster mutation

M =
−→∏
Qk (7.14)

may be written as the corresponding base change in TΓ times the adjoint action of

a product of Ψ’s with arguments Xγs (for certain γs ∈ Γ)

M =

(−→∏
mk

)
◦
∏

s

Ad−1
[
Ψ(Xγs ; q)

]
. (7.15)

Then M is a solution to our ‘Diophantine’ problem, eqn.(6.14) — namely, it is a

candidate quantum monodromy M(q) for the given N = 2 model with UV order r

— if and only if the following three conditions are fulfilled:

M1 (triviality of the underlying quiver–mutation): the quantum cluster–mutation

M has to be written as a product of adjoint actions of Ψ(Xγ; q)
±1, since the ac-

tion of the quantum monodromy M(q), eqn.(5.23), on the operator algebra TΓ

is just an (ordered) product of adjoint actions of quantum operators of the form

Ψ(Xγ; q)
±1. In other words, the corresponding product of base changes/Seiberg

dualities,
−→∏
mk (taken in the same order), must be the identity on TΓ;

M2 (BPS phase ordering): M(q) is not just any product of quantum diloga-

rithms, it is a T–ordered product. So, if we wish to reinteprete a quantum

cluster–mutation M satisfying M1 as a quantum monodromy, there must ex-

ist a consistent assignement of BPS phase θ(γs) for each charge vector γs ∈ Γ
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appearing in the product

M = Ad−1

[
T
∏

s

Ψ
(
Xγs ; q

)]
(7.16)

such that28:

1. the cyclic order of the operators Ψ(Xγs ; q) in the rhs of eqn.(7.16) corre-

sponds to the cyclic order ≺ of the corresponding phases θ(γs);

2. one has

θ(n γs) =

{
θ(γs) mod 2π n > 0

θ(γs) + π mod 2π n < 0.
(7.17)

In particular, a given factor Ψ(Xγs ; q) cannot appear more than once at

different BPS angles;

3. assume γs1 ≺ γs2 . Then, whenever we have a relation of the form

n3 γs3 = n1 γs1 + n2 γs2 , ni ∈ N+, (7.18)

we must have

θ(γs1) ≺ θ(γs3) ≺ θ(γs2). (7.19)

M3 (finite order): M r = 1 on TΓ for the given order r ∈ N , while M k 6= 1 for

1 ≤ k < r.

Remark. In practice, one finds solutions to conditions M1 and M3 and then

checks if the solution also satisfies M2. Indeed, M2 is needed to eliminate some

spurious trivial solutions to conditions M1, M3. E.g. if M is a solution to M1, M3

and ` ∈ N is coprime to r, M ` is another solution. However it cannot be consistently

interpreted as the quantum monodromy because the same BPS state of charge γs

repeats itself ` times at ` different angles. The only consistent interpretation is that

M ` is the product of the Kontsevich–Soibelman group elements in the angular sector

(0, 2π `), that is the `–th power of the quantum monodromy.

28 Important remark: two phase–orderings differing only by the inversion of two factors
Ψ(Xγ1), Ψ(Xγ2) for commuting (that is, mutually local) elements Xγ1 , Xγ2 of TΓ are considered
to be equivalent.
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7.4 Cluster–mutations and Zh–symmetric chambers

Furthermore, assume there is a cluster quantum mutation Y =
∏

sQks such that

M = Y h, h ∈ N, (7.20)

and, moreover, that the corresponding quiver–mutation
∏

smks acts as the identity

on the underlying quiver, so that it may be written as the adjoint action of some

U ∈ TΓ. Then Y is naturally identified with a 1/h–fractional monodromy. Indeed,

the quantum mutation Y may be written as

Y (Xγ) = Y−1Xγ Y, (7.21)

where (cfr. eqn.(7.15))

Y = (a base change in TΓ)× (ordered product of Ψ(Xγ; q)
±1)

= U−1 × KS(2π/h, 0),
(7.22)

and moreover that which has precisely the form predicted for the fractional mon-

odromy in presence of a Zh unbroken symmetry acting on the central charge Z.

In presence of a candidate 1
h
–fractional monodromy Y , to check M2 it is enough

to check the action of U and the order in the wedge (0, 2π/h).

