Mathematical Issues in Quasi-static (Globally and Locally Minimizing) and Dynamic Fracture Evolution

Chris Larsen

March 4-8, 2013

Chris Larsen (WPI)

Quasi-static and Dynamic Fracture

SISSA Fracture Evolution 1 / 66

Chris Larsen (WPI)

Outline

Globally Minimizing Quasi-static (Griffith)

- Definition
- Discrete-time minimization procedure: $u_n(t)$
- Passage to the limit u(t)
- Proving properties of u
 - ★ global unilateral minimality
 - ★ energy balance
- What goes wrong with cohesive
- Locally Minimizing Quasi-static
- Dynamics (Griffith and cohesive)

Caveats

- Focus on existence
- Only concern is with models that predict the crack path
- Emphasis is on issues that I have thought about
- Issues that will be discussed are common to scalar and vector-valued functions, and we will assume scalar throughout
- Similarly, will generally assume (strict) convexity of the elastic energy density (calculations will be with $\frac{1}{2}|\nabla u|^2$)

Griffith's criterion

The starting point for predicting crack growth is Griffith's criterion (1920). Griffith considered a pre-existing crack K with a potential future path (here in blue).

For a crack increment of length I, $E_{el}(I)$ is the elastic energy of the corresponding elastic equilibrium (subject to a Dirichlet condition g or loads).

Griffith's criterion

The starting point for predicting crack growth is Griffith's criterion (1920). Griffith considered a pre-existing crack K with a potential future path (here in blue).

For a crack increment of length I, $E_{el}(I)$ is the elastic energy of the corresponding elastic equilibrium (subject to a Dirichlet condition g or loads). The criterion states that the crack can only grow if the rate of decrease of elastic energy as I increases is large enough, i.e.,

$$-\frac{dE_{el}(I)}{dI} = G_c \quad \text{the crack can not run} \\ = G_c \quad \text{the crack can run} \\ > G_c \quad \text{the crack is unstable,}$$

and the crack should never be unstable.

The static problem

Formulated by Ambrosio & Braides (1995): If u minimizes

$$m{v}\mapsto rac{1}{2}\int_{\Omega}|
ablam{v}|^2+\mathcal{H}^1(S_{m{v}})$$

over $v \in SBV_g(\Omega)$, then the crack $K := S_u$ is stable (taking $G_c = 1$). The reason is that each increment in length I cannot reduce the energy, i.e.,

 $E(I)+I\geq E(0),$

or

$$\frac{E(l)-E(0)}{l}\leq 1.$$

Minimizing movements: for discrete times $t_i = \frac{i}{n} T$, $u_n(t_i)$ minimizes

$$oldsymbol{
u}\mapsto rac{1}{2}\int_{\Omega}|
abla v|^2+rac{1}{\Delta t}\|v-u_n(t_{i-1})\|_{L^2}^2+\mathcal{H}^1(S_v\setminusigcup_{j< i}S_{u_n(t_j)})$$

over $v \in SBV_g(\Omega)$. Then take the limit as the time step goes to zero, to get $t \mapsto u(t)$.

Globally Minimizing Quasi-static formulation

Globally minimizing evolutions (Francfort & Marigo *JMPS* '98, modified by Dal Maso & Toader *ARMA* '02; Mielke):

Based on the *total* energy

$$E(u,K) := E_{el}(u) + \mathcal{H}^{N-1}(K),$$

Definition

Given Dirichlet data $t \mapsto g(t), t \mapsto (u(t), K(t))$ is a (globally minimizing) quasi-static evolution if:

- (u, K) is unilaterally minimal at each time: for each t, if (w, Γ) is such that K(t) ⊂ Γ, then E(u(t), K(t)) ≤ E(w, Γ) (both subject to Dirichlet data g(t)) ⇒ u is an elastic equilibrium at each time
- Energy balance E(u(t), K(t)) = E(u(0), K(0))+ work done by varying g between times 0 and t

The solution satisfies Griffith's criterion if $t \mapsto \mathcal{H}^1(\mathcal{K}(t))$ is continuous.

Chris Larsen (WPI)

Discrete-time procedure for existence

• For a problem on the time interval [0, T], set $t_n^i := i/n T$

• Define $u_n(t_n^i)$ to be a minimizer of $v \mapsto E_{el}(v) + \mathcal{H}^{N-1}(S_v \setminus K_n(t_n^{i-1}))$ subject to Dirichlet data $g(t_n^i)$, where $K_n(t_n^i)) := \bigcup_{j \leq i} S_{u_n(t_n^j)}$.

• Extend
$$u_n$$
 by, e.g., $u_n(t) := u_n(t_n^i)$ for $t \in [t_n^i, t_n^{i+1})$

Take a countable dense set D ⊂ [0, T], and for a diagonal subsequence, u_n(t) converges for all t ∈ D, define u(t) to be the limit. Extend u to [0, T] by, e.g., continuity from below. Can define K(t) := ∪_{τ∈D,τ≤t}S_{u(τ)}.

8 / 66

What minimality does u(t) have? $u_n(t_n^i)$ has a minimality property with respect to the previous $u_n(t_n^{i-1})$, but there is no "previous" time for u(t). u(t) can only inherit the unilateral minimality, with respect to "crack" increases:

 $u_n(t_n^i)$ minimizes

$$v \mapsto E_{el}(v) + \mathcal{H}^{N-1}(S_v \setminus K_n(t_n^{i-1}))$$

among v with the same boundary data, or

$$\mathsf{E}_{el}(u_n(t_n^i)) + \mathcal{H}^{N-1}(\mathcal{S}_{u_n(t_n^i)} \setminus \mathsf{K}_n(t_n^{i-1})) \leq \mathsf{E}_{el}(v) + \mathcal{H}^{N-1}(\mathcal{S}_v \setminus \mathsf{K}_n(t_n^{i-1}))$$

for all v. In particular, and more simply,

$$E_{el}(u_n(t_n^i)) \leq E_{el}(v) + \mathcal{H}^{N-1}(S_v \setminus S_{u_n(t_n^i)})$$

for all v. This might be inherited by u(t):

$$E_{el}(u(t)) \leq E_{el}(v) + \mathcal{H}^{N-1}(S_v \setminus S_{u(t)})$$

for all v with the same boundary data.

Chris Larsen (WPI)

Unilateral minimality

Question: If $u_n \stackrel{SBV}{\rightharpoonup} u$ and

$$E_{el}(u_n) \leq E_{el}(v) + \mathcal{H}^{N-1}(S_v \setminus S_{u_n})$$

for all v with the same boundary data, does it follow that

$$E_{el}(u) \leq E_{el}(v) + \mathcal{H}^{N-1}(S_v \setminus S_u)$$

for all v with the same boundary data?

Why it's not obvious: Neumann sieve and higher dimension.

Issue is turning test functions for u into test functions for u_n .

For now, we assume this minimality (i.e., the ability to alter test functions).

Consequences:

- strong convergence $\nabla u_n \rightarrow \nabla u$
- unilateral (global) minimality w.r.t. K(t)
- energy balance

Strong convergence: (strict convexity of the elastic energy density)

$$\int_{\Omega} |\nabla u|^2 \leq \liminf_{n \to \infty} \int_{\Omega} |\nabla u_n|^2$$

so only issue is whether

$$\int_{\Omega} |\nabla u|^2 < \liminf_{n\to\infty} \int_{\Omega} |\nabla u_n|^2.$$

This is ruled out by using u as a test function for u, and altering it for u_n , together with the unilateral minimality of u_n .

Energy balance: two steps

- energy balance with $\lim_{n\to\infty} \mathcal{H}^{N-1}(K_n(t))$
- 2 energy balance with $\mathcal{H}^{N-1}(K(t))$

$$(\Rightarrow \mathcal{H}^{N-1}(\mathcal{K}(t)) = \lim_{n \to \infty} \mathcal{H}^{N-1}(\mathcal{K}_n(t))).$$

Precisely, we want to show

$$\begin{split} \frac{1}{2} \int_{\Omega} |\nabla u(t)|^2 + \mathcal{H}^{N-1}(\mathcal{K}(t)) &= \frac{1}{2} \int_{\Omega} |\nabla u(0)|^2 + \mathcal{H}^{N-1}(\mathcal{K}(0)) \\ &+ \int_0^t \int_{\Omega} \nabla u(\tau) \cdot \nabla \dot{g}(\tau) dx d\tau \end{split}$$

for every $t \in [0, T]$.

