General Structure of a PW code Self-Consistent KS eqs. or Global Minimization approach

U A N T U M E S P R E S S O

HOME :: PROJECT :: WHAT CAN QE DO :: DOWNLOAD :: LEARN :: PSEUDO :: TOOLS :: QE WIKI :: CONTACTS :: QUOTE :: LOGOS ::

25 May 2011 Version 4.3.1 of Quantum ESPRESSO is available for download.

05 May 2011

The first GPU-enabled beta release of Quantum ESPRESSO is available for download.

01 A pril 2011

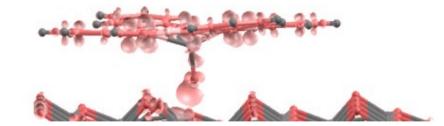
The new release, v.4.3, of the Quantum ESPRESSO distribution is available for download.

13 July 2010

Bugfix release v.4.2.1 of the Quantum ESPRESSO distribution is available for download.

> 10 May 2010 A new version, v.4.2, of the

Quantum ESPRESSO is an integrated suite of computer codes for electronicstructure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials (both norm-conserving and ultrasoft).



http://www.quantum-espresso.org/

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_{KS}(r) - \varepsilon_i \end{bmatrix} \varphi_i(r) = 0$$

$$\rho(r) = \sum_i |\varphi_i(r)|^2$$

$$V_{KS}(r) = V_{ext}(r) + V_H(r) + v_{xc}(r)$$

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_{KS}(r) - \varepsilon_i \end{bmatrix} \varphi_i(r) = 0$$

$$\rho(r) = \sum_i |\varphi_i(r)|^2$$

$$V_{KS}(r) = V_{ext}(r) + V_H(r) + v_{xc}(r)$$

$$\bigvee V_{KS}(r) \to \varphi_i(r) \to \rho(r) - 0$$

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_{KS}(r) - \varepsilon_i \end{bmatrix} \varphi_i(r) = 0$$

$$\rho(r) = \sum_i |\varphi_i(r)|^2$$

$$V_{KS}(r) = V_{ext}(r) + V_H(r) + v_{xc}(r)$$

$$\longrightarrow V_{KS}(r) \rightarrow \varphi_i(r) \rightarrow \rho(r) \rightarrow 0$$

$$E_{el} = -\frac{\hbar^2}{2m} \sum_i \langle \varphi_i | \nabla^2 | \varphi_i \rangle + \int V_{ext}(r) \rho(r) dr + E_H[\rho] + E_{xc}[\rho]$$

$$F_{el}^{I\alpha} = -\frac{\partial E_{el}}{\partial R_{I\alpha}} = -\int \frac{\partial V_{ext}(r)}{\partial R_{I\alpha}} \rho(r) dr$$

Structure of a self-consistent type code



$$\begin{split} & \text{DFT solution as global minimization problem} \\ & E_{el} = -\frac{\hbar^2}{2m} \sum_i \langle \varphi_i | \nabla^2 | \varphi_i \rangle + \int V_{ext}(r) \rho(r) dr \\ & \quad + E_H[\rho] + E_{xc}[\rho] \\ & \quad \text{where } \rho(r) = \sum_i |\varphi_i(r)|^2 & \quad - \sum_{i,j} \lambda_{ij} \left(\langle \varphi_i | \varphi_j \rangle - \delta_{ij} \right) \end{split}$$

$$\begin{aligned} & \text{DFT solution as global minimization problem} \\ & E_{el} = -\frac{\hbar^2}{2m} \sum_i \langle \varphi_i | \nabla^2 | \varphi_i \rangle + \int_i V_{ext}(r) \rho(r) dr \\ & + E_H[\rho] + E_{xc}[\rho] \\ & \text{where } \rho(r) = \sum_i |\varphi_i(r)|^2 & -\sum_{i,j} \lambda_{ij} \left(\langle \varphi_i | \varphi_j \rangle - \delta_{ij} \right) \\ & E_{el} \quad \text{is minimized when} \\ & \theta = \frac{\partial E_{el}}{\partial \varphi_i^*(r)} = \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{ext}(r) + V_H[\rho](r) + v_{xc}[\rho](r) \right] \varphi_i(r) \\ & -\sum_j \lambda_{ij} \varphi_j(r) \end{aligned}$$