The cluster algebras are quite smart mathematical structures. Informally speak-

ing, they combine in a cleaver way the 2d and the 4d wall–crossing transformations

associated to the same 2–acyclic quiver, getting objects with nicer algebraic (and

physical) properties. It seems that the cluster algebras know when there exists spe-

cial BPS chambers with additional symmetries.

8 Relation to the Thermodynamical Bethe Ansatz

For the (simple) class of models we are considering, i.e. the (G,G′) theories, the

corresponding quivers G�G′ are simply–laced, that is, two nodes are connected at

most by one arrow.

The quantum mutations of the (quantum) cluster algebras associated to a simple–

laced quiver are particularly simple. Indeed the following holds:
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Lemma. If QΓ is simply–laced (i.e. |Bij| ≤ 1) M r = 1 iff the corresponding

classical cluster mutation M class ≡M
∣∣
q→1

, has order r.

Proof. See ref. [15].

Then, for the models we are studying, we may replace the quantum mutations by

their classical counterpart. Equivalently, we may work with the classical rather than

the quantum cluster algebras. This is a good new, since the mathematical literature

discusses prevalently the classical algebras.

For the classical cluster algebra associated to the simply–laced quiver G�G′

(G,G′ a pair of ADE Dynkin diagrams) there is a nice theorem, proven in the

general case by Bernard Keller [45], which originally was formulated as a conjecture

about two–dimensional quantum field theory by Zamolodchikov [46]. Of course, the

R–twisting technique we are discussing is strong enough to give a proof (shorter

than the mathematical one) of this theorem. Anyhow, to make a long story short,

we simply state it as a theorem and refer to Keller for a proof. Special cases of this

result where established by many people. A (perhaps incomplete) list includes [47].

Theorem. (Zamolodchikov [46], Keller [45]) Let E (resp. O) be the involutive

cluster mutation of the classical cluster algebra with quiver G�G′ equal o the product

of all the elementary mutations Qα at the even (resp. odd) nodes of G�G′,

E =
∏

even nodes

(Qα)class (8.1)

O =
∏

odd nodes

(Qα)class, (8.2)

(the classical mutation are identified with rational map; note that E, O are well

defined since the elementary mutation at sites of the same parity commute).

Consider the sequence of rational functions {Yk,a(s)}s∈Z defined by the recursion

relations

Yk,a(s) =

{
O · Yk,a(s− 1) s odd

E · Yk,a(s− 1) s even

k = 1, . . . , rankG

a = 1, . . . , rankG′
(8.3)

are a solution to Zamolodchikov TBA Y –system associated to the pair of ADE
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Dynkin graphs (G,G′)

Yk,a(s+ 1) Yk,a(s− 1) =

∏
j 6=k

(
1 + Yj,a(s)

)−Ckj∏
b6=a

(
1 + Yk,b(s)−1

)−C′
kj

(8.4)

where the matrices Ckj and C ′
a,b are, respectively, the Cartan matrices of the Lie

algebra G and G′.

The mutation Y class = E O has order

r =

1
2

(
h(G) + h(G′)

)
G,G′ = A1, D2n, E7, E8

h(G) + h(G′) otherwise.
(8.5)

(That is, the r–fold reiteration of the rational map Y class is the identity map).

Remark 1. The Y –system corresponds to the functional equations satisfied (in

the complex rapidity plane) by the solution to the TBA integral equations with kernel

defined by the purely elastic S–matrix of the integrable two dimensional model asso-

ciated to the given pair of Dynkin diagrams [46]. The Y -system, together with the

regularity conditions in the complex rapidity plane uniquely determine the solutions

to the integral equation [48].

Gaiotto, Moore and Neitzke [4] show that the hyperKähler geometry of the σ–

model obtained by reducing the N = 2 4d theory to 3d is determined by solutions to

TBA having the same functional equations. Thus, from that viewpoint it is obvious

that the classical monodromy of the N = 2 model is the same as the one defined by

the corresponding Y –system.

Remark 2. Notice that Y class is constructed just in the same way as the Coxeter

element Cox. For simplicity, let us consider the single Dynkin diagram case, (G,A1).