B 🖌 🖌 B 🖒 - B

Discrete version

By considering $u_n(t_n^i) + (g(t_n^{i+1}) - g(t_n^i))$ as a competitor for $u_n(t_n^{i+1})$, we get

$$\begin{split} \frac{1}{2} \int_{\Omega} |\nabla u_n(t_n^{i+1})|^2 + \mathcal{H}^{N-1}(\mathcal{K}_n(t_n^{i+1})) &\leq \frac{1}{2} \int_{\Omega} |\nabla u_n(t_n^i)|^2 + \mathcal{H}^{N-1}(\mathcal{K}_n(t_n^i)) \\ &+ \int_{\Omega} \nabla u_n(t_n^i) \cdot \left(\nabla g(t_n^{i+1}) - \nabla g(t_n^i) \right) \\ &+ \frac{1}{2} \int_{\Omega} |\nabla g(t_n^{i+1}) - \nabla g(t_n^i)|^2. \end{split}$$

Summing from i = 0 to j - 1, we get

$$\begin{split} \frac{1}{2} \int_{\Omega} |\nabla u_n(t_n^j)|^2 + \mathcal{H}^{N-1}(\mathcal{K}_n(t_n^j)) &\leq \frac{1}{2} \int_{\Omega} |\nabla u(0)|^2 + \mathcal{H}^{N-1}(\mathcal{K}(0)) \\ &+ \Sigma_{i=0}^{j-1} \int_{\Omega} \nabla u_n(t_n^i) \cdot \left(\nabla g(t_n^{i+1}) - \nabla g(t_n^i) \right) \\ &+ \Sigma_{i=0}^{j-1} \frac{1}{2} \int_{\Omega} |\nabla g(t_n^{i+1}) - \nabla g(t_n^i)|^2. \end{split}$$

Taking the limit (considering t_n^j independent of n and j), we get (using regularity of g)

$$\begin{split} \frac{1}{2} \int_{\Omega} |\nabla u(t)|^2 + \limsup_{n \to \infty} \mathcal{H}^{N-1}(\mathcal{K}_n(t_n^j)) &\leq \frac{1}{2} \int_{\Omega} |\nabla u(0)|^2 + \mathcal{H}^{N-1}(\mathcal{K}(0)) \\ &+ \int_0^t \int_{\Omega} \nabla u(\tau) \cdot \nabla \dot{g}(\tau) dx d\tau. \end{split}$$

Similarly, taking $u_n(t_n^{i+1}) - (g(t_n^{i+1}) - g(t_n^i))$ to be a test function for $u_n(t_n^i)$, we get

$$\begin{split} \frac{1}{2} \int_{\Omega} |\nabla u(t)|^2 + \liminf_{n \to \infty} \mathcal{H}^{N-1}(\mathcal{K}_n(t_n^j)) \geq \frac{1}{2} \int_{\Omega} |\nabla u(0)|^2 + \mathcal{H}^{N-1}(\mathcal{K}(0)) \\ + \int_0^t \int_{\Omega} \nabla u(\tau) \cdot \nabla \dot{g}(\tau) dx d\tau. \end{split}$$

Hence $\lim_{n\to\infty} \mathcal{H}^{N-1}(\mathcal{K}_n(t_n^j))$ exists, and there is energy balance with this limit.

On the other hand, from the minimality of (u(s), K(s)) for each s, consider s < t and (u(t) + g(s) - g(t), K(t)) a competitor for (u(s), K(s)). Then

$$egin{aligned} &rac{1}{2}\int_{\Omega}|
abla u(t)|^2 + \mathcal{H}^{\mathsf{N}-1}(\mathsf{K}(t)) \geq rac{1}{2}\int_{\Omega}|
abla u(s)|^2 + \mathcal{H}^{\mathsf{N}-1}(\mathsf{K}(s)) \ &-\int_{\Omega}
abla u(t)\cdot
abla (g(s)-g(t)) - rac{1}{2}\int_{\Omega}|
abla (g(s)-g(t))|^2. \end{aligned}$$

Summing over the discrete times and taking the limit, this gives $\mathcal{H}^{N-1}(\mathcal{K}(t)) = \lim_{n \to \infty} \mathcal{H}^{N-1}(\mathcal{K}_n(t))$, and the energy balance we sought.

Next, Jump Transfer.

BV and sets of finite perimeter

Definition

The measure theoretic interior of a set $E \subset \Omega$ is the set

$$\left\{x\in\Omega:\lim_{r
ightarrow0}rac{|B(x,r)\cap E|}{|B(x,r)|}=1
ight\};$$

the measure theoretic exterior of a set of finite perimeter $E \subset \Omega$ is the set

$$\left\{x\in\Omega:\lim_{r\to 0}\frac{|B(x,r)\cap E|}{|B(x,r)|}=0\right\};$$

and the *measure theoretic boundary* of E, ∂_*E , is the set of points in Ω that are neither in the measure theoretic interior nor the measure theoretic exterior. That is,

$$\partial_* E := \left\{ x \in \Omega : \limsup_{r \to 0} \frac{|B(x,r) \cap E|}{|B(x,r)|} > 0 \text{ and } \limsup_{r \to 0} \frac{|B(x,r) \setminus E|}{|B(x,r)|} > 0 \right\}.$$

For $E \subset \Omega$ with finite perimeter ($\chi_E \in BV$), we have

$$|\partial E| := |D\chi_E| = \mathcal{H}^{N-1} \lfloor \partial_* E$$

and

$$\int_{\mathcal{E}} \mathrm{div} \phi \mathrm{dx} = \int_{\partial_* \mathrm{E}} \phi \cdot \nu_\mathrm{E} \; \mathrm{d} \mathcal{H}^{\mathrm{N}-1}$$

for all $\phi \in C_0^1(\Omega, \mathbb{R}^N)$.

Definition

The *reduced boundary* of E in Ω , $\partial^* E$, is the set of points in $\partial_* E$ that are (or can be) Lebesgue points for ν_E . That is,

$$\lim_{r\to 0} \oint_{B(x,r)\cap \partial_* E} \nu_E \ d\mathcal{H}^{N-1} = \nu_E(x).$$

17 / 66

For $x \in \partial^* E$, define $H^- := \{y \in \mathbb{R}^N : y \cdot \nu_E(x) < 0\}$ and $E_r := \{y \in \mathbb{R}^N : x + ry \in E\}$. Then

Theorem (Blow-up at reduced boundary)

 $\chi_{E_r} \rightarrow \chi_{H^-}$

in $L^1_{loc}(\mathbb{R}^N)$ as $r \to 0$. Furthermore,

$$\mathcal{H}^{N-1}(B\cap \partial_* E_r) \to \mathcal{H}^{N-1}(B\cap \partial H^-)$$

for all ball $B \subset \mathbb{R}^N$.

Connection to BV: jump sets and coarea....

18 / 66

In what follows, for a given $u \in BV$ and $t \in \mathbb{R}$, define

$$E_t := \{x \in \Omega : u(x) > t\}.$$

Definition

We define the upper and lower values of u at x by

$$u^+(x) := \sup\left\{t: \limsup_{r \to 0^+} rac{|E_t \cap B(x,r)|}{|B(x,r)|} > 0
ight\}$$

and

$$u^-(x) := \inf \left\{ t : \limsup_{r \to 0^+} rac{|E_t^c \cap B(x,r)|}{|B(x,r)|} > 0
ight\}.$$

The jump of u is $[u](x) := u^+(x) - u^-(x)$, and the jump set of u is then defined by $S_u := \{x \in \Omega : [u](x) > 0\}.$

Definition

We define $D_J u := Du \lfloor S_u$ and we say $u \in SBV(\Omega)$ if the singular part of Du is $D_J u$.

S_u and $\partial_* E_t$

Proposition

Let $u \in BV(\Omega)$, let $D \subset \mathbb{R}$ be dense, and recall that for each $t \in \mathbb{R}$, we define

$$E_t := \{x \in \Omega : u(x) > t\}.$$

Then

$$S_u = \bigcup_{\substack{t_1, t_2 \in D \\ t_1 < t_2}} (\partial_* E_{t_1} \cap \partial_* E_{t_2}).$$

First, recall

$$\partial_*E:=\left\{x\in\Omega:\limsup_{r\to 0}\frac{|B(x,r)\cap E|}{|B(x,r)|}>0 \text{ and }\limsup_{r\to 0}\frac{|B(x,r)\setminus E|}{|B(x,r)|}>0\right\}.$$

(日) (同) (三) (三)

20 / 66

3

Proof part 1.

