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Outline

@ Globally Minimizing Quasi-static (Griffith)

Definition

Discrete-time minimization procedure: up(t)
Passage to the limit u(t)

Proving properties of u

vvyVvYyy

* global unilateral minimality
* energy balance

» What goes wrong with cohesive
@ Locally Minimizing Quasi-static
© Dynamics (Griffith and cohesive)
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Caveats

Focus on existence
Only concern is with models that predict the crack path

Emphasis is on issues that | have thought about

Issues that will be discussed are common to scalar and vector-valued
functions, and we will assume scalar throughout

Similarly, will generally assume (strict) convexity of the elastic energy
density (calculations will be with 3|Vu|?)
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Griffith's criterion

The starting point for predicting crack growth is Griffith's criterion (1920).

Griffith considered a pre-existing crack K with a potential future path
(here in blue).

For a crack increment of length /, E¢(/) is the elastic energy of the

corresponding elastic equilibrium (subject to a Dirichlet condition g or
loads).
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Griffith's criterion

The starting point for predicting crack growth is Griffith's criterion (1920).
Griffith considered a pre-existing crack K with a potential future path
(here in blue).

For a crack increment of length /, E¢(/) is the elastic energy of the
corresponding elastic equilibrium (subject to a Dirichlet condition g or
loads). The criterion states that the crack can only grow if the rate of
decrease of elastic energy as / increases is large enough, i.e.,

< G the crack can not run
dE. (! ¢
2’/() = G, the crack can run

> G, the crack is unstable,

and the crack should never be unstable.
Chris Larsen (WPI) Quasi-static and Dynamic Fracture SISSA Fracture Evolution 5/ 66



The static problem
Formulated by Ambrosio & Braides (1995): If u minimizes

v ;/ Vo + HY(S,)
Q

over v € SBV,(R), then the crack K := S, is stable (taking G. = 1). The
reason is that each increment in length / cannot reduce the energy, i.e.,

E(I)+ 1> E(0),

” ED-EO _,
£O .

Minimizing movements: for discrete times t; = % T, up(t;) minimizes

1
v} [P+ v = un(t0lfs + 1A U Sue)
Q@ j<i
over v € SBV,(R2). Then take the limit as the time step goes to zero, to
get t — u(t).
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Globally Minimizing Quasi-static formulation

Globally minimizing evolutions (Francfort & Marigo JMPS '98, modified
by Dal Maso & Toader ARMA '02; Mielke):
Based on the total energy

E(u, K) := Eg(u) + HNH(K),
Definition
Given Dirichlet data t — g(t), t — (u(t), K(t)) is a (globally minimizing)

quasi-static evolution if:

O (u, K) is unilaterally minimal at each time:
for each t, if (w,I) is such that K(t) C T, then
E(u(t),K(t)) < E(w,T) (both subject to Dirichlet data g(t))
= u is an elastic equilibrium at each time

@ Energy balance E(u(t), K(t)) = E(u(0), K(0))+ work done by
varying g between times 0 and t

The solution satisfies Griffith's criterion if t — H!(K(t)) is continuous.

Chris Larsen (WPI) Quasi-static and Dynamic Fracture SISSA Fracture Evolution 7/ 66



Discrete-time procedure for existence

o For a problem on the time interval [0, T], set t/ :=i/n T

Define u,(t!) to be a minimizer of v i Eg(v) +HN7Y(S, \ Ka(ti™1))
subject to Dirichlet data g(t}), where K,(t!)) := jg,-Sun(lJ-).

Extend u, by, e.g., u,(t) := u,(t]) for t € [t ti+1)

@ Take a countable dense set D C [0, T], and for a diagonal
subsequence, u,(t) converges for all t € D, define u(t) to be the
limit. Extend u to [0, T] by, e.g., continuity from below. Can define

K(t) = UTED,TSI'SU(T)'
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What minimality does u(t) have? u,(t}) has a minimality property with
respect to the previous u,(t/1), but there is no “previous” time for u(t).
u(t) can only inherit the unilateral minimality, with respect to “crack”
increases:

un(t) minimizes

v Ea(v) + H TS\ Kn(tr)
among v with the same boundary data, or
Eer(un(ty)) + HY (S, \ Knlth 1)) < Ear(v) +HV 1S\ Kn(ty™h))
for all v. In particular, and more simply,
Eel(un(th)) < Eer(v) + H (S, \ Sy )
for all v. This might be inherited by u(t):
Eei(u(t)) < Eei(v) + HY 1Sy \ Sur))

for all v with the same boundary data.
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Unilateral minimality

Question: If u, S8y u and
Eei(un) < Eqi(v) +HY71(S)\ Su,)
for all v with the same boundary data, does it follow that
Eer(u) < Ee(v) +HN (S, \ Su)
for all v with the same boundary data?

Why it's not obvious: Neumann sieve and higher dimension.

Issue is turning test functions for u into test functions for u,.
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For now, we assume this minimality (i.e., the ability to alter test functions).

Consequences:
@ strong convergence Vu, — Vu
@ unilateral (global) minimality w.r.t. K(t)
@ energy balance

Strong convergence: (strict convexity of the elastic energy density)

/|vu|2 < Iiminf/ IV u,|?
Q n—oo Q

so only issue is whether

/ IVul? < lim inf/ |V 2.