One has

Cox(G) =
∏

even nodes

sα

∏
odd nodes

sα s2
α = identity (8.6)

Y class =
∏

even nodes

Qα

∏
odd nodes

Qα Q2
α = identity, (8.7)

where sα are the simple reflections in the Weyl group of G. Notice that both sα,
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sβ and, respectively, Qα, Qβ commute for α, β of the same parity. The structural

analogy of the two expressions is manifest.

8.1 Solution to the inverse problem

Since all our quivers are simply–laced, by the lemma, the order to of any quantum

cluster mutation L is the same as that of its classical counterpart Lclass (which is just

a rational map). Combining with the theorem, we see that — for all pairs (G,G′)

— the quantum cluster mutation

M = Y h(G′), (8.8)

(where Y is the quantum version of Y class defined in the theorem) has precisely the

order r predicted by the UV singular geometry, see eqn.(6.6). Then we have the

equality

M r = Identity in End(TΓ), (8.9)

where we mean that the adjoint action of the lhs is the identity in TΓ (which means

that the operator Y r is central in TΓ, hence it acts as a c–number in each irreducible

representation of the quantum torus algebra).

Comparing with the discussion following eqn.(7.14), we see that M in eqn.(8.8)

is a solution to ‘Diophantine’ problem, eqn.(6.14), ⇔ M may be written in the form

Ad
∏

Ψ(Xγ; q)
±1, that is, if and only if ⇔ the associated quiver mutation is the

identity.

We have observed before that the quiver mutation is a special case of the 2d

wall–crossing (together with a peculiar sign convention). It is then not surprising to

learn that (see the original paper [15] for the details of the combinatorics)

Y = Cox(G′) · Ad
(
a product of Ψ(Xγ; q)’s

)
(8.10)

where the quiver mutation is precisely the Coxeter element of the Lie algebra G′,

Cox(G′). Then, by the very definition of the Coxeter number,

Cox(G′)h(G′) = Identity, (8.11)
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while Cox(G′)` 6= 1 for all 1 ≤ ` < h(G′). Then M is a solution to conditions M1,

M3 of section 7.3. We shall check in some examples below that the phase–ordering

M2 also works.

Conclusions:

1. the quantum cluster mutation M is the same as quantum monodromy M(q) of

the (G,G′) model. (Same meaning that the two have the same adjoint action

on TΓ);

2. the quantum cluster mutation Y is the 1
h(G′)

–fractional monodromy of the

(G,G′) model. Therefore:

(a) the N = 2 theories obtained by compactifying Type IIB on a local (G,G′)

3–CY geometry have Zh(G′)–symmetric BPS chambers;

(b) the operator U implementing the Zh(G′) symmetry on the Hilbert space is

Cox(G′)−1.

8.1.1 The BPS spectrum Ω(γ)

Now we are ready to state the solution to the inverse problem for (G,G′): Since we

have an explicit formula for M(q), namely

M(q) =
(∏

even

Qα

∏
odd

Qα

)h(G′)

, (8.12)

to extract the BPS multiplicities we have just to expand out the products, rewriting

the rhs in the standard form

T
∏

γ
Ψ(Xγ; q)

Ω(γ). (8.13)

Doing the exercise, one finds agreement with direct computation of BPS spectrum

for (Am, A1). For the general (G,G′) case, one finds29 that in some Zh(G′)–symmetric

29 The following statements are based (rather than on proof) on very strong evidence, including
explicit computations in many classes of models (see ref. [15]).
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BPS chamber, to each node of the G Dynkin diagram there are associated BPS states

in one–to–one correspondence with the roots of the Lie algebra G′. In these special

chambers, the total number of BPS half–hypermultiplets is

# BPS = rankG · rankG′ · h(G′) = rankG ·#{roots of G′}. (8.14)

Let αa, a = 1, 2, . . . , rank(G), (resp. α̃i, i = 1, 2, . . . , rank(G′)) be the simple roots

of the Lie algebra G (resp. G′). We write αa� α̃i for the generator of the charge

lattice ΓG � G′ corresponding to the (a, i) node of the quiver G�G′. Then the BPS

multiplicities in the Zh(G
′)–symmetric chamber are

Ω
(∑

a,i
ca,i αa� α̃i

)
=

{
1 if ca,i = δa,a0 ci and

∑
i ci α̃i is a root of G′

0 otherwise.
(8.15)

Remark. This result rests heavily on the following result about Weyl groups:

Theorem V.§ 6.1.(ii), Exercise V.§ 6.1), and Proposition VI.§ 1.33 of ref. [25].