Let $x \in \partial_* E_{t_1} \cap \partial_* E_{t_2}$ with $t_1 < t_2$. Then using the definitions of $u^-(x)$ and $u^+(x)$ we have

$$x \in \partial_* E_{t_2} \Rightarrow \limsup_{r \to 0^+} \frac{|E_{t_2} \cap B(x,r)|}{|B(x,r)|} > 0 \iff u^+(x) \ge t_2$$

and also

$$x \in \partial_* E_{t_1} \Rightarrow \limsup_{r \to 0^+} rac{|E_{t_1}^c \cap B(x,r)|}{|B(x,r)|} > 0 \iff u^-(x) \leq t_1,$$

so $x \in S_u$.

くほと くほと くほと

3

Proof part 2.

Next, suppose $x \in S_u$. Then we can choose $t_1, t_2 \in D$ so that $u^-(x) < t_1 < t_2 < u^+(x)$. Then $E_{t_1} \supset E_{t_2}$ and

$$\begin{split} \limsup_{r \to 0^+} \frac{|E_{t_2} \cap B(x,r)|}{|B(x,r)|} &> 0 \text{ and } \limsup_{r \to 0^+} \frac{|E_{t_1}^c \cap B(x,r)|}{|B(x,r)|} > 0 \\ \Rightarrow x \in \partial_* E_{t_2} \text{ (since } E_{t_1}^c \subset E_{t_2}^c \text{) and } x \in \partial_* E_{t_1} \text{ (since } E_{t_2} \subset E_{t_1} \text{)} \\ \iff x \in \partial_* E_{t_1} \cap \partial_* E_{t_2}. \end{split}$$

Corollary

Note that as a consequence, we have that if $x \in S_u$, then

$$u^+(x) = \sup\{t : x \in \partial_* E_t\}$$

and

$$u^{-}(x) = \inf\{t : x \in \partial_* E_t\}.$$

This does not hold for general $x \notin S_u$, as can be seen by considering u constant near x, so that x is in none of the $\partial_* E_t$.

Given a countable dense set D, define the "reduced jump set"

$$S_D^*(u) := S_u \setminus \left(\bigcup_{t \in D} [\partial_* E_t \setminus \partial^* E_t] \right), \tag{1}$$

which has the property that $\mathcal{H}^{N-1}(S_u \setminus S_D^*(u)) = 0$ since $\mathcal{H}^{N-1}(\partial_* E_t \setminus \partial^* E_t) = 0$ for each $t \in D$.

Proposition

For $x \in S^*_D(u)$ and $t \in D \cap (u^-(x), u^+(x))$, $\nu_t(x)$ is independent of t.

Proof.

We have that $x \in \partial^* E_t$ for all $t \in D \cap (u^-(x), u^+(x))$, as well as that $E_{t_1} \supset E_{t_2}$ if $t_1 < t_2$. But if $t_1, t_2 \in D \cap (u^-(x), u^+(x))$, then, by Lemma blowing up E_{t_1} converges to $H_{\nu_{t_1}(x)}$ and blowing up E_{t_2} converges to $H_{\nu_{t_2}(x)}$. But since $E_{t_1} \supset E_{t_2}$, it follows that the same inclusion holds for the limiting half-planes. But, since they are half-planes, they must be equal, and therefore $\nu_{t_1}(x) = \nu_{t_2}(x)$.

Note that even for $t \in (t_1, t_2) \setminus D$, we have that the blow-up of E_t converges to the same half-plane.

Theorem (Coarea) If $u \in BV(\Omega)$, then

$$|Du|(\Omega) = \int_{\mathbb{R}} \mathcal{H}^{N-1}(\partial_* E_t) dt.$$
(2)

Furthermore, from this it follows that for every Borel set S,

$$|Du|(S) = \int_{\mathbb{R}} \mathcal{H}^{N-1}(S \cap \partial_* E_t) dt.$$
(3)

Therefore,

$$|D_J u|(\Omega) = \int_{\mathbb{R}} \mathcal{H}^{N-1}(S_u \cap \partial_* E_t) dt$$

and, for $u \in SBV(\Omega)$,

$$\int |\nabla u| = |D_{ac}u|(\Omega) = |Du|(\Omega \setminus S_u) = \int_{\mathbb{R}} \mathcal{H}^{N-1}((\partial_* E_t) \setminus S_u) dt.$$

3

(日) (周) (三) (三)

Two pictures of SBV

Consider minimizers of

$$\int_{\Omega} |\nabla u|^2 + \mathcal{H}^{N-1}(S_u)$$

• Usual picture: S_u is a countable union of closed pieces of smooth curves (rectifiability), off of which u is harmonic

Two pictures of SBV

Consider minimizers of

$$\int_{\Omega} |\nabla u|^2 + \mathcal{H}^{N-1}(S_u)$$

- Usual picture: S_u is a countable union of closed pieces of smooth curves (rectifiability), off of which u is harmonic
- 2 Extreme Coarea:

$$\int_{\Omega} |\nabla u|^2 + \mathcal{H}^{N-1}(S_u) = \int_{\mathbb{R}} \int_{\partial_* E_t} (|\nabla u| \chi_{S_u^c} + \frac{1}{[u]} \chi_{S_u}) d\mathcal{H}^{N-1} dt$$

 $|\nabla u|$ is the density of different $\partial_* E_t$, so off of S_u , there is a repulsion of different $\partial_* E_t$, but if two intersect $(\partial_* E_{t_1} \cap \partial_* E_{t_2} \neq \emptyset)$, this intersection attracts more $\partial_* E_t$.

SISSA Fracture Evolution

Jump Transfer: modification of test functions

Given $u_n \stackrel{SBV}{\rightharpoonup} u$ (keys: equi-integrability of $|\nabla u_n|$ and strong convergence $u_n \rightarrow u$ in L^1) and a test function v for u, we want to modify it, creating v_n such that

$$\mathcal{H}^{N-1}(S_{\nu_n}\setminus S_{u_n}) o \mathcal{H}^{N-1}(S_{\nu}\setminus S_{u})$$

while $\nabla v_n \rightarrow \nabla v$.

(Blackboard)

Problems with cohesive

(Blackboard)

Chris Larsen (WPI)

Quasi-static and Dynamic Fracture

SISSA Fracture Evolution

28 / 66

э

-

Connection to Griffith

The solution u(t) with $K(t) := \bigcup_{\tau \le t} S_{u(\tau)}$ satisfies Griffith's criterion if $t \mapsto \mathcal{H}^{N-1}(K(t))$ is continuous. Problem:

At the pre-existing crack, the energy release rate can be made arbitrarily small by choosing a suitable boundary condition, independent of L, but if L is large enough,

Connection to Griffith

The solution u(t) with $K(t) := \bigcup_{\tau \leq t} S_{u(\tau)}$ satisfies Griffith's criterion if $t \mapsto \mathcal{H}^{N-1}(K(t))$ is continuous. Problem:

At the pre-existing crack, the energy release rate can be made arbitrarily small by choosing a suitable boundary condition, independent of L, but if L is large enough, global minimization will result in the crack growing. This violates Griffith.

Connection to Griffith

The solution u(t) with $K(t) := \bigcup_{\tau \le t} S_{u(\tau)}$ satisfies Griffith's criterion if $t \mapsto \mathcal{H}^{N-1}(K(t))$ is continuous. Problem:

At the pre-existing crack, the energy release rate can be made arbitrarily small by choosing a suitable boundary condition, independent of L, but if L is large enough, global minimization will result in the crack growing. This violates Griffith.

Note the connection to local vs. global minimality – the initial crack was a strict local minimizer and was stable in the sense of Griffith.

"[G]lobal energy minimization ... is not dictated by any known thermodynamical argument; it is rather a convenient postulate which provides for useful insight into a variety of behaviors.... "[G]lobal energy minimization ... is not dictated by any known thermodynamical argument; it is rather a convenient postulate which provides for useful insight into a variety of behaviors.... A more realistic approach that would investigate local minimizers is doomed for want of the necessary mathematical apparatus." "[G]lobal energy minimization ... is not dictated by any known thermodynamical argument; it is rather a convenient postulate which provides for useful insight into a variety of behaviors.... A more realistic approach that would investigate local minimizers is doomed for want of the necessary mathematical apparatus." – Francfort and Marigo, '98
True Griffith quasi-static evolution

Definition

Given g(t), the pair (u(t), K(t)) is a Griffith evolution if:

- (u(0), K(0)) is unilaterally stable (e.g., a local minimizer), subject to g(0)
- (u(t), K(t)) is unilaterally stable, subject to g(t)
- Energy inequality:

$$\mathsf{E}(u(t_2),\mathsf{K}(t_2))-\mathsf{E}(u(t_1),\mathsf{K}(t_1))\leq \int_{t_1}^{t_2}\int_{\Omega}
abla u\cdot
abla \dot{g}\,dxdt$$

for every $t_1 \leq t_2$.