Q n—o0 Q

This is ruled out by using u as a test function for u, and altering it for u,,
together with the unilateral minimality of u,.
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Energy balance: two steps
@ energy balance with lim, oo HV71(K,(t))
@ energy balance with HN=1(K(t))

(= HV=YHK(t)) = limpseo HN7L(Ka(1))).
Precisely, we want to show

/|Vu(t)| FHNLK(E) = /|VU J2+HN1(K(0))

+ /0 t /Q Vu(r) - V(r)dsdr

for every t € [0, T].
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Discrete version

By considering u,(t}) + (g(ti*1) — g(t])) as a competitor for u,(t:1), we
get

/ V(5 P HN (K (£1) < / T un(t) + MV L (Ko (1))
+ [ Vunleh)- (Vi) - Vee)
+3 /Q Va(t™) ~ Va(t))P.

Summing from i =0 to j — 1, we get
5 | IVl () < 5 [ (VU0 + 1K ()
T [ Vun(eh)- (Vi) - V)
+20 [ 195 - Vet
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Taking the limit (considering t/ independent of n and J), we get (using
regularity of g)

5 [ IVa(OF < limsup i (ko(eh)) < 5 [ IVu(O)F + 3 (K (0)
Q

n—oo

+ /O t /Q Vu(r) - Vi(r)dxdr.

Similarly, taking u,(ti*1) — (g(ti*1) — g(t])) to be a test function for
un(t,’,), we get

/|vu y+|.m.anN YK, /qu (0)> + HN-(K(0))

+ /0 /Q Vu(r) - V(r)dsdr.

Hence lim,_,oo HV"1(K,(t})) exists, and there is energy balance with this
limit.
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On the other hand, from the minimality of (u(s), K(s)) for each s, consider
s < tand (u(t)+ g(s) — g(t), K(t)) a competitor for (u(s), K(s)). Then

5 [ IVa(OP R K () = 5 /Q Vu(s)P +HY (K (s))
- [ V() Ve - e(0) - 5 | V(&) - ()P

Summing over the discrete times and taking the limit, this gives
HN=L(K(t)) = limp_soo HN71(K,(t)), and the energy balance we sought.

Next, Jump Transfer.
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BV and sets of finite perimeter

Definition
The measure theoretic interior of a set E C €2 is the set
xeQ: limBGANE 1
r—0 |B(x,r)]
the measure theoretic exterior of a set of finite perimeter E C 2 is the set
xeQ: limBNE o1
r—0 |B(x,r)]

and the measure theoretic boundary of E, OE, is the set of points in Q
that are neither in the measure theoretic interior nor the measure theoretic
exterior. That is,

r—0 ’B(Xa r)’ r—0 ’

O«E = {xGQ:IimsupM>0and Iimsup‘ ((’ )\)’ | 0}'
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For E C Q with finite perimeter (xg € BV), we have
|OE| == |Dxg| = HN |0, E

and

/ divpdx = / ¢-vp dHN!
E O.E
for all ¢ € CF(2,RN).

Definition

The reduced boundary of E in Q, 0*E, is the set of points in 0, E that are
(or can be) Lebesgue points for vg. That is,

lim ][ ve dHNTt = vg(x).
r=0J B(x,r)no.E
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For x € O*E, define H= := {y ¢ RV : y - vg(x) < 0} and
E, .={y €RN:x+rycE} Then

Theorem (Blow-up at reduced boundary)

XE, — XH-

in L} _(RN) as r — 0. Furthermore,

HN-YBNOLE)—HN"YBNIH)

for all ball B ¢ RV.

Connection to BV: jump sets and coarea....
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In what follows, for a given u € BV and t € R, define
Ey = {xe€Q:u(x)>t}
Definition

We define the upper and lower values of u at x by

, E: N B(x,r)
ut(x) = sup{t : I|msup’t—’ > 0}
& P 1B

and

_ : : |Ef N B(x, r)] }
u (x):=inf<t:limsup———"—""= >0
=t {¢ imeup T

The jump of u is [u](x) := u™(x) — u™(x), and the jump set of u is then
defined by S, := {x € Q : [u](x) > 0}.

Definition

We define Dyju := Du|S, and we say u € SBV(Q) if the singular part of
Duis Dju.
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SU and a* Et

Proposition

Let u e BV(Q), let D C R be dense, and recall that for each t € R, we

define
Ei = {xe€Q:u(x)>t}

Then
Su= |J (0.E, NO.Ey).

t1,tp €D

t1<tp )
First, recall

: |B(x,r) N E| : |B(x,r) \ E| }
OLE =<¢xeQ:limsup——2-—— >0and limsup————— >0,.
{ rot 1B )] rot [B(x.1)|
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Proof part 1.
Let x € 0xEy, N OxE¢, with t1 < to. Then using the definitions of u™(x)

and u™(x) we have

E B
x € 0,E, = IimsupM >0 = uf(x) >t

ot |B(x,r)]

and also

EE N B(x,
x € 0xE¢y = lim supw

>0 < u (x) < ty,
MSUP Bk, ] )

so x € §,. O
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Proof part 2.

Next, suppose x € S,,. Then we can choose t;, tr» € D so that
um(x) <ty < ty < ut(x). Then Ey, D E;, and

ES N B(x,
lim supM > 0 and lim supw
r—0+ |B(X7 r)| r—0+t |B(X7 r)’
= X € 0xEy, (since Ef, C Ef) and x € 0.Ey (since Ey, C Ey))
> x € 0:Ey NOLE,,.
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Corollary
Note that as a consequence, we have that if x € S,;, then

ut(x) = sup{t: x € 0.E;}

and

u” (x) =inf{t: x € 0.E:}.

This does not hold for general x ¢ S, as can be seen by considering u
constant near x, so that x is in none of the 0, F;.

Given a countable dense set D, define the “reduced jump set”
Sp(u) == S, \ <U[8*Et\8*Et]>, (1)
teD

which has the property that HN=1(S, \ Sp(u)) = 0 since
HN=L(0,E; \ 0*E;) = 0 for each t € D.
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Proposition
For x € Sj(u) and t € DN (u™(x), u™(x)), v¢(x) is independent of t.