8.1.2 Examples

FThe (A2, A1) model. In the Z2 chamber, we have 2×2 = 4 BPS 1
2
–hypermultiplets,

or two BPS hypermultiplets, of charges±α1, ±α2, that is, in terms of eletric/magnetic

charges

(e,m) = ±(1, 0), ±(0, 1). (8.16)

Notice that Z2 acts on the BPS states as PCT, namely Z 7→ −Z. In fact, in this

chamber we may have a full Z4 symmetry acting transitively on the BPS hapf–

hypermultiplets: Consider, say, the smooth SW curve y2 − x3 − x = 0 which is

invariant under the Z4 symmetry

y 7→ −i y, x 7→ −x, y dx 7→ i y dx (8.17)

under which the central charge Z 7→ i Z. In particular, we see that (up to a con-

ventional choice of origin) the BPS phases are θBPS = kπ/2 (in agreement with the

explicit computations [40]).

Correspondingly, there exists a cluster mutation J such that M = J4 which may
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be written in the form

(quiver mutation)× (a single Ψ(·; q), (8.18)

meaning that there is precisely one BPS state with phase in each angular sector

(θ, θ + π
2
). In fact

J = Ψ(X2; q) F−1 ≡ F−1 Ψ(X−1
1 ; q), (8.19)

where F is the ‘Fourier’ transform30 on TA2 quiver–mutation defined by its adjoint

action on TA2

F−1X1 F = X−1
2 , F−1X2 F = X1. (8.20)

F The (A2n, A1) models. Again, the Z2 chamber may be promoted to a Z4

chamber by considering, say, the smooth SW curve

y2 − x2n+1 − x = 0 (8.21)

y 7→ −i y, x 7→ −x, y dx 7→ i y dx. (8.22)

We have 2n × 2 BPS half–hypermultiplets whose charges are ± the generators of

the lattice Γ associated with the nodes of the A2n Dynkin diagram. Again the BPS

phases are as in the (A2, A1) case, see [40].

FThe (A1, A2) model. For the Z3 chamber, corresponding to the quiver (A1, A2)

we have 1 × 6 half–hypers, or three hypermultiplets permuted by Z3. They have

charges

±(1, 0), ±(1, 1), ±(0, 1). (8.23)

This model has just two distinct BPS chambers corresponding, respectively, to the

quivers A2�A1 and A1�A2. Then the above Z3 chamber should contain the Z6–

symmetric one corresponding to the smooth Z6 SW curve y2 +x3 +1 = 0. In fact, it

is easy to see that there is a (generalized) cluster mutation H such that M = H6,

of the form H = U Ψ(X1; q), with U6 = 1.

30 If the quantum torus algebra TA2 is realized as the Weyl algebra X1 = eix, X2 = eip, q = ei~,
and the canonical variables x, p are realized on L2(R), this is the usual Fourier transform.
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8.2 ‘Level–rank’ duality

The local 3–CY geometry

WG(x, y) +WG′(u, v) = 0 (8.24)

is manifestly symmetric under G ↔ G′. However, M ≡ Y h(G′) is NOT manifestly

invariant.

The reason why the situation looks asymmetric in G and G′ is because the par-

ticular quivers G�G′ and G′�G correspond to two different BPS chambers with,

respectively, Zh(G′) and Zh(G) symmetry (in the same quiver mutation–class we have

also other quivers corresponding to BPS chambers with other symmetry proper-

ties, e.g. the triangle–product quivers). For instance, as we saw in the examples of

§. 8.1.2, the A2�A1 quiver corresponds to a chamber with just 2 BPS states, while

the A1�A2 chamber has 3 BPS states.

However, the quantum monodromy should be invariant up to conjugacy under

WC and hence also under G↔ G′. Is this true?