DFT solution as global minimization problem

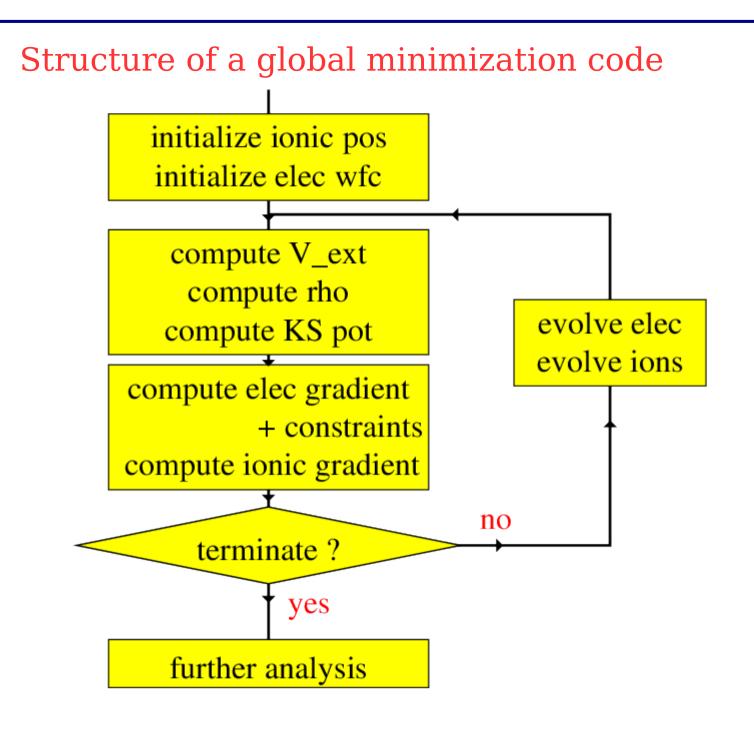
$$E_{el} = -\frac{\hbar^2}{2m} \sum_{i} \langle \varphi_i | \nabla^2 | \varphi_i \rangle + \int V_{ext}(r) \rho(r) dr + E_H[\rho] + E_{xc}[\rho]$$
where $\rho(r) = \sum_{i} |\varphi_i(r)|^2 - \sum_{i,j} \lambda_{ij} \left(\langle \varphi_i | \varphi_j \rangle - \delta_{ij} \right)$

$$E_{el} \quad \text{is minimized when}$$

$$D = \frac{\partial E_{el}}{\partial \varphi_i^*(r)} = \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{ext}(r) + V_H[\rho](r) + v_{xc}[\rho](r) \right] \varphi_i(r)$$
the same as solving the KS eqs $! - \sum_{j} \lambda_{ij} \varphi_j(r)$

$$\begin{aligned} & \text{DFT solution as global minimization problem} \\ & E_{el} = -\frac{\hbar^2}{2m} \sum_i \langle \varphi_i | \nabla^2 | \varphi_i \rangle + \int_{ext} V_{ext}(r) \rho(r) dr \\ & + E_H[\rho] + E_{xc}[\rho] \\ & \text{where } \rho(r) = \sum_i |\varphi_i(r)|^2 & -\sum_{i,j} \lambda_{ij} \left(\langle \varphi_i | \varphi_j \rangle - \delta_{ij} \right) \\ & E_{el} \quad \text{is minimized when} \\ & 0 = \frac{\partial E_{el}}{\partial \varphi_i^*(r)} = \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{ext}(r) + V_H[\rho](r) + v_{xc}[\rho](r) \right] \varphi_i(r) \\ & \text{the same as solving the KS eqs } ! & -\sum_j \lambda_{ij} \varphi_j(r) \end{aligned}$$

ionic and electronic minimization can be done together



Diagonalize the hamiltonian/Compute the gradient

Build the density

Calculate the KS potential

Diagonalize the hamiltonian/Compute the gradient

needs an efficient computation of H*psi

Build the density

Calculate the KS potential

Diagonalize the hamiltonian/Compute the gradient

needs an efficient computation of H*psi

Build the density

needs an efficient BZ sampling and fast psi(r)