If u(t⁻) ≠ u(t⁺), then u(t⁺) is accessible from u(t⁻) (there exists a continuously growing crack from K(t⁻) to K(t⁺) along which the energy is nonincreasing).

Existence: open

イロト 不得下 イヨト イヨト 三日

Problem with local minimization

Proving existence for models based on local minimality have met with difficulties (e.g., limits of minimizing movements – Dal Maso & Toader M3AS '02)

The convergence we have is due to SBV compactness of $u_n(t)$, which gives (suppressing t):

$$\begin{cases} \nabla u_n \rightarrow \nabla u \text{ in } L^1(\Omega);\\ [u_n]\nu_n \mathcal{H}^{N-1}\lfloor S_{u_n} \stackrel{*}{\rightarrow} [u]\nu \mathcal{H}^{N-1}\lfloor S_u \text{ as measures};\\ u_n \rightarrow u \text{ in } L^1(\Omega); \text{ and}\\ u_n \stackrel{*}{\rightarrow} u \text{ in } L^\infty(\Omega). \end{cases}$$

It is easy to find examples of $u_n \stackrel{SBV}{\rightharpoonup} u$ with (u_n, S_{u_n}) unilateral local minimizers of E, but (u, S_u) is not.

Start with u that minimizes the elastic energy given S_u , but the pair is not a local minimizer: (Blackboard)

Chris Larsen (WPI)

There is a fix, ε -stability, which implies local minimality.

Definition (ε -accessible)

(v, C) is ε -accessible from (u, K) if there exists a continuous function $\phi:[0,1] \rightarrow SBV(\Omega)$ such that $\phi(0) = u$, $\phi(1) = v$, E(v, C) < E(u, K), and

$$\sup_{\tau_1 < \tau_2} \left[\mathcal{E}(\phi(\tau_2), \mathcal{K}_{\phi}(\tau_2)) - \mathcal{E}(\phi(\tau_1), \mathcal{K}_{\phi}(\tau_1)) \right] < \varepsilon.$$

Here, $K_{\phi}(\tau) := \bigcup_{s \leq \tau} S_{\phi(s)}$ and $K_{\phi}(1) = C$. Such a path to v is called an ε -slide.

We then have the corresponding definition of stability:

Definition (ε -stability)

u is ε -stable if there does not exist an ε -accessible *v* from *u*.

We also define $\bar{\varepsilon}$ -accessibility, where the last inequality is not strict. Also, unilateral accessibility/stability is as before.

ε -stable evolutions

Definition

Given g(t), the pair (u(t), K(t)) is an ε -stable evolution if:

- (u(0), K(0)) is ε-stable, subject to g(0) (which implies local minimality)
- (u(t), K(t)) is unilaterally ε -stable, subject to g(t)
- Energy inequality:

$$\mathsf{E}(u(t_2),\mathsf{K}(t_2))-\mathsf{E}(u(t_1),\mathsf{K}(t_1))\leq \int_{t_1}^{t_2}\int_{\Omega}
abla u\cdot
abla \dot{g} d\mathsf{x} dt$$

for every $t_1 \leq t_2$.

 If u(t⁻) ≠ u(t⁺), then u(t⁺) is ε̄-accessible from u(t⁻) and has lower energy than all states that are ε-accessible from u(t⁻).

ε -stable evolutions

Definition

Given g(t), the pair (u(t), K(t)) is an ε -stable evolution if:

- (u(0), K(0)) is ε-stable, subject to g(0) (which implies local minimality)
- (u(t), K(t)) is unilaterally ε -stable, subject to g(t)
- Energy inequality:

$$E(u(t_2), K(t_2)) - E(u(t_1), K(t_1)) = \int_{t_1}^{t_2} \int_{\Omega} \nabla u \cdot \nabla \dot{g} dx dt$$

for every $t_1 \leq t_2$.

 If u(t⁻) ≠ u(t⁺), then u(t⁺) is ε̄-accessible from u(t⁻) and has lower energy than all states that are ε-accessible from u(t⁻).

What is the corresponding dynamic model?

(日) (同) (三) (三)

э

۲

What is the corresponding dynamic model? Want:

$$u_{tt} - \Delta u = 0$$
 on $\Omega \setminus K(t)$

with $u(x,0) = u_0(x)$, $u_t(x,0) = u_1(x)$

A B M A B M

< 一型

۲

What is the corresponding dynamic model? Want:

 $u_{tt} - \Delta u = 0 \text{ on } \Omega \setminus K(t)$ with $u(x,0) = u_0(x)$, $u_t(x,0) = u_1(x)$ $u(t) = g(t) \text{ on } \partial\Omega \setminus K(t)$ $\frac{\partial u}{\partial n} = 0 \text{ on } K(t)$

What is the corresponding dynamic model? Want:

 $u_{tt} - \Delta u = 0 \text{ on } \Omega \setminus K(t)$ with $u(x,0) = u_0(x)$, $u_t(x,0) = u_1(x)$ $u(t) = g(t) \text{ on } \partial\Omega \setminus K(t)$ $\frac{\partial u}{\partial n} = 0 \text{ on } K(t)$

• $K(0) = K_0, K(t)$ satisfies ...?

What is the corresponding dynamic model? Want:

$u_{tt} - \Delta u = 0 \text{ on } \Omega \setminus K(t)$ with $u(x, 0) = u_0(x)$, $u_t(x, 0) = u_1(x)$ $u(t) = g(t) \text{ on } \partial\Omega \setminus K(t)$ $\frac{\partial u}{\partial n} = 0 \text{ on } K(t)$

• $K(0) = K_0$, K(t) satisfies ...? Should grow consistently with Griffith's criterion, e.g., if u_0 is in elastic equilibrium with (quasi-static) energy release rate below G_c , g(t) = g(0), then the crack should not grow.

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

۲

What is the corresponding dynamic model? Want:

$u_{tt} - \Delta u = 0 \text{ on } \Omega \setminus K(t)$ with $u(x, 0) = u_0(x)$, $u_t(x, 0) = u_1(x)$ $u(t) = g(t) \text{ on } \partial\Omega \setminus K(t)$ $\frac{\partial u}{\partial n} = 0 \text{ on } K(t)$

• $K(0) = K_0$, K(t) satisfies ...? Should grow consistently with Griffith's criterion, e.g., if u_0 is in elastic equilibrium with (quasi-static) energy release rate below G_c , g(t) = g(0), then the crack should not grow. It should never happen that the energy release rate is greater than G_c .

Chris Larsen (WPI)

э.

But how does K(t) grow? How fast? Branching? 3-D? By what principle should it grow?

3

< □ > < ---->

But how does K(t) grow? How fast? Branching? 3-D? By what *principle* should it grow?

Existence should be at least plausible:

"Only a mathematical existence proof can ensure that the mathematical description of a physical phenomenon is meaningful." - R. Courant

But how does K(t) grow? How fast? Branching? 3-D? By what *principle* should it grow?

Existence should be at least plausible:

"Only a mathematical existence proof can ensure that the mathematical description of a physical phenomenon is meaningful." - R. Courant

Main difficulty: for the discrete-time problem, there is no (apparent) energy release rate, unlike in quasi-static evolution. There, a crack increment results in an *immediate* stored elastic energy decrease, which can be compared with the cost of the increment. With dynamics, there is no immediate effect. What would a discrete-time model be?

But how does K(t) grow? How fast? Branching? 3-D? By what *principle* should it grow?

Existence should be at least plausible:

"Only a mathematical existence proof can ensure that the mathematical description of a physical phenomenon is meaningful." - R. Courant

Main difficulty: for the discrete-time problem, there is no (apparent) energy release rate, unlike in quasi-static evolution. There, a crack increment results in an *immediate* stored elastic energy decrease, which can be compared with the cost of the increment. With dynamics, there is no immediate effect. What would a discrete-time model be?

There are two settings where dynamic models can be naturally defined: phase-field dynamic Griffith fracture, and cohesive dynamic fracture.