Yes, it is. Let us recall that G′�G = (G�G′)∨. Then,

Y class = E O, Y ∨
class = OE = Y −1

class (8.25)

which, together with the periodicity Y h(G)+h(G′) = 1, gives

⇒ MG′ � G = (Y ∨)h(G) = Y −h(G) = Y h(G)+h(G′)−h(G) =

= Y h(G′) = MG � G′
(8.26)

Example. The relation M (A2,A1) = M (A1,A2) (or, more precisely, the corre-

sponding relation for the half –monodromies in the Z2 and Z6 chambers) gives the

famous pentagonal identity for the quantum dilogarithm.

The general relation M(G,G′) = M(G′,G) then gives higher quantum dilogarithm

identities. Taking the classical limit, q → 1, one gets the relations in the Bloch group

of Number Theory.

Even more interesting is the interpretation of the G↔ G′ duality from the point
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of view of the connection to 2d RCFT’s (that is the topic of the next section). As

we shall see, in that context the obvious geometric symmetry G ↔ G′ becomes the

celebrated level–rank duality.

8.3 More fun with the (A2, A1) model

In these notes we have stressed the analogy between the quantum monodromy M(q)

and the Coxeter element in the Weyl group of a Lie algebra. One may wonder

whether there is a more direct connection. In particular: For the single Dynkin

graph models, (G,A1), is there any relationship between MG and Cox(G)?

At first, one may think that such a relation should be necessarily subtle since

Cox(G) has order h(G), while MG has order h(G) + h(A1) ≡ h(G) + 2. In fact, the

relation exists and it is quite elementary. For simplicity, we illustrate it in the special

case of G = A2.

In this case it is convenient to introduce a sequence of operators Xk, k ∈ Z defined

by the 2–terms recursion relation

Xk+1Xk−1 = 1− q1/2Xk, k ∈ Z (8.27)

together with the initial condition that X1, X2 are the original generators of TΓ

associated with the nodes of the A2 quiver

?>=<89:;1 ?>=<89:;2oo . (8.28)

One checks that these operators satisfy the commutation relations and the property

Xk+1Xk = q Xk Xk+1. (8.29)

Notice that the recursion relation (8.27) is just the quantum version of the A2 Y –

system: it reduces to it in the classical limit q1/2 → −1, while for general q, the

quantum Xk is obtained from the classical one, Y k−1
class(X1), by taking the same Lau-

rent polynomial inX1, X2 with the normal order prescription for the non–commuting

operators. Therefore one has

Xk+1 = M−1Xk M. (8.30)
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In particular, the operator sequence is periodic31 of period 5: Xk+5 ≡ Xk.

Imagine that we may ‘omit’ the 1 in eqn.(8.27). Rescaling Xk → −q1/2Xk, we

reduce to the recursion relation

Xk+1 = Xk X
−1
k−1. (8.31)

The operator sequence is then

· · · , X1, X2, X2X
−1
1 , q−1X−1

1 , q−1X−1
2 , X−1

2 X1, X1, X2, · · · (8.32)

so Xk+6 = Xk, which is precisely the same periodicity as −Cox(A2). Moreover, as

q → 1, we may rewrite eqn.(8.31) as(
logXk+1

logXk

)
=

(
1 −1

1 0

)(
logXk

logXk−1

)
, (8.33)

and the 2× 2 matrix in the rhs is −Cox(A2).

The above ‘forget the 1 trick’ may seems just a silly game or a curiosity. In fact

it is not. It corresponds to the tropical realization of the cluster–algebras [34, 35].

For its physical (deep !!) meaning see the detailed discussion by Gaiotto, Moore and

Neitzke, ref. [9].