Calculate the KS potential

Diagonalize the hamiltonian/Compute the gradient

needs an efficient computation of H*psi

Build the density

needs an efficient BZ sampling and fast psi(r)

Calculate the KS potential

needs Poisson's solver and xc functionals

Initialization and termination

evaluation of the external potential

forces/stress and ionic evolution

The wfc and the KS hamiltonian in a PW basis set

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_{KS}(r)\right]\varphi_i(r) = \varepsilon_i\varphi_i(r)$$

The system is periodic: $V_{KS}(r+R) = V_{KS}(r)$

It is convenient to consider the Fourier transform

$$V_{KS}(r) = \sum_{G} V_{KS}(G) \exp(iGr)$$
$$V_{KS}(G) = \frac{1}{\mathcal{V}} \int_{\mathcal{V}} V_{KS}(r) \exp(-iGr) dr$$
$$= \frac{1}{\Omega} \int_{\Omega} V_{KS}(r) \exp(-iGr) dr$$
$$\mathcal{V} = \mathcal{N}\Omega$$

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_{KS}(r)\right]\varphi_i(r) = \varepsilon_i\varphi_i(r)$$

thanks to Bloch theorem $i \rightarrow kv$

$$|\varphi_{kv}\rangle = \sum_{k+G} c_{k+G}^v |k+G\rangle \qquad |k+G| < G_{max}$$

$$\varphi_{kv}(r) = \langle r | \varphi_{kv} \rangle = \sum_{k+G} c_{k+G}^v \langle r | k+G \rangle$$
$$= \sum_{k+G} c_{k+G}^v \frac{e^{i(k+G)r}}{\sqrt{\mathcal{V}}}$$

the KS eq. becomes a matrix eigenvalue problem

$$\sum_{k+G'} \langle k+G | H_{KS} | k+G' \rangle \ c^v_{k+G'} = \varepsilon_{kv} \ c^v_{k+G}$$

$$\sum_{k+G'} \langle k+G | H_{KS} | k+G' \rangle \ c_{k+G'}^v = \varepsilon_{kv} \ c_{k+G}^v$$

$$\langle k+G| - \frac{\hbar^2}{2m} \nabla^2 |k+G'\rangle = \frac{\hbar^2}{2m} (k+G)^2 \,\delta_{GG'}$$

diagonal in reciprocal space

$$\sum_{k+G'} \langle k+G | H_{KS} | k+G' \rangle \ c_{k+G'}^v = \varepsilon_{kv} \ c_{k+G}^v$$

$$\langle k+G| - \frac{\hbar^2}{2m} \nabla^2 |k+G'\rangle = \frac{\hbar^2}{2m} (k+G)^2 \,\delta_{GG'}$$

diagonal in reciprocal spacec

$$\begin{aligned} \langle k+G|V_{KS}(r)|k+G'\rangle &= \frac{1}{\mathcal{V}} \int_{\mathcal{V}} V_{KS}(r) \ e^{-i(G-G')r} \ dr \\ &= \frac{1}{\Omega} \int_{\Omega} V_{KS}(r) \ e^{-i(G-G')r} \ dr \\ &= V_{KS}(G-G') \end{aligned}$$

a local potential becomes a convolution a_{a} such its application to a vector would require N**2 ops

$$\sum_{k+G'} \langle k+G | H_{KS} | k+G' \rangle \ c^v_{k+G'} = \varepsilon_{kv} \ c^v_{k+G}$$

$$\langle k+G| - \frac{\hbar^2}{2m} \nabla^2 |k+G'\rangle = \frac{\hbar^2}{2m} (k+G)^2 \,\delta_{GG'}$$

diagonal in reciprocal spacec

$$\langle k+G|V_{KS}(r)|k+G'\rangle = \frac{1}{\mathcal{V}