Computational phase-field model

(with Bourdin and Richardson)

Based on Ambrosio-Tortorelli approximation of the static energy:

$$E_{\varepsilon}(u,v) = \frac{1}{2} \int_{\Omega} (\eta_{\varepsilon} + v^2) |\nabla u|^2 dx + \varepsilon \int_{\Omega} |\nabla v|^2 dx + \frac{1}{4\varepsilon} \int_{\Omega} (1-v)^2 dx$$

Γ-converges to

$$E(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \mathcal{H}^{N-1}(S_u)$$

defined on SBV. The stiffness of the material is given by $\eta_{\varepsilon} + v^2$.

Advantage of phase-field approach: Now, when the crack is advanced $(v \searrow)$, there is an *immediate* decrease in stored elastic energy, even if u does not jump to the new equilibrium.

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time) algorithm for dynamic fracture:

Given $u(x,0), u_t(x,0)$ and boundary conditions

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time) algorithm for dynamic fracture:

Given $u(x, 0), u_t(x, 0)$ and boundary conditions

9 First time step: Minimize $v \mapsto E_{\varepsilon}(u(x,0), v)$ to find v(x,0)

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time) algorithm for dynamic fracture:

Given $u(x, 0), u_t(x, 0)$ and boundary conditions

- First time step: Minimize $v \mapsto E_{\varepsilon}(u(x,0),v)$ to find v(x,0)
- O one iteration in time for

$$u_{tt} - \operatorname{div}(A \nabla u) = 0$$

with $A(x,0) := \eta_{\varepsilon} + v(x,0)^2$, to find $u(x,\Delta t)$

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time) algorithm for dynamic fracture:

Given $u(x, 0), u_t(x, 0)$ and boundary conditions

- First time step: Minimize $v \mapsto E_{\varepsilon}(u(x,0),v)$ to find v(x,0)
- O one iteration in time for

$$u_{tt} - \operatorname{div}(A\nabla u) = 0$$

with $A(x,0) := \eta_{\varepsilon} + v(x,0)^2$, to find $u(x,\Delta t)$ Solution Repeat with $v(x,t_i) \le v(x,t_{i-1})$

38 / 66

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time) algorithm for dynamic fracture:

Given $u(x, 0), u_t(x, 0)$ and boundary conditions

- First time step: Minimize $v \mapsto E_{\varepsilon}(u(x,0),v)$ to find v(x,0)
- Oo one iteration in time for

$$u_{tt} - \operatorname{div}(A \nabla u) = 0$$

with $A(x,0) := \eta_{\varepsilon} + v(x,0)^2$, to find $u(x,\Delta t)$

3 Repeat with $v(x, t_i) \leq v(x, t_{i-1})$

The idea is simply that the displacement u is following dynamics, with the weakening field v playing exactly the same role as in quasi-static, i.e., Griffith (assuming that alternate minimization works).

Phase-field model (continuous time)

(with Ortner and Süli)

Ortner: Previous algorithm balances energy !?

In fact, can take $\Delta t \searrow 0$, get existence of (u, v) such that

$$u_{tt} - \operatorname{div}(A_{\varepsilon}(v)\nabla u) = 0$$

with initial conditions (need to add arbitrarily small dissipation: $\delta \nabla \dot{u}$)

- **②** Total energy (kinetic + potential + dissipated) is balanced
- $o v(\cdot,t) \text{ is the minimizer of } v \mapsto E_{\varepsilon}(u(x,t),v) \text{ over } v \leq v(\cdot,t).$

But, what happens when $\varepsilon \searrow 0$? What is the sharp-interface model? v disappears, what happens to condition 3?

Dynamic fracture model (sharp interface)

- (u, K) is a Maximal Dissipation (MD) solution if:
 - u is a solution of the wave equation on $\Omega \setminus K$, i.c., etc.

$$\int_0^\infty (u_t,\phi_t)-(\nabla u,\nabla\phi)=0$$

 $orall \phi \in H^1_0((0,\infty); \mathcal{SBV}_{\mathcal{K}}) \; (\mathcal{S}(\phi(t)) \subset \mathcal{K}(t) \; orall t)$

- **2** (u, K) balances energy
- ◎ $\forall T$, if a pair (w, L) satisfies 1 and 2, with $K(t) \subset L(t) \forall t \in [0, T]$, then K(t) = L(t) for all $t \in [0, T]$

Just energy balance + maximal dissipation (w.r.t. set inclusion)

Expect to work with other dissipations, e.g., damage (with Garroni – different model for dynamic damage, but seems equivalent...)

Connection to quasi-static models?

Quasi-static model

Francfort & Marigo, modified by Dal Maso & Toader; Mielke:

(u, K) is a solution if:

 (u, K) is unilaterally minimal at each time: for each t, if (w, L) is such that K(t) ⊂ L, then E(u(t), K(t)) ≤ E(w, L) ⇒ u is an elastic equilibrium (global minimizer) at each time

Inergy balance (stored elastic + dissipation + work)

Quasi-static model

Francfort & Marigo, modified by Dal Maso & Toader; Mielke:

(u, K) is a solution if:

 (u, K) is unilaterally minimal at each time: for each t, if (w, L) is such that K(t) ⊂ L, then E(u(t), K(t)) ≤ E(w, L)
 ⇒ u is an elastic equilibrium (global minimizer) at each time

Energy balance (stored elastic + dissipation + work)

Alternative:

- i) u(t) is in equilibrium for every t
- ii) Energy balance (stored elastic + dissipation + work)
- iii) $\forall T$, if (w, L) satisfies i) and ii), and $K(t) \subset L(t) \ \forall t \in [0, T]$, then $K(t) = L(t) \ \forall t \in [0, T]$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Quasi-static model

Francfort & Marigo, modified by Dal Maso & Toader; Mielke:

(u, K) is a solution if:

 (u, K) is unilaterally minimal at each time: for each t, if (w, L) is such that K(t) ⊂ L, then E(u(t), K(t)) ≤ E(w, L)
 ⇒ u is an elastic equilibrium (global minimizer) at each time

Energy balance (stored elastic + dissipation + work)

Alternative:

- i) u(t) is in equilibrium for every t
- ii) Energy balance (stored elastic + dissipation + work)
- iii) $\forall T$, if (w, L) satisfies i) and ii), and $K(t) \subset L(t) \ \forall t \in [0, T]$, then $K(t) = L(t) \ \forall t \in [0, T]$.

Easy to see red \Rightarrow blue, plus gives a selection criterion by choosing largest dissipation. ii) and iii) are general, i) is PDE for the evolution of u.

The stored energy for cohesive fracture is of the form

$$E(u) := \int_{\Omega} W(\nabla u) dx + \int_{S_u} \psi([u]) d\mathcal{H}^{N-1}$$

where $\psi(0) = 0$, $\lim_{x\to\infty} \psi(x) = G_c = 1$, ψ concave (and typically odd). A nice feature is that many formulations are possible:

The stored energy for cohesive fracture is of the form

$$E(u) := \int_{\Omega} W(\nabla u) dx + \int_{S_u} \psi([u]) d\mathcal{H}^{N-1}$$

where $\psi(0) = 0$, $\lim_{x\to\infty} \psi(x) = G_c = 1$, ψ concave (and typically odd). A nice feature is that many formulations are possible:

• Stationary Action (studying existence, etc., in 1-D with Slastikov)

The stored energy for cohesive fracture is of the form

$$\mathsf{E}(u) := \int_{\Omega} W(
abla u) dx + \int_{\mathcal{S}_u} \psi([u]) d\mathcal{H}^{N-1}$$

where $\psi(0) = 0$, $\lim_{x\to\infty} \psi(x) = G_c = 1$, ψ concave (and typically odd). A nice feature is that many formulations are possible:

- Stationary Action (studying existence, etc., in 1-D with Slastikov)
- Stress Threshold (with threshold = $\psi'(0)$, based on the formulation for dynamic damage evolution with Garroni)

The stored energy for cohesive fracture is of the form

$$\mathsf{E}(u) := \int_{\Omega} W(
abla u) dx + \int_{\mathcal{S}_u} \psi([u]) d\mathcal{H}^{N-1}$$

where $\psi(0) = 0$, $\lim_{x\to\infty} \psi(x) = G_c = 1$, ψ concave (and typically odd). A nice feature is that many formulations are possible:

- Stationary Action (studying existence, etc., in 1-D with Slastikov)
- Stress Threshold (with threshold = $\psi'(0)$, based on the formulation for dynamic damage evolution with Garroni)
- Maximal Dissipation

