General Structure of a PW code

Self-Consistent KS egs.
or
Global Minimization approach
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The first GPU-enabled beta release
of Quantum ESPRESSO0 is available

for download.
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The new release, v.4.3, of the
Quantum ESPRESSO distribution is
available for download.

13 July 2010

Bugfix release v.4.2.1 of the
Quantum ESPRESSO distribution is
available for download.
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A newversion, v.4.2, of the
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25 May 2011 Version 4.3.1 of Quantum ESPRESSO is

available for download.

Quantum ESPRESSO is an integrated suite of computer codes for electronic-
structure calculations and materials modeling at the nanoscale. It is based on
density-functional theory, plane waves, and pseudopotentials (both
norm-conserving and ultrasoft).
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Structure of a self-consistent type code

construct V_ext

-

guess rho_in ¢

-

compute V_KS

r

diagonalize H_KS

w

compute rho_out

mix to get
new rho_in

yes

compute forces, stress,
and other properties




DFT solution as global minimization problem
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DFT solution as global minimization problem
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the same as solving the KS eqs ! -

ionic and electronic minimization can be done together




Structure of a global minimization code
|
initialize 1onic pos
initialize elec wifc

1 ‘
compute V_ext
compute rho

compute KS pot evolve elec
* : evolve 10ns
compute elec gradient
+ constraints 1

compute 1onic gradient

no

terminate ?

further analysis




The Building Blocks

Diagonalize the hamiltonian/Compute the gradient
Build the density

Calculate the KS potential
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The Building Blocks

Diagonalize the hamiltonian/Compute the gradient
needs an efficient computation of H*psi
Build the density
needs an efficient BZ sampling and fast psi(r)
Calculate the KS potential

needs Poisson's solver and xc functionals




Initialization and termination

evaluation of the external potential

forces/stress and ionic evolution




The wic and the KS hamiltonian in a PW basis set

{ a v2+VKS( )| wi(r) = gipi(T)
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The system is periodic: Viks(r+ R) = Vks(r)

It is convenient to consider the Fourier transform
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The KS hamiltonian and the wfc in a PW basis set
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the KS eq. becomes a matrix eigenvalue problem
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The KS hamiltonian and the wfc in a PW basis set
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The KS hamiltonian and the wfc in a PW basis set
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a local potential becomes a convolution
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The KS hamiltonian and the wfc in a PW basis set

> (k+G|Hgslk+G') ciyor = ero Chyq
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a local potential becomes a convolution

i [k + Gk + G'| < Gao then |G —G'| < 2G4,




The Fast Fourier Transform and the dual space formalism

a uniform N point sampling in real space (1D)
J .
T = —a, =0,1,2,.... N —1
J N J

describes exactly f(r) if its Fourier components are such that

2
Gk:k;ﬂ-, N/2 <k < N/2

Discrete Fast Fourier Transforms allow to go back and forth. |
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... In N log N operations




The Fast Fourier Transform and the dual space formalism

H * psi can be computed very efficiently
psi(r) = invift[psi(k+G)]

vpsi(r) = v(r) * psi(r)

vpsi(k+G) = fwift[vpsi(r)]

hpsi(k+G) = h2/2m (k+G)**2 * psi(k+G) + vpsi(r)

The result is exact if the FFT grid can describe Fourier
components up to 2G,,,,; Where psi is limited to Gpmaq

NB: this is also the required grid to describe correctly
the charge density (i.e. the square of the wavefunctions)
and the Hartree potential.

)
QP> %
NP :




Exact diagonalization is expensive

find eigenvalues & eigenfunctions of H k+G,k+G’
Typically, NPW > 100 x number of atoms in unit cell.

Expensive to store H matrix: NPW”2 elements to be
stored

Expensive (CPU time) to diagonalize matrix exactly,
~ NPW” 3 operations required.

Note, NPW >> Nb = number of bands required = Ne/2
or a little more (for metals).

So ok to determine just lowest few eigenvalues.




How things scale with system size ?

Ngt number of atoms (2 system volume o< Ngy
Nelee number of electrons o< Ny

Npandnumber of bands ~ N

NPW number of plane waves x Q G3 QES@/LS

Ny

number of FFT grid points ~ 10Npw
Nk pumber of BZ k-points o< 1/Q




How things scale with system size ?

Ngt number of atoms (2 system volume o< Ngy
Nelee number of electrons o< Ny

Npandnumber of bands ~ N

NPW number of plane waves x Q G3 QES@/LS

Ny

number of FFT grid points ~ 10Npw
Nk pumber of BZ k-points o< 1/Q

computational cost
1 Hpsi x Npw + N, log N;. + N,
Iter. Diag. o NpandNupsi + NiwnaNew + Niond
new rho x Nk (N,log N, + N,)
new pot x N, log N, + N,

; Strongly dependent on Nelec and NPW (Ecut)




The external potential

Electrons experience experience a Coulomb potential
due to the nuclei

This has a known simple form




Problems for Plane-Wave basis

Core wavefunctions: Valence wavefunctions:
Sharply peaked close Lots of wiggles near nuclei
to nuclei due to deep due to orthogonality to
Coulomb potential. core wavefunctions

-

High Fourier component are present
i.e. large Kkinetic energy cutoff needed

97\ 2
ris ~ 1/7 Ecut ~ (—W> ~ 4027
T'1s




An analogy!

ement agencies!

Use

g as it works

PseudoPotentials

Obviously it can’t reproduce all the
functions of a real cop, but should

be convincing enough to produce
desired results....

37
shobhana Narasimhan, JMCASE
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