
thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

Thermo_pw: a FORTRAN driver for Quantum
ESPRESSO routines

Andrea Dal Corso

SISSA, CNR-IOM, and MaX
Trieste (Italy)

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

Outline

1 thermo_pw as an asynchronous driver

2 thermo_pw as a pre-processing tool

3 thermo_pw as a post-processing tool

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

thermo_pw: What is it?

It is a Fortran driver of the Quantum ESPRESSO (QE)
routines that allows the simplification of the calculation of
selected material properties.
It is a Fortran driver that calls pw.x and ph.x or any QE
routine exploiting the image parallelization. The images
can communicate in an asynchronous way so the
work-load distribution can be done during the run.
It is a set of pre-processing tools for reducing the number
of information that must be provided by the user.
It is a set of post-processing tools to produce plots directly
comparable with experiments.

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

Why a new work-flow?

Because the number of CPUs of parallel machines is
growing rapidly and it is difficult to exploit them without
increasing the size of the system.
Many tasks require many pw.x or ph.x calculations and
could exploit many CPUs, but presently the work must be
coordinated by scripts.

A typical example are the thermodynamic properties where
many phonon calculations are needed for many geometries.
Another example is the calculation of a frequency
dependent dielectric constant, where many copies of ph.x
could be run in parallel each one working on a different
frequency.

thermo_pw drives these calculations through Fortran calls and
simplifies the scripts necessary to calculate material properties.

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

Phonon parallelization: grid, images

Parallelization modes of QE:
G-vectors.
bands.
k-points.

Additional parallelization of phonon:
q-vectors.
Irreducible representations.

Actually this is implemented using grid techniques: one q
point per run or one irrep per run.
Another possibility is to use images. The total number of
processors is split into several groups (images) each image
running an independent copy of ph.x.

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

Phonon parallelization: grid, images

Problems with the grid:
It requires complex scripts to coordinate and collect the
results of different runs.

Problems with images:
Images do not communicate among themselves, because
different runs are independent.
Load balacing is difficult.
Final results need to be collected running ph.x another
time.

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

thermo_pw

thermo_pw solves two of these problems:

Images can communicate through a master-slaves
approach via MPI calls.
The code can run in a synchronous and asynchronous
mode. It can collect the final results automatically.
The code can mix calls to pw.x and ph.x so that it is
possible for instance to optimize the structure before
calling ph.x, or call ph.x for several geometries and
compute anharmonic properties.

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

thermo_pw as a pre-processing tool

Automatic detection of the space group and optimization of
the FFT mesh.
Automatic generation of the k-point path for band structure
and phonon dispersions calculation.
Automatic reorientation of the Bravais lattice if not
compatible with the symmetry analysis routine (for
ibrav=0 input).
Automatic generation of strained lattices for elastic
constants calculations.

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

thermo_pw as a post-processing tool
Symmetry analysis of the bands and of the phonons in all the
Brillouin zone, for all space groups (Total Energy poster).

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

thermo_pw as a post-processing tool
Computation of the projected bulk band structure and
identification of surface states.

Surf. Sci. 637-638, 106 (2015).
Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

thermo_pw as a post-processing tool

Figure: Si cell volume as a function of temperature.

Computation of harmonic and anharmonic thermodynamic
properties (Total energy poster together with M. Palumbo).
See also exercise at the Quantum-ESPRESSO tutorial.

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

... and now?

The experience with thermo_pw has been very positive.
The downloads of the code are incredibly high. I received
some positive users’ comments on its use and suggestions
for the implementation of new features.
So far thermo_pw has been only an experiment. It is not a
production tool. Some features are still incomplete or
working only for selected crystal systems.
Now the code must be refined and cleaned, probably with
less additions and more generalizations of the features
already present. thermo_pw is becoming a real project.

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

Asynchronous parallelization via MPI routines
Both master and slaves compute all the tasks to do (for
instance all the irreps and q points) and assign a number to
each task.
Master:

1 During initialization calls a nonblocking receive of the
ready variable from all the slaves (mpi_irecv).

2 Tests if some slave has sent the ready variable
(mpi_test).

3 If not, it continues its work. If a slave has sent its ready
variable it sends (with a blocking send) to the slave the
number of the next task to do (mpi_send) or the no_work
number if there is no more work to do.

4 Finally makes another nonblocking receive of the ready
variable from the slave that has received the work to do
and continues its work.

Andrea Dal Corso Thermo_pw



thermo_pw as an asynchronous driver
thermo_pw as a pre-processing tool

thermo_pw as a post-processing tool

Asynchronous parallelization via MPI routines

Slave:
1 Sends (with a blocking send) the ready variable to the

master (mpi_send).
2 Receives (with a blocking receive) the number of the task

to do. When it receives it, it starts to do its work or exit if the
task number corresponds to no_work (mpi_receive).

3 When it finishes its task it restarts from [1]
To coordinate the work it is sufficient to initialize the master
doing [1] at the beginning of the asynchronous work and that
the master calls as often as possible a routine that executes [2],
[3], [4] (for instance after each scf step). The most often the
master calls this routine the shorter is the inactivity interval of
the slaves.

Andrea Dal Corso Thermo_pw


	thermo_pw as an asynchronous driver
	thermo_pw as a pre-processing tool
	thermo_pw as a post-processing tool