The stored energy for cohesive fracture is of the form

$$E(u) := \int_{\Omega} W(\nabla u) dx + \int_{S_u} \psi([u]) d\mathcal{H}^{N-1}$$

where $\psi(0) = 0$, $\lim_{x\to\infty} \psi(x) = G_c = 1$, ψ concave (and typically odd). A nice feature is that many formulations are possible:

- Stationary Action (studying existence, etc., in 1-D with Slastikov)
- Stress Threshold (with threshold = $\psi'(0)$, based on the formulation for dynamic damage evolution with Garroni)
- Maximal Dissipation

These are all naturally defined for cohesive fracture, e.g., in 1-D. And they are all equivalent if $\phi'(0) < \infty$. All give:

- wave equation off of S_u , force balance on S_u $(u_x = \psi'([u]))$
- energy balance (elastic + kinetic + fracture)
- crack opens at $(x_0, t_0) \iff u_x(x_0, t_0) = \psi'(0)$ and u_x is increasing at (x_0, t_0) if no crack were allowed (decreasing if negative)

Existence for Sharp Interface Griffith? First step: solvability of wave equations for arbitrary growing cracks

(with Dal Maso) Given $t \mapsto K(t)$ with K increasing and $K(T) < \infty$, we want solutions to weak versions of

$$\ddot{u}(t) - \Delta u(t) - \gamma \Delta \dot{u}(t) = f(t)$$

on $\Omega \setminus K(t)$, with a zero Neumann condition on $\partial \Omega \cup K(t)$.

What weak versions? First we see how existence works...

We define u_n^i for i = -1, 0, ..., n inductively by the following: First,

$$u_n^0 := u^{(0)}, \quad u_n^{-1} := u^{(0)} - \tau_n u^{(1)};$$
 (4)

then, for i = 0, 1, ..., n - 1, the function u_n^{i+1} is the minimizer in $V_{t_n^{i+1}}$ of

$$u \mapsto \left\| \frac{u - u_n^i}{\tau_n} - \frac{u_n^i - u_n^{i-1}}{\tau_n} \right\|_{L^2}^2 + \|\nabla u\|_{L^2}^2 + \frac{\gamma}{\tau_n} \|\nabla u - \nabla u_n^i\|_{L^2}^2 - 2\langle f_n^i, u \rangle_{L^2}$$

where

$$f_n^i := \frac{1}{\tau_n} \int_{t_n^{i-1}}^{t_n^i} f(t) dt$$
 (5)

and

$$V_t := GSBV_2^2(\Omega, K(t)) :=$$

 $\{v \in GSBV(\Omega) \cap L^2(\Omega) : \nabla v \in L^2(\Omega; \mathbb{R}^N), S_v \subset K(t)\}.$

It follows that we have

$$\left\langle \frac{u_n^{i+1} - u_n^i}{\tau_n} - \frac{u_n^i - u_n^{i-1}}{\tau_n}, \frac{\phi}{\tau_n} \right\rangle_{L^2} + \langle \nabla u_n^{i+1}, \nabla \phi \rangle_{L^2} + \frac{\gamma}{\tau_n} \langle \nabla u_n^{i+1} - \nabla u_n^i, \nabla \phi \rangle_{L^2} = \langle f_n^i, \phi \rangle_{L^2}$$
(6)

for every $\phi \in V_{t_n^{i+1}}.$ We can take $\phi = u_n^{i+1} - u_n^i,$ and we get

$$\begin{split} \left\| \frac{u_n^{i+1} - u_n^i}{\tau_n} \right\|_{L^2}^2 &- \left\langle \frac{u_n^{i+1} - u_n^i}{\tau_n}, \frac{u_n^i - u_n^{i-1}}{\tau_n} \right\rangle_{L^2} + \| \nabla u_n^{i+1} \|_{L^2}^2 \\ &- \langle \nabla u_n^{i+1}, \nabla u_n^i \rangle_{L^2} + \frac{\gamma}{\tau_n} \| \nabla u_n^{i+1} - \nabla u_n^i \|_{L^2}^2 = \langle f_n^i, u_n^{i+1} - u_n^i \rangle_{L^2}. \end{split}$$

SISSA Fracture Evolution

- 2

Using the fact that $||a||^2 - \langle a, b \rangle = \frac{1}{2} ||a||^2 + \frac{1}{2} ||a - b||^2 - \frac{1}{2} ||b||^2$, we can then write

$$\begin{aligned} \left\| \frac{u_n^{i+1} - u_n^{i}}{\tau_n} \right\|_{H}^{2} + \left\| \frac{u_n^{i+1} - u_n^{i}}{\tau_n} - \frac{u_n^{i} - u_n^{i-1}}{\tau_n} \right\|_{H}^{2} + \left\| \nabla u_n^{i+1} \right\|_{L^{2}}^{2} \\ + \left\| \nabla u_n^{i+1} - \nabla u_n^{i} \right\|_{L^{2}}^{2} + \frac{2\gamma}{\tau_n} \left\| \nabla u_n^{i+1} - \nabla u_n^{i} \right\|_{L^{2}}^{2} \\ = \left\| \frac{u_n^{i} - u_n^{i-1}}{\tau_n} \right\|_{H}^{2} + \left\| \nabla u_n^{i} \right\|_{L^{2}}^{2} + 2\langle f_n^{i}, u_n^{i+1} - u_n^{i} \rangle_{H}. \end{aligned}$$
(7)

SISSA Fracture Evolution

< □ > < ---->

46 / 66

Summing from i = 0 to j and using the initial data, we get

$$\begin{split} \left\| \frac{u_n^{j+1} - u_n^j}{\tau_n} \right\|_{H}^{2} + \|\nabla u_n^{j+1}\|_{L^{2}}^{2} + \sum_{i=0}^{j} \left\| \frac{u_n^{i+1} - u_n^i}{\tau_n} - \frac{u_n^i - u_n^{i-1}}{\tau_n} \right\|_{H}^{2} \\ + \sum_{i=0}^{j} \|\nabla u_n^{i+1} - \nabla u_n^i\|_{L^{2}}^{2} + \frac{2\gamma}{\tau_n} \sum_{i=0}^{j} \|\nabla u_n^{i+1} - \nabla u_n^i\|_{L^{2}}^{2} \\ = \|u^{(1)}\|_{H}^{2} + \|\nabla u^{(0)}\|_{L^{2}}^{2} + 2\sum_{i=0}^{j} \langle f_n^i, u_n^{i+1} - u_n^i \rangle_{H}. \end{split}$$

SISSA Fracture Evolution

3.5 3
We now define $u_n, \tilde{u}_n, v_n : [0, T] \to V$ for $t \in (t_n^i, t_n^{i+1}]$ by

$$u_n(t) := u_n^i + (t - t_n^i) \frac{u_n^{i+1} - u_n^i}{\tau_n}, \qquad (8)$$

$$\tilde{u}_n(t) := u_n^{i+1}, \qquad f_n(t) := f_n^i,$$
 (9)

$$v_n(t) := \frac{u_n^i - u_n^{i-1}}{\tau_n} + \frac{t - t_n^i}{\tau_n} \left[\frac{u_n^{i+1} - u_n^i}{\tau_n} - \frac{u_n^i - u_n^{i-1}}{\tau_n} \right].$$
(10)

Rewriting the previous sum, for every $t \in (t_n^j, t_n^{j+1})$ we now have

$$\begin{aligned} \|\dot{u}_{n}(t)\|_{H}^{2} + \|\nabla u_{n}(t_{n}^{j+1})\|_{L^{2}}^{2} + \tau_{n} \int_{0}^{t_{n}^{j+1}} \|\dot{v}_{n}(t)\|_{H}^{2} dt + \tau_{n} \int_{0}^{t_{n}^{j+1}} \|\nabla \dot{u}_{n}(t)\|_{L^{2}}^{2} dt \\ + 2\gamma \int_{0}^{t_{n}^{j+1}} \|\nabla \dot{u}_{n}(t)\|_{L^{2}}^{2} dt = \|u^{(1)}\|_{H}^{2} + \|\nabla u^{(0)}\|_{L^{2}}^{2} + 2\int_{0}^{t_{n}^{j+1}} \langle f_{n}(t), \dot{u}_{n}(t) \rangle_{H} dt. \end{aligned}$$

3

We then have that

 $\nabla u_n(t)$ and $\nabla \tilde{u}_n(t)$ are bounded in L^2 uniformly in t and n, (11) $\gamma \nabla \dot{u}_n$ is bounded in $L^2(0, T; L^2)$ uniformly in n, (12) $\dot{u}_n(t)$ and $v_n(t)$ are bounded in H uniformly in t and n. (13)

We note that (13) together with the fact that $u^{(0)} \in H$ implies that u_n is bounded in H uniformly in t and n. This together with (11) gives

 $u_n(t)$ is bounded in V uniformly in t and n.