31 Proof: ζ ≡ −q1/2

Xk+5 = (1 + ζXk+4)X−1
k+3 = X−1

k+3 + ζXk+4X
−1
k+3 =

= X−1
k+3 + ζ(1 + ζXk+3)X−1

k+2X
−1
k+3 =

= X−1
k+3 + ζ(1 + ζXk+3)ζ−2X−1

k+3X
−1
k+2 =

= X−1
k+3 + ζ−1X−1

k+3X
−1
k+2 +X−1

k+2 =

= X−1
k+3(ζXk+2 + 1)ζ−1X−1

k+2 +X−1
k+2 =

= Xk+1(1 + ζXk+2)−1(ζXk+2 + 1)ζ−1X−1
k+2 +X−1

k+2 =

= (ζ−1Xk+1 + 1)X−1
k+2 = X−1

k+2(1 + ζXk+1) =

= Xk.
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9 Connections with 2d RCFT’s

9.1 The parafermion characters

Our original problem was to study the WCF invariants

Tr Yk ≡ Tr M(q)k/h (9.1)

These invariants have the form of q–series. From the Euler series expansion

Ψ(z; q) =
∑
n≥0

qn2/2(−z)n

(q)n

where (q)n =
n∏

k=1

(1− qk), (9.2)

wee see that our invariant must have the general structure

∑
m∈N`

q
1
2

m·A·m+B·m+C∏`
i=1(q)

ai
mi

(9.3)

for certain ` × ` matrix A, vector B, integral vector ai, and constant C. ` is an

integer which depends on the specific model, the exponent k, and (potentially) the

particular BPS chamber we use to define Y.

The characters of a RCFT are q–series (where q = e2πiτ ) with special modular

properties, having typically the form of eqn.(9.3) (in fact, often they may be written

in many ways in that form using q–hypergeometric identities).

In the simplest case, k = 1 and the single–Dynkin graph models (G,A1), one

has [15]

Tr Y =
∑

m∈N`

q
1
2

m·A·m+B·m

(q)m1 (q)m2 · · · (q)m`

(9.4)

where

A =
1

2
CG the Cartan matrix of G, (9.5)

while the matrix B depends on the particular definition of trace in TΓ; for the

standard one B = 0.
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More generally [15],

Tr
[
Y
∏
α

Xγα

]
=
∑

m∈N`

q
1
2

m·A·m+B·m+C

(q)m1 (q)m1 · · · (q)m`

(9.6)

where B and C depend on the operator insertions
∏

αXγα and A = CG/2.

The q–series in eqn.(9.6) are exactly the characters of the generalized parafermions

[49], i.e. the coset RCFT

(Ĝ )2

/
U(1)`, ` = rankG. (9.7)

This equality is quite remarkable. It is even more remarkable when we realize that

the UV fixed point of the massive integrable 2d theory whose TBA is associated to the

Dynkin pair (G,A1) (G = ADE) is precisely the parafermionic theory (Ĝ )2

/
U(1)`

(see ref. [42] and references therein)!!

One expects that this correspondence between integrable massive 2d theories, the

characters of their UV RCFT fixed points, and the wall–crossing invariants of the

corresponding N = 2 four–dimensional theories will generalize to the (G,G′) models.

This leads to the conjecture

Tr
[
Y
∏
α

Xγα

]∣∣∣
(G,G′) model

=

 linear combination of characters

of the UV RCFT corresponding to

the integrable massive (G,G′) model

(9.8)

=
∑

m∈N`

q
1
2

m·A·m+B·m+C

(q)m1 (q)m1 · · · (q)m`

(9.9)

where

` = rankG× rankG′ A = CG ⊗ C−1
G′ . (9.10)

Here is a list of the evidence for the conjecture (see ref. [15] for details):

• X explicit computation for (G;A1)
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• X limit q → 1

• X recursion relations for different operator insertions (which, in the classical

limit q → 1 reproduce the Verlinde algebra of the corresponding RCFT);

• X symmetries and central charges

• X relation with Nahm’s conjectures in 2d (modular properties, Number–Theoretical

aspects) [42].

9.2 Nahm’s conjectures [42]

Particularly deep are the relations with the Nahm conjectures which state that a

q–series of the form (9.9) have good SL(2,Z) modular properties precisely if it arises

from a solution of the TBA equations of some 2d integrable model in the way that

our wall–crossing invariants Tr Y arises from the corresponding Y –system. Moreover,

in the classical limit q ≡ e−~ → 1 the quantum dilogarithms Ψ(·) get replaced by

exp[Li2(·)/~] where Li2(·) is the classical dilogarithm. The relation Mr =Identity

becomes a relation between values of the classical dilogarithm, which has an inter-

pretation in Number Theory in terms of torsion elements of the Bloch group (more

precisely, of the algebraic K–theory group K3(C). In this context, the WCF repro-

duces the relations in (K3(C))tors. See ref. [42] for a discussion.