Proof.

We have that x € 9*E; for all t € D N (u™(x), u™(x)), as well as that

Ey DEy, ifti <tp. Butif ty,to € DN (u(x),u"(x)), then, by Lemma
blowing up E;, converges to Hth(X) and blowing up E;, converges to
Hy,,(x)- But since Ey; D Eyy, it follows that the same inclusion holds for
the limiting half-planes. But, since they are half-planes, they must be
equal, and therefore vy, (x) = v, (x). O

v

Note that even for t € (t1, t2) \ D, we have that the blow-up of E;
converges to the same half-plane.
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Theorem (Coarea)
If ue BV(Q), then

|Dul|(Q / HN L, E;)dt. (2)

Furthermore, from this it follows that for every Borel set S,

Dul(S) = /R HN1(S M0, E)dt. (3)

Therefore,
|D,u|(Q) = / HN=Y(S, N O.E;)dt
R

and, for u € SBV(Q),

/ V] = [Dact(Q) = [Dul(R\ S,) = /R HNL((0.E.) \ S,)dt
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Two pictures of SBV

Consider minimizers of

/Q Vul +HNY(S,)

@ Usual picture: S, is a countable union of closed pieces of smooth
curves (rectifiability), off of which u is harmonic
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Two pictures of SBV

Consider minimizers of

/Q Vul +HNY(S,)

@ Usual picture: S, is a countable union of closed pieces of smooth
curves (rectifiability), off of which v is harmonic

@ Extreme Coarea:

/\VU|2+H’V L // (IVulxse + Xsu)d%"’*ldt
Q . E; [u]

|Vul| is the density of different 0, E;, so off of S, there is a repulsion
of different O, E;, but if two intersect (0. Et, N OxEt, # 0), this
intersection attracts more 0, E;.
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Jump Transfer: modification of test functions

Given u, BY (keys: equi-integrability of |V u,| and strong convergence
U, — wuin L) and a test function v for u, we want to modify it, creating
v, such that

HN_I(Svn \ Su,) — HN_I(SV \ Su)

while Vv, — Vv.

(Blackboard)
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Problems with cohesive

(Blackboard)
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Connection to Griffith

The solution u(t) with K(t) := Ur<:S,(r) satisfies Griffith's criterion if
t — HN=1(K(t)) is continuous.
Problem:

At the pre-existing crack, the energy release rate can be made arbitrarily

small by choosing a suitable boundary condition, independent of L, but if
L is large enough,
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Connection to Griffith

The solution u(t) with K(t) := Ur<:S,(r) satisfies Griffith's criterion if
t — HN=1(K(t)) is continuous.
Problem:

At the pre-existing crack, the energy release rate can be made arbitrarily
small by choosing a suitable boundary condition, independent of L, but if

L is large enough, global minimization will result in the crack growing.
This violates Griffith.
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Connection to Griffith

The solution u(t) with K(t) := Ur<:S,(r) satisfies Griffith's criterion if
t — HN=1(K(t)) is continuous.
Problem:

At the pre-existing crack, the energy release rate can be made arbitrarily
small by choosing a suitable boundary condition, independent of L, but if
L is large enough, global minimization will result in the crack growing.
This violates Griffith.

Note the connection to local vs. global minimality — the initial crack was a
strict local minimizer and was stable in the sense of Griffith.
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“[G]lobal energy minimization .. .is not dictated by any known
thermodynamical argument; it is rather a convenient postulate which
provides for useful insight into a variety of behaviors. . ..
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“[G]lobal energy minimization .. .is not dictated by any known
thermodynamical argument; it is rather a convenient postulate which
provides for useful insight into a variety of behaviors.... A more realistic
approach that would investigate local minimizers is doomed for want of
the necessary mathematical apparatus.”
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“[G]lobal energy minimization .. .is not dictated by any known
thermodynamical argument; it is rather a convenient postulate which
provides for useful insight into a variety of behaviors.... A more realistic
approach that would investigate local minimizers is doomed for want of
the necessary mathematical apparatus.” — Francfort and Marigo, ‘98
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True Griffith quasi-static evolution

Definition
Given g(t), the pair (u(t), K(t)) is a Griffith evolution if:
e (u(0), K(0)) is unilaterally stable (e.g., a local minimizer), subject to
g(0)
o (u(t),K(t)) is unilaterally stable, subject to g(t)
@ Energy inequality:

E(u(ta). K(t2)) — E(u(tr), K(t1)) < / i | vu- Veaa

for every t; < t.

o If u(t™) # u(t), then u(t™) is accessible from u(t™) (there exists a
continuously growing crack from K(t~) to K(t*) along which the
energy is nonincreasing).

Existence: open
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Problem with local minimization

Proving existence for models based on local minimality have met with
difficulties (e.g., limits of minimizing movements — Dal Maso & Toader

M3AS ‘02)

The convergence we have is due to SBV compactness of u,(t), which

gives (suppressing t):
( Vu,

[Un]’/nHN_1 | Su,

Un

Un

— Vuin L}(Q);
5 [ulvHNTL(S, as measures;
— win [Y(Q); and

5 win [2(Q).

. . SBv . .
It is easy to find examples of u, = u with (up, Sy,) unilateral local
minimizers of E, but (u, S,) is not.

Start with u that minimizes the elastic energy given S, but the pair is not

a local minimizer: (Blackboard)
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There is a fix, e-stability, which implies local minimality.