Furthermore, using (8), (9), and (10) in (6) gives that for all $t \in (t_n^i, t_n^{i+1})$,

$$\langle \dot{\mathbf{v}}_{n}(t), \phi \rangle_{H} + \langle \nabla \tilde{u}_{n}(t) + \gamma \nabla \dot{u}_{n}(t), \nabla \phi \rangle_{L^{2}} = \langle f_{n}(t), \phi \rangle_{H}$$

for every $\phi \in V_{t_n^{i+1}}$. This gives that for $t \in (t_n^i, t_n^{i+1})$, $\|\dot{v}_n(t)\|_{t_n^{i+1}}^* \leq c$.

49 / 66

We then get

Chris Larsen (WPI)

 u_n is bounded in $H^1(0, T; V)$ and in $W^{1,\infty}(0, T; H)$, (14)

$$v_n$$
 is bounded in $L^{\infty}(0, T; H)$, (15)

 v_n is bounded in $W^{1,\infty}(s,T;V_s^*)$ for every $s \in [0,T]$. (16)

We then show that $u_n, \tilde{u}_n \rightharpoonup u, v_n \rightharpoonup \dot{u}$, and u is a solution to...

We say that u is a weak solution of the wave equation on the crack domain $t \mapsto \Omega \setminus K(t)$ if

 $u \in L^{\infty}(0, T; V) \cap W^{1,\infty}(0, T; H) \cap W^{2,\infty}(s, T; V_s^*)$ for all $s \in [0, T]$, $u(t) \in V_t$ for a.e. $t \in [0, T]$,

and

$$\langle \ddot{u}(t), \phi \rangle_t^* + \langle \nabla u(t) + \gamma \nabla \dot{u}(t), \nabla \phi \rangle_{L^2} = \langle f(t), \phi \rangle_H$$

for every $\phi \in V_t$.

and

Theorem

For fixed $t \mapsto K(t)$ defined on [0, T] such that $K(t_1) \subset K(t_2)$ if $t_1 < t_2$ and $\mathcal{H}^{N-1}(K(T)) < \infty$, given $u^{(0)} \in V_0$ and $u^{(1)} \in H$, there exists a weak solution of the wave equation.

Chris Larsen (WPI)

A B F A B F

Image: A matrix

Uniqueness?

We can also solve:

$$\langle \ddot{u}(t), \phi \rangle_t^* + \langle \nabla u(t) + \gamma \nabla \dot{u}(t), \nabla \phi \rangle_{L^2} = 0$$

for every $\phi \in V_t$.

Solutions here balance energy, not including the fracture energy. So, crack growth is impossible if the total energy is conserved. This comes from the fact that $\nabla \dot{u}(t) \in L^2$, so $\dot{u}(t) \in V_t$. Without the dissipation, in general $\nabla \dot{u}(t) \notin L^2$.

Expect: (guess:) if u_{γ} is the solution to this problem, then $\lim_{\gamma \to 0} u_{\gamma} =: u$ also balances elastic + kinetic energy, but solves the PDE with $\gamma = 0$. This implies non-uniqueness, if there exists a solution with elastic + kinetic energy decreasing as the crack grows. A flaw in the model: really, should have that K(t) is the *crack set* for u(t), i.e., the minimal set such that $S_{u(\tau)} \subset K(t)$ for all $\tau \leq t$. In fact, given K, we can solve the wave equation as we just did, and get u, and then reduce K as necessary, getting the crack set for u, K^* .

Question: does u solve the wave equation on the cracking domain $t \mapsto \Omega \setminus K^*(t)$?

A flaw in the model: really, should have that K(t) is the *crack set* for u(t), i.e., the minimal set such that $S_{u(\tau)} \subset K(t)$ for all $\tau \leq t$. In fact, given K, we can solve the wave equation as we just did, and get u, and then reduce K as necessary, getting the crack set for u, K^* .

Question: does u solve the wave equation on the cracking domain $t\mapsto \Omega\setminus K^*(t)$?

Yes, since $u(t) \in V_t^*$ and $V_t^* \subset V_t$, so the appropriate test functions for K^* are test functions for K, and u solves the weak wave equation w.r.t. these test functions.

Questions:

- Are solutions of these models consistent with Griffith's criterion?
- Is there stronger regularity of solutions than (is provable) for quasi-static? (Yes...)
- Are any of these dynamic models the limit of the phase-field models? (Perhaps in principle and some situations, but probably not always true)
- What is the quasi-static limit of the phase-field dynamic model? (Probably not phase-field quasi-static global minimizer, except when the dissipation is continuous in time)
- What is the quasi-static limit of the sharp-interface dynamic model? (Probably not quasi-static global minimizer)

Dynamic cohesive fracture

(with V. Slastikov)

All of our models conserve energy, where the total energy is

$$\int_{\Omega} u_t^2 dx + \int_{\Omega} |\nabla u|^2 dx + \int_{\mathcal{K}} \psi([u]) d\mathcal{H}^{N-1}.$$

 $S(t) \subset \mathbb{R}$ will be a set of possible discontinuity points for u at time $t \in (0, T)$, and we define $S := \{(x, t) \in \mathbb{R} \times (0, T) : x \in S(t)\}$, which we require to be closed, $\Omega_S := [\mathbb{R} \times (0, T)] \setminus S$, and $H_S^1 := H^1(\Omega_S)$.

Definition

We say that $u \in H^1_S$ is a constrained Force Balance solution if ψ' is Lipschitz and u satisfies

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \Omega_S \\ u_x = \psi'([u]) & \text{on } S. \end{cases}$$

(日) (同) (三) (三) (三)

We say that $u \in H^1_S$ is a constrained Stationary Action solution if ψ is Lipschitz and u satisfies

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \Omega_S \\ u_x \in \partial \psi([u]) & \text{on } S, \\ E(t) = E(0) & \text{ for all } t, \end{cases}$$

where ∂ denotes subdifferential and E is the total energy.

The point of the regularity is that $\partial \psi(\mathbf{0}) = [-\alpha, \alpha]$ for $\alpha := \psi'(\mathbf{0}^+)$.

Of course, if ψ is smooth, then $\alpha=$ 0 (since ψ is even) and this definition is equivalent to the previous one. In fact, the subdifferential inclusion just means that

$$u_x(x,t) = \psi'([u](x,t)) \text{ if } [u](x,t) \neq 0,$$

and $|u_x(x,t)| \le \psi'(0^+)$ otherwise.

Derivation of Stationary Action solution

For simplicity, we suppose that $S(t) = \{0\}$ for all $t \in (0, T)$. We define the action to be

$$A(u) = \int_0^T \left(\frac{1}{2} \|u_t\|^2 - \frac{1}{2} \|u_x\|^2 - \psi([u](0,t))\right) dt,$$

where the norms are L^2 in space. We consider

 $t\mapsto A(u+\lambda v),$

where $v(x,0) = v(x,T) = \frac{\partial}{\partial t}v(x,t)|_{t=0} = 0$ and $v \in C^1(\mathbb{R} \setminus \{0\} \times [0,T])$.

$$0\in\int_0^T\left[\int_{-\infty}^0(u_tv_t-u_xv_x)dx\right]$$

$$+\int_0^\infty (u_tv_t-u_xv_x)dx-\partial\psi([u](0,t))[v](0,t)\bigg]\,dt.$$

Assuming sufficient regularity, after integration by parts we get

$$0 \in \int_0^T \left[\int_{-\infty}^0 (-u_{tt}v + u_{xx}v) dx + \int_0^\infty (-u_{tt}v - u_{xx}v) dx \right] dt + \\ + \int_0^T \left[u_x(0^+, t)v(0^+, t) - u_x(0^-, t)v(0^-, t) - \partial \psi([u](0, t))[v](0, t) \right] dt.$$

This gives the Stationary Action model, considering first v(0, t) = 0, then [v](0, t) = 0, and then general v.