9.3 Level–rank duality

Let us apply the above conjecture to the (G,Am) model in the BPS chamber G�Am.

We expect Tr[Y(· · · )] to give the characters of the RCFT coset theory

Ĝm+1/U(1)rank G. (9.11)

Then consider the wall–crossing between the Zm+1– and the Zn+1–symmetric BPS

chambers of the (An, Am) model, i.e.

An�Am ←→ Am�An. (9.12)
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Applying the rule in eqn.(9.11) we get the following duality of coset models

̂SU(n+ 1)m+1/U(1)n ↔ ̂SU(m+ 1)n+1/U(1)m (9.13)

which is precisely the usual rank–level duality [50].

In particular, for n = 2,m = 1 this implies the usual pentagonal identity for

the quantum dilogarithm [51]. The general rank–duality gives additional quantum

dilogaritm identities, whose classical counterpart are central both in Number Theory

(Bloch group) as in the theory of motives.

9.4 Prediction of new RCFT dualities

We have seen in §. 9.3 that the identification of local CY geometries (G,G′)↔ (G′, G)

gives, under the correspondence with RCFT’s, the level–rank duality. There are other

similar geometric identifications (which often may be interpreted as cluster–algebras

equivalences [15]) which, likewise, we expect to correspond to new RCFT dualities

of the ‘level–rank’–type.

In particular, we have the following geometric identifications which correspond

to isomorphisms for the Grassmanian cluster–algebras (see [15]):

isomorphism RCFT coset duality

(A2, A2)↔ (D4, A1) ŜU(3)3/U(1)2 ↔ ŜO(8)2/U(1)4

(A3, A2)↔ (E6, A1) ŜU(4)3/U(1)3 ↔ (Ê6)2/U(1)6

(A4, A2)↔ (E8, A1) ŜU(5)3/U(1)4 ↔ (Ê8)2/U(1)8

9.5 General invariants Tr Yk

The story for general k’s is only partly understood. The evidence is that (for the

(G,G′) models) one gets again characters of some RCFT, possibly non–unitary, up

to some trivial factors 1/η(q)s, that is modulo free decoupled 2d sectors.
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For the simplest model (A1, A1) (which corresponds geometrically to compact-

ification of Type IIB on the conifold) we just get the characters of a free fermion

(which is, of course, a special case of a parafermion).

For the next simplest model, (A2, A1), varying k one gets the full family of the

(∗, 5) minimal models (note that 5 is the order of Y according to the Zamolodchikov–

Keller theorem):

(p, p′) = (2, 5), (3, 5), (4, 5) (9.14)

for, respectively, k = 2, 3 and 1.

9.6 Rogers–Ramanujan identities and generalization

One interesting aspect is that Tr M(q)`, viewed as a q–series, has a very different form

when written in different BPS chambers. We are guaranteed by the WCF, however,

that these very different looking expressions are actually equal. In this way from the

WCF one proves a large supply of q–series (and q–products) identities the simplest

of which (for the (A2, A1) model) are the celebrated Rogers–Ramanujan identities.

In this way one proves many remarkable identities with deep number–theoretical

meaning some of which were previously known, but many where not previously listed

in the tables of q–series/q–products identities.

As it is well–known, q–series identities of the Rogers–Ramanujan type may be

used to put in different form the analytic expression for the characters of the RCFT.

Physically this has the following interpretation: a given RCFT may be deformed to

a massive integrable QFT theory in more than one way. For each such integrable

deformation we have a TBA and a preferred basis in the Hilbert space which may be

used to compute the partition functions and their UV limit – which are the RCFT

characters. Different deformations gives quite different analytic expressions, but of

the same UV invariants.

This, of course, is the same idea of our wall–crossing invariants, as relevant–

deformation independent data which then must be properties of the parent UV the-

ory. Therefore, we may see the Rogers–Ramanujan story as a N = 0 wall–crossing

formula (in the integrable QFT set–up).
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10 Conclusion

Wall–crossing invariants are a deep and beautiful subject. If you wish to learn more

details, read the paper arXiv:1006.3435.
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