Definition (e-accessible)

(v, C) is e-accessible from (u, K) if there exists a continuous function
¢:10,1]—= SBV(Q) such that ¢(0) = u, ¢(1) = v, E(v,C) < E(u,K), and

sup [E(6(72), Kg(72)) — E((11), Ks(11))] < e.

T1<T2

Here, Ky(7) := Us<7Sy(s) and Kg(1) = C. Such a path to v is called an
e-slide.

We then have the corresponding definition of stability:

Definition (e-stability) J

u is e-stable if there does not exist an s-accessible v from u.

We also define &-accessibility, where the last inequality is not strict. Also,
unilateral accessibility /stability is as before.
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e-stable evolutions

Definition
Given g(t), the pair (u(t), K(t)) is an e-stable evolution if:
e (u(0), K(0)) is e-stable, subject to g(0) (which implies local
minimality)
o (u(t),K(t)) is unilaterally e-stable, subject to g(t)
o Energy inequality:

E(u(ta), K(2)) — E(u(t). K() < [ ) | vu- Veasa

for every t; < tr.

o If u(t™) # u(t™), then u(t™) is E-accessible from u(t™) and has
lower energy than all states that are e-accessible from u(t™).
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e-stable evolutions

Definition
Given g(t), the pair (u(t), K(t)) is an e-stable evolution if:
e (u(0), K(0)) is e-stable, subject to g(0) (which implies local
minimality)
o (u(t),K(t)) is unilaterally e-stable, subject to g(t)
o Energy inequality:

E(ule). K(2)) ~ E(u(t) k(o) = [ [ V- Veadt

for every t; < tr.

o If u(t™) # u(t™), then u(t™) is E-accessible from u(t™) and has
lower energy than all states that are e-accessible from u(t™).
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Dynamics?

What is the corresponding dynamic model?
Chris Larsen (WPI)
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Dynamics?

What is the corresponding dynamic model?
Want:

upr —Au=0o0n Q\ K(t)
with u(x,0) = ug(x), ut(x,0) = ui(x)
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Dynamics?

What is the corresponding dynamic model?
Want:

upr —Au=0o0n Q\ K(t)
with u(x,0) = ug(x), ut(x,0) = ui(x)

u(t) = g(t) on 0Q\ K(t)
° ou
I 0 on K(t)
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Dynamics?

What is the corresponding dynamic model?
Want:

upr —Au=0o0n Q\ K(t)
with u(x,0) = ug(x), ut(x,0) = ui(x)

u(t) = g(t) on 0Q\ K(t)

ou
% =0on K(t)

e K(0) = Ko, K(t) satisfies ...?
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Dynamics?

What is the corresponding dynamic model?
Want:
o

upr — Au=0on Q\ K(t)
with u(x,0) = ug(x), ut(x,0) = ui(x)

u(t) = g(t) on 0Q\ K(t)
° ou
I 0 on K(t)

e K(0) = Ko, K(t) satisfies ...? Should grow consistently with Griffith's
criterion, e.g., if up is in elastic equilibrium with (quasi-static) energy
release rate below G, g(t) = g(0), then the crack should not grow.
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Dynamics?

What is the corresponding dynamic model?
Want:
o

upr — Au=0on Q\ K(t)
with u(x,0) = ug(x), ut(x,0) = ui(x)

u(t) = g(t) on 0Q\ K(t)
° ou
I 0 on K(t)

e K(0) = Ko, K(t) satisfies ...? Should grow consistently with Griffith's
criterion, e.g., if up is in elastic equilibrium with (quasi-static) energy
release rate below G, g(t) = g(0), then the crack should not grow.
It should never happen that the energy release rate is greater than G.
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Dynamics?

But how does K(t) grow? How fast? Branching? 3-D? By what principle
should it grow?
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Dynamics?

But how does K(t) grow? How fast? Branching? 3-D? By what principle
should it grow?

Existence should be at least plausible:

“Only a mathematical existence proof can ensure that the mathematical
description of a physical phenomenon is meaningful.” - R. Courant
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Dynamics?

But how does K(t) grow? How fast? Branching? 3-D? By what principle
should it grow?

Existence should be at least plausible:
“Only a mathematical existence proof can ensure that the mathematical
description of a physical phenomenon is meaningful.” - R. Courant

Main difficulty: for the discrete-time problem, there is no (apparent)
energy release rate, unlike in quasi-static evolution. There, a crack
increment results in an immediate stored elastic energy decrease, which
can be compared with the cost of the increment. With dynamics, there is
no immediate effect. What would a discrete-time model be?
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Dynamics?

But how does K(t) grow? How fast? Branching? 3-D? By what principle
should it grow?

Existence should be at least plausible:
“Only a mathematical existence proof can ensure that the mathematical
description of a physical phenomenon is meaningful.” - R. Courant

Main difficulty: for the discrete-time problem, there is no (apparent)
energy release rate, unlike in quasi-static evolution. There, a crack
increment results in an immediate stored elastic energy decrease, which
can be compared with the cost of the increment. With dynamics, there is
no immediate effect. What would a discrete-time model be?

There are two settings where dynamic models can be naturally defined:
phase-field dynamic Griffith fracture, and cohesive dynamic fracture.
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Computational phase-field model

(with Bourdin and Richardson)

Based on Ambrosio-Tortorelli approximation of the static energy:

1
E.(u,v) = é/(fnE +v?)|Vul?dx + 5/ IVv|?dx + /(l — v)%dx
Q Q 4e Ja

I-converges to
E(u) = ;/ \Vul?dx +HN7L(S,)
Q

defined on SBV. The stiffness of the material is given by 7. + v.
Advantage of phase-field approach: Now, when the crack is advanced

(v \\), there is an immediate decrease in stored elastic energy, even if u
does not jump to the new equilibrium.

Chris Larsen (WPI) Quasi-static and Dynamic Fracture SISSA Fracture Evolution 37 / 66



Computational dynamic fracture

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time)
algorithm for dynamic fracture:

Given u(x,0), us(x,0) and boundary conditions

Chris Larsen (WPI) Quasi-static and Dynamic Fracture SISSA Fracture Evolution 38 / 66



Computational dynamic fracture

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time)
algorithm for dynamic fracture:

Given u(x,0), us(x,0) and boundary conditions
@ First time step: Minimize v — E.(u(x,0), v) to find v(x,0)
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Computational dynamic fracture

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time)
algorithm for dynamic fracture:

Given u(x,0), us(x,0) and boundary conditions
@ First time step: Minimize v — E.(u(x,0), v) to find v(x,0)

@ Do one iteration in time for
U — dIV(AVU) = O

with A(x,0) := 7. + v(x,0)?, to find u(x, At)
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Computational dynamic fracture

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time)
algorithm for dynamic fracture:

Given u(x,0), us(x,0) and boundary conditions
@ First time step: Minimize v — E.(u(x,0), v) to find v(x,0)

@ Do one iteration in time for
U — dIV(AVU) = O

with A(x,0) := 7. + v(x,0)?, to find u(x, At)
© Repeat with v(x, t;) < v(x, ti—1)
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Computational dynamic fracture

Now, using Ambrosio-Tortorelli, there is a natural (discrete-time)
algorithm for dynamic fracture:

Given u(x,0), us(x,0) and boundary conditions
@ First time step: Minimize v — E.(u(x,0), v) to find v(x,0)
@ Do one iteration in time for

Ut — dIV(AVU) =0

with A(x,0) := 7. + v(x,0)?, to find u(x, At)
© Repeat with v(x, t;) < v(x, ti—1)

The idea is simply that the displacement u is following dynamics, with the
weakening field v playing exactly the same role as in quasi-static, i.e.,
Griffith (assuming that alternate minimization works).
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Phase-field model (continuous time)

(with Ortner and Siili)
Ortner: Previous algorithm balances energy!?

In fact, can take At ™\ 0, get existence of (u, v) such that
o

upr — div(Az(v)Vu) =0
with initial conditions
(need to add arbitrarily small dissipation: Vi)
@ Total energy (kinetic + potential + dissipated) is balanced
@ v(-,t) is the minimizer of v — E.(u(x, t),v) over v < v(-, t).

But, what happens when € \, 07 What is the sharp-interface model? v
disappears, what happens to condition 37
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Dynamic fracture model (sharp interface)

(u, K) is a Maximal Dissipation (MD) solution if:

© v is a solution of the wave equation on Q\ K, i.c., etc.
/ (uesb0) — (Vu, Vo) = 0
0

V¢ € Hy((0,00); SBVi) (S(¢(t)) C K(t) Vt)
@ (u, K) balances energy

@ VT, if a pair (w, L) satisfies 1 and 2, with K(t) C L(t) Vt € [0, T],
then K(t) = L(t) for all t € [0, T]

Just energy balance + maximal dissipation (w.r.t. set inclusion)

Expect to work with other dissipations, e.g., damage (with Garroni —
different model for dynamic damage, but seems equivalent...)

Connection to quasi-static models?
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Quasi-static model

Francfort & Marigo, modified by Dal Maso & Toader; Mielke:

(u, K) is a solution if:

Q@ (u, K) is unilaterally minimal at each time:
for each t, if (w, L) is such that K(t) C L, then
E(u(t),K(t)) < E(w,L)
= u is an elastic equilibrium (global minimizer) at each time

@ Energy balance (stored elastic + dissipation + work)
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Quasi-static model

Francfort & Marigo, modified by Dal Maso & Toader; Mielke:

(u, K) is a solution if:
Q@ (u, K) is unilaterally minimal at each time:
for each t, if (w, L) is such that K(t) C L, then
E(u(t),K(t)) < E(w,L)
= u is an elastic equilibrium (global minimizer) at each time
@ Energy balance (stored elastic + dissipation + work)
Alternative:
i) w(t) is in equilibrium for every t
ii) Energy balance (stored elastic + dissipation + work)
i) VT, if (w, L) satisfies i) and ii), and K(t) C L(t) Vt € [0, T], then
K(t) = L(t) Vt € [0, T].
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Quasi-static model
Francfort & Marigo, modified by Dal Maso & Toader; Mielke:

(u, K) is a solution if:
Q@ (u, K) is unilaterally minimal at each time:
for each t, if (w, L) is such that K(t) C L, then
E(u(t),K(t)) < E(w,L)
= u is an elastic equilibrium (global minimizer) at each time
@ Energy balance (stored elastic + dissipation + work)
Alternative:
i) w(t) is in equilibrium for every t
ii) Energy balance (stored elastic + dissipation + work)
i) VT, if (w, L) satisfies i) and ii), and K(t) C L(t) Vt € [0, T], then
K(t) = L(t) Vt € [0, T].
Easy to see red = blue, plus gives a selection criterion by choosing largest
dissipation. ii) and iii) are general, i) is PDE for the evolution of wu.
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Cohesive fracture

The stored energy for cohesive fracture is of the form
E(u) = / W(Vu)dx +/ o([u]) dHN !
Q Su

where 9(0) = 0, limy_,0 ¥(x) = G. = 1, ¢ concave (and typically odd).
A nice feature is that many formulations are possible:
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Cohesive fracture

The stored energy for cohesive fracture is of the form
E(u) = / W(Vu)dx +/ o([u]) dHN !
Q Su
where 9(0) = 0, limy_,0 ¥(x) = G. = 1, ¢ concave (and typically odd).

A nice feature is that many formulations are possible:

e Stationary Action (studying existence, etc., in 1-D with Slastikov)
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Cohesive fracture

The stored energy for cohesive fracture is of the form

E(u) ;:/vi(vu)dH/S ([u])dHN 1

where 9(0) = 0, limy_,0 ¥(x) = G. = 1, ¢ concave (and typically odd).
A nice feature is that many formulations are possible:
e Stationary Action (studying existence, etc., in 1-D with Slastikov)

@ Stress Threshold (with threshold = ¢/'(0), based on the formulation
for dynamic damage evolution with Garroni)
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Cohesive fracture

The stored energy for cohesive fracture is of the form

E(u) ;:/vi(vu)dH/S Y([u])dHN

where 9(0) = 0, limy_,0 ¥(x) = G. = 1, ¢ concave (and typically odd).
A nice feature is that many formulations are possible:
e Stationary Action (studying existence, etc., in 1-D with Slastikov)
@ Stress Threshold (with threshold = ¢/'(0), based on the formulation
for dynamic damage evolution with Garroni)
@ Maximal Dissipation
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Cohesive fracture
The stored energy for cohesive fracture is of the form

E(u) ::/QW(Vu)dx—i—/s Y([u])dHN

where 9(0) = 0, limy_,0 ¥(x) = G. = 1, ¢ concave (and typically odd).
A nice feature is that many formulations are possible:
e Stationary Action (studying existence, etc., in 1-D with Slastikov)

@ Stress Threshold (with threshold = ¢/'(0), based on the formulation
for dynamic damage evolution with Garroni)

@ Maximal Dissipation

These are all naturally defined for cohesive fracture, e.g., in 1-D. And they
are all equivalent if ¢/(0) < co. All give:

e wave equation off of S, force balance on S, (ux = ¢'([u]))

@ energy balance (elastic + kinetic + fracture)

@ crack opens at (xp, tg) <= ux(xo0, to) = ¢'(0) and uy is increasing
at (xo, to) if no crack were allowed (decreasing if negative)
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Existence for Sharp Interface Griffith? First step:
solvability of wave equations for arbitrary growing cracks

(with Dal Maso) Given t — K(t) with K increasing and K(T) < oo, we
want solutions to weak versions of

u(t) — Au(t) — vAu(t) = f(t)
on Q\ K(t), with a zero Neumann condition on 0Q U K(t).

What weak versions? First we see how existence works...
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We define u}, for i = —1,0, ..., n inductively by the following: First,
ud = u®, ut = 0@ — 7 (4)

then, for i = 0,1,...,n— 1, the function u’*! is the minimizer in V,it1 of

u—ulul— i P ' /
wes S = B |Vl LV Va - 2(6 )
Th n 12 Tn
where j
.1 ([t
flo— = F(t)dt 5
= (5)
and

Vi i= GSBVZ(Q, K(t)) :=
{ve GSBV(Q)NL3(Q): Vv e L2(Q;RN), S, c K(t)}.
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It follows that we have

UL—H - U;; Uir — u;’)—l o) > v i+1
- ) + u ) 2
< 12 < n y ¢>L

Tn Tn Tn

+ (VUi — Vil V) 2 = (] o) (6)

Tn

1

for every ¢ € V,iy1. We can take ¢ = uitl —yul and we get

i+1 i
Uy = — Uy

2 i+1 H i—1
u ul ul —u .
< a n, z z > ”VU;‘I—"_lHiZ
L2

Tn Tn

Tn 12

~(Vui ™ V) + TV = Vulif = (6 6 - ue.
n
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Using the fact that ||a||? — (a, b) = 3||a||> + 2||a — b||> — 3||b||%, we can

then write

2 i+1 i i i—12
u, = —uy n — Up

Tn Tn

i+1 i
u,™t — up,

Tn

+ |Vui 2,
H

+
H

HI VUit = Vi |2, + 2| Vot — V|2,

2

i i—1 . .
I Vulf +2(f up™ — up. (7)
H

Up — Uy

n
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Summing from / = 0 to j and using the initial data, we get

. .2 . . . 2
uj+1 o uj /+1 —u ul — ul—l
S VT + Z —

H i=0

J
i 2y
+3 IVt - n||L2+ E IVt = V|22
j i=0

n

J
= N3+ Ve )2 + 2 (6wt = uhn.
i=0
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We now define up, @in, vy : [0, T] — V for t € (¢}, tiF1] by

_ it
un(t) == up + (t — ty)——, (8)
Tn
bn(t) = up™, fa(t) =1y, 9)
A ST o R S S |
£) = In n n n n_YUYn n ' 10
Vn( ) Tn * Tn |: Tn Tn :| ( )

Rewriting the previous sum, for every t € (t{,, tf,ﬂ) we now have
t[/;+1

¢+
lin(e)[1F + IIVun(tJn“)HinrTn/o II\'/n(t)Hi/dHTn/o IV itn(t) 72t

g+l gt
+27/ IV itn(£) |72 dt = v + V3 + 2/ (fa(t), in(t))n dt.
0 0
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We then have that

Vun(t) and Vii,(t) are bounded in L? uniformly in t and n, (11)
Vi, is bounded in L3(0, T; L?) uniformly in n, (12)
in(t) and vu(t) are bounded in H uniformly in t and n. (13)

We note that (13) together with the fact that u(®) € H implies that u,, is
bounded in H uniformly in t and n. This together with (11) gives

up(t) is bounded in V uniformly in t and n.
Furthermore, using (8), (9), and (10) in (6) gives that for all t € (t/, ti*1),
(Va(), )1 + (ViUn(t) + 7V in(t), V) 2 = (fa(t), d)1

for every ¢ € V1. This gives that for t € (t, ), V() || g S C

n»-n
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We then get

U, is bounded in H*(0, T; V) and in W2°°(0, T; H),
Vp is bounded in L>(0, T; H), (
v, is bounded in W1>°(s, T; V) for every s € [0, T].

—
= =
S 1 B~
~— — —

We then show that u,, I, — u, v, — 0, and u is a solution to...
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Definition

We say that v is a weak solution of the wave equation on the crack
domain t — Q\ K(t) if

ue L0, T; V)N Whe(0, T; H) N W>*(s, T; VZ) for all s € [0, T],
u(t) € Vi for a.e. t € [0, T,

and
(a(t), @)t + (Vu(t) +yVi(t), Vo) 2 = (F(t), o)
for every ¢ € V4.

and

Theorem

For fixed t — K(t) defined on [0, T] such that K(t1) C K(t2) if t1 < t2
and HN=Y(K(T)) < oo, given ul® € Vg and u(Y) € H, there exists a weak
solution of the wave equation.
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Uniqueness?

We can also solve:
(U(t), o) + (Vu(t) +Vi(t), V)2 =0

for every ¢ € V4.

Solutions here balance energy, not including the fracture energy. So, crack
growth is impossible if the total energy is conserved. This comes from the
fact that Vi(t) € L2, so il(t) € V;. Without the dissipation, in general
Vi(t) ¢ L2

Expect: (guess:) if u, is the solution to this problem, then lim,_,ou, =: u
also balances elastic 4 kinetic energy, but solves the PDE with v = 0.
This implies non-uniqueness, if there exists a solution with elastic +
kinetic energy decreasing as the crack grows.
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A flaw in the model: really, should have that K(t) is the crack set for
u(t), i.e., the minimal set such that S,;) C K(t) for all 7 < t. In fact,
given K, we can solve the wave equation as we just did, and get v, and
then reduce K as necessary, getting the crack set for u, K*.

Question: does u solve the wave equation on the cracking domain
t— Q\ K*(t)?
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A flaw in the model: really, should have that K(t) is the crack set for
u(t), i.e., the minimal set such that S,;) C K(t) for all 7 < t. In fact,
given K, we can solve the wave equation as we just did, and get v, and
then reduce K as necessary, getting the crack set for u, K*.

Question: does u solve the wave equation on the cracking domain
t— Q\ K*(t)?

Yes, since u(t) € V; and V;* C V4, so the appropriate test functions for
K* are test functions for K, and u solves the weak wave equation w.r.t.
these test functions.
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Questions:

@ Are solutions of these models consistent with Griffith's criterion?

@ s there stronger regularity of solutions than (is provable) for
quasi-static? (Ves...)

© Are any of these dynamic models the limit of the phase-field models?
(Perhaps in principle and some situations, but probably not always
true)

@ What is the quasi-static limit of the phase-field dynamic model?
(Probably not phase-field quasi-static global minimizer, except when
the dissipation is continuous in time)

© What is the quasi-static limit of the sharp-interface dynamic model?
(Probably not quasi-static global minimizer)
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Dynamic cohesive fracture

(with V. Slastikov)
All of our models conserve energy, where the total energy is

2 2 N-1
/Qutdx—l—/Q|Vu| dx~|—/K¢([u])d’H ,

S(t) C R will be a set of possible discontinuity points for u at time
t €(0,T), and we define S := {(x,t) € R x (0, T) : x € S(t)}, which we
require to be closed, Qs := [R x (0, T)]\ S, and H} := H*(Qs).

Definition

We say that u € H% is a constrained Force Balance solution if ¢/ is
Lipschitz and v satisfies

Ut — Uy = 0 in Qg
ue=19'([u])  onS.
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Definition

We say that u € Hé is a constrained Stationary Action solution if 9 is
Lipschitz and u satisfies

Ut — Uxxy =0 in Qg
ux € 0Y([u]) on S,
E(t) = E(0) forall t,

where 0 denotes subdifferential and E is the total energy.

The point of the regularity is that 91(0) = [—«, a] for a := ¢’'(07T).

Of course, if 9 is smooth, then o = 0 (since 9 is even) and this definition
is equivalent to the previous one. In fact, the subdifferential inclusion just
means that

ux(x, 1) = ¢ ([u](x, 1)) if [u](x, t) # O,

and |ux(x, t)| < ¢'(0") otherwise.
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Derivation of Stationary Action solution

For simplicity, we suppose that S(t) = {0} for all t € (0, T). We define
the action to be

)
A = [ (Glul? = Jlul? - ot 1) ) .

where the norms are L? in space. We consider
t— A(u+ Av),

where v(x,0) = v(x, T) = %V(X, t)|t=0 = 0 and v € CL}(R\ {0} x [0, T]).

T 0
0¢e / [/ (upve — uyxvy)dx
0 —00

+/°°(utvt ~ v )dx — du([u](0, )]0, £)]| dt.
0
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Assuming sufficient regularity, after integration by parts we get

T 0 00
0e / |:/ (_uttV + UxxV)dX + / (—UttV — UXXV)dX:| dt+
0 0

—0o0

T
+/ [ux(0+, t)v(0F, t) — u (07, t)v(07, t) — Ay ([u](0, t))[v](0, t)} dt.
0

This gives the Stationary Action model, considering first v(0, t) = 0, then
[v](0,t) =0, and then general v.
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Definition

We say that u € Hé is a constrained Maximal Dissipation solution if it

satisfies
Ut — Uy = 0 in Qg

ue € 0Y([u]) on S (17)
E(t)=E(0) forall t,

and in addition we have the maximal dissipation condition, namely, that if
w also satisfies (17), and is such that for some t € [0, T):

e w=uonQx|[0,t] (and wy = u; if t =0)
e for some ¢ >0, [w](0,t) > (<) 0 on (t,t+¢),
then [u](0,t) > (<) [w](0, t) on Q x (%, + ¢€).

All definitions are equivalent of v’ is continuous.
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Definition
We say that v is an unconstrained Maximal Dissipation solution if it is in

H% for some S as defined above, and it satisfies

Up — Uy =0 in Qg
uy € 0Y([u]) forallxeR and ae. t (18)
E(t)=E(0) forall t >0,

and in addition we have the maximal dissipation condition, namely, that if
w also satisfies (18), and is such that for some t € (0, T):

o w=uonQx(0,t] (and wy = u; if t =0)

e for some € > 0, [w](0,t) > (<) 0 on (t,t+¢),
then [u](0,t) > (<) [w](0, t) on Q x (%, + ¢€).
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Existence

First, we give an example of a solution to the constrained problem, which
has an opening crack. We construct a solution of the form

B vix+t) inR, x(0,T)
u(x,t) = { v¥(x —t) in Rj x (0, T).

Our u will be odd in space at all times, so it is enough to construct only v,
noting that [u](0, t) = 2v(0, t) > 0 by construction. First, define

80):= [ g

so that g’(x) = 1/1’(12X)’ and we allow g to take the value oo. Since ¥/ >0
on [0,00), g is monotonic. Define v to be the inverse of g. Then,

u (07, 1) = V(1) = g,(:(t)) = 19'(2v(t)) = ¥'([u](0, t)).
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Lemma

If ¢’ is Lipschitz, then given uy € HY(R) and uy € L2(R), there exists a

unique solution of the constrained Force Balance problem.

Proof.
€= e
{ul(:l:x)
(Fx)

up(Fx

Ui (x) =

ut(x,t) and u~(x, t) are given by

ut(x,t) =

N =

{ BT
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in R_,
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in R_.

x+t
(s t)+u0i(x—t))+1/x uE(s) ds

2

=i

fort Fx>0
for t ¥ x < 0.
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Continued.
Define u(x, t) by

ut(x,t) forx>0

b )= { u~(x,t) for x <O0.

One can show that the jump [u](0, t) must satisfy
t 0

[u](0,t) = UO(t)—uo(—t)+/ ui(s) ds—/
0 —t

or more concisely, the jump v satisfies

V(1) = wo(t) — 2¢/(v(t)),

where vy is the derivative of the sum of the first four terms on the right
hand side of (22). This can be solved for v uniquely, since v’ is Lipschitz.
We then also have ¢’(v(t)), and so we can write an explicit formula for u

un(s) ds—2 /0 L (00, )) .

with this Neumann condition at x = 0. (Also, energy balance).
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Y(0) = a < 00

Theorem

Given uy € HY(R), u1 € L?(R), and ¢ with ¢'(0%) = +a, « finite, there
exists a Stationary Action solution with jump constraint at x = 0, with
u(+,0) = up and us(-,0) = uy.

Proof.

We consider v, that are smooth, even, equal to ¢ outside of (—1/n,1/n),
and such that lim,_,» max 1/, = «. Then, by the previous Lemma, there
exists a unique u”. By the energy balance, there exists u € Hé such that
u" — uin H: (up to a subsequence). Then [u"] — [u] in L2(0, T). Can
then show v is a solution, and balances energy (but not uniqueness). O

v
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Theorem

Given N points xi, ..., xy, and given up € HY(R), u; € L2(R), and ¢ as
above, there exists a solution of the weak cohesive wave equation with
Jjump constraint S(t) = {x1,...,xn}, with u(-,0) = ug and u:(-,0) = u.

Proof.
N:2,X1:0, andx2:2
Step 1: u? is a solution that can only jump at x =0, and u% is the

solution that can only jump at x = 2. From finite speed of propagation,
ud(1,t) = u3(1,t) for all t € (0,1). Define uon [R\ {0,2}] x (0,1] by

[
bt = { 2

gives a solution on [R\ {0,2}] x (0, 1].
Step 2: Repeat this procedure with “initial” data u(x,1), getting a
solution on [R \ {0,2}] x (1, 2], etc.

x,t)  for x € (—o0,1]
x,t)  for x € [1,00)

Ol
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/(0) = o
Theorem

Let ug € HY(R) and uy € L2(R) be given, each with finitely many
singularities (or locally finitely many), that is, there exist xi,...,x, € R
such that for every neighborhood N of {xi,...,xn}, up € WLH2(R \ N)
and uy € L°(R \ N). For 1) as above, there exists u € H} satisfying the
wave equation such that u satisfies the Maximal Dissipation condition with
S(t) = {0} (with an extension to S(t) being a locally finite set of points,
as in the previous theorem).

Proof.

Suppose w satisfies the wave equation, with the same initial data as v,
and [w](0,t) > 0 on (0,¢) for some € > 0. Find {u,}, corresponding to
¥n, with 1, 7 1 uniformly, ¢/, Lipschitz, 1, = ¢’ outside (—2, 1),

P, <" on (0,%), and such that [u,](0,0) = 0 and u, have the same
initial data as u. Since ¥, — 1 uniformly and v/, — ¢ uniformly outside
of 0, up, — uin Hé to some function u. Can show that

u iOi ti > |W ‘Oi ti on EO,E), using monotonicity of . O
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