We say that $u \in H^1_S$ is a constrained Maximal Dissipation solution if it satisfies

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \Omega_S \\ u_x \in \partial \psi([u]) & \text{on } S \\ E(t) = E(0) & \text{for all } t, \end{cases}$$
(17)

and in addition we have the maximal dissipation condition, namely, that if w also satisfies (17), and is such that for some $\overline{t} \in [0, T)$:

- w = u on $\Omega \times [0, \overline{t}]$ (and $w_t = u_t$ if $\overline{t} = 0$)
- for some $\varepsilon > 0$, [w](0,t) > (<) 0 on $(\overline{t},\overline{t} + \varepsilon)$,

then $[u](0,t) \ge (\le) [w](0,t)$ on $\Omega \times (\overline{t}, \overline{t} + \varepsilon)$.

All definitions are equivalent of ψ' is continuous.

We say that u is an unconstrained Maximal Dissipation solution if it is in H_5^1 for some S as defined above, and it satisfies

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \Omega_S \\ u_x \in \partial \psi([u]) & \text{for all } x \in \mathbb{R} \text{ and a.e. } t \\ E(t) = E(0) & \text{for all } t > 0, \end{cases}$$
(18)

and in addition we have the maximal dissipation condition, namely, that if w also satisfies (18), and is such that for some $\overline{t} \in (0, T)$:

- w = u on $\Omega \times (0, \overline{t}]$ (and $w_t = u_t$ if $\overline{t} = 0$)
- for some $\varepsilon > 0$, [w](0, t) > (<) 0 on $(\overline{t}, \overline{t} + \varepsilon)$,

then $[u](0,t) \ge (\le) [w](0,t)$ on $\Omega \times (\overline{t}, \overline{t} + \varepsilon)$.

Existence

First, we give an example of a solution to the constrained problem, which has an opening crack. We construct a solution of the form

$$u(x,t) = \begin{cases} v(x+t) & \text{in } \mathbb{R}_+ \times (0,T) \\ v^*(x-t) & \text{in } \mathbb{R}_- \times (0,T). \end{cases}$$

Our *u* will be odd in space at all times, so it is enough to construct only *v*, noting that $[u](0, t) = 2v(0, t) \ge 0$ by construction. First, define

$$g(x) := \int_0^x \frac{1}{\psi'(2s)} ds$$

so that $g'(x) = \frac{1}{\psi'(2x)}$, and we allow g to take the value ∞ . Since $\psi' \ge 0$ on $[0, \infty)$, g is monotonic. Define v to be the inverse of g. Then,

$$u_x(0^+,t) = v'(t) = \frac{1}{g'(v(t))} = \psi'(2v(t)) = \psi'([u](0,t)).$$

Lemma

If ψ' is Lipschitz, then given $u_0 \in H^1(\mathbb{R})$ and $u_1 \in L^2(\mathbb{R})$, there exists a unique solution of the constrained Force Balance problem.

Proof.

$$u_0^{\pm}(x) = \begin{cases} u_0(\pm x) & \text{in } \mathbb{R}_+\\ u_0(\mp x) & \text{in } \mathbb{R}_-, \end{cases}$$
$$u_1^{\pm}(x) = \begin{cases} u_1(\pm x) & \text{in } \mathbb{R}_+\\ u_1(\mp x) & \text{in } \mathbb{R}_-. \end{cases}$$

 $u^+(x,t)$ and $u^-(x,t)$ are given by

$$u^{\pm}(x,t) = \frac{1}{2} \left(u_0^{\pm}(x+t) + u_0^{\pm}(x-t) \right) + \frac{1}{2} \int_{x-t}^{x+t} u_1^{\pm}(s) \, ds \qquad (19)$$

$$\mp \left\{ \begin{array}{cc} \int_0^{t\mp x} \psi'([u](s)) \, ds & \text{for } t\mp x > 0\\ 0 & \text{for } t\mp x \le 0. \end{array} \right. \qquad (20)$$

Continued.

Define u(x, t) by

$$u(x,t) = \begin{cases} u^+(x,t) & \text{for } x > 0\\ u^-(x,t) & \text{for } x < 0. \end{cases}$$
(21)

One can show that the jump [u](0, t) must satisfy

$$[u](0,t) = u_0(t) - u_0(-t) + \int_0^t u_1(s) \, ds - \int_{-t}^0 u_1(s) \, ds - 2 \int_0^t \psi'([u](0,s)) \, ds,$$
(22)

or more concisely, the jump v satisfies

$$v'(t) = v_0(t) - 2\psi'(v(t)),$$

where v_0 is the derivative of the sum of the first four terms on the right hand side of (22). This can be solved for v uniquely, since ψ' is Lipschitz. We then also have $\psi'(v(t))$, and so we can write an explicit formula for uwith this Neumann condition at x = 0. (Also, energy balance).

$$\psi'(\mathbf{0}) = \alpha < \infty$$

Theorem

Given $u_0 \in H^1(\mathbb{R})$, $u_1 \in L^2(\mathbb{R})$, and ψ with $\psi'(0^{\pm}) = \pm \alpha$, α finite, there exists a Stationary Action solution with jump constraint at x = 0, with $u(\cdot, 0) = u_0$ and $u_t(\cdot, 0) = u_1$.

Proof.

We consider ψ_n that are smooth, even, equal to ψ outside of (-1/n, 1/n), and such that $\lim_{n\to\infty} \max \psi'_n = \alpha$. Then, by the previous Lemma, there exists a unique u^n . By the energy balance, there exists $u \in H_S^1$ such that $u^n \rightharpoonup u$ in H_S^1 (up to a subsequence). Then $[u^n] \rightarrow [u]$ in $L^2(0, T)$. Can then show u is a solution, and balances energy (but not uniqueness).

Theorem

Given N points x_1, \ldots, x_N , and given $u_0 \in H^1(\mathbb{R})$, $u_1 \in L^2(\mathbb{R})$, and ψ as above, there exists a solution of the weak cohesive wave equation with jump constraint $S(t) = \{x_1, \ldots, x_N\}$, with $u(\cdot, 0) = u_0$ and $u_t(\cdot, 0) = u_1$.

Proof.

N = 2, $x_1 = 0$, and $x_2 = 2$

Step 1: u_1^0 is a solution that can only jump at x = 0, and u_1^2 is the solution that can only jump at x = 2. From finite speed of propagation, $u_1^0(1, t) = u_1^2(1, t)$ for all $t \in (0, 1)$. Define u on $[\mathbb{R} \setminus \{0, 2\}] \times (0, 1]$ by

$$u(x,t):= \left\{egin{array}{cc} u_1^0(x,t) & ext{ for } x\in(-\infty,1]\ u_1^2(x,t) & ext{ for } x\in[1,\infty) \end{array}
ight.$$

gives a solution on $[\mathbb{R} \setminus \{0,2\}] \times (0,1]$. Step 2: Repeat this procedure with "initial" data u(x,1), getting a solution on $[\mathbb{R} \setminus \{0,2\}] \times (1,2]$, etc.

$\psi'(0) = \infty$

Theorem

Let $u_0 \in H^1(\mathbb{R})$ and $u_1 \in L^2(\mathbb{R})$ be given, each with finitely many singularities (or locally finitely many), that is, there exist $x_1, \ldots, x_n \in \mathbb{R}$ such that for every neighborhood N of $\{x_1, \ldots, x_n\}$, $u_0 \in W^{1,\infty}(\mathbb{R} \setminus N)$ and $u_1 \in L^{\infty}(\mathbb{R} \setminus N)$. For ψ as above, there exists $u \in H_5^1$ satisfying the wave equation such that u satisfies the Maximal Dissipation condition with $S(t) = \{0\}$ (with an extension to S(t) being a locally finite set of points, as in the previous theorem).

Proof.

Suppose *w* satisfies the wave equation, with the same initial data as *u*, and [w](0, t) > 0 on $(0, \varepsilon)$ for some $\varepsilon > 0$. Find $\{u_n\}$, corresponding to ψ_n , with $\psi_n \nearrow \psi$ uniformly, ψ'_n Lipschitz, $\psi'_n = \psi'$ outside $\left(-\frac{1}{n}, \frac{1}{n}\right)$, $\psi'_n \le \psi'$ on $(0, \frac{1}{n})$, and such that $[u_n](0, 0) = 0$ and u_n have the same initial data as *u*. Since $\psi_n \rightarrow \psi$ uniformly and $\psi'_n \rightarrow \psi'$ uniformly outside of 0, $u_n \rightarrow u$ in H_5^1 to some function *u*. Can show that $[u](0, t) \ge [w](0, t)$ on $(0, \varepsilon)$, using monotonicity of ψ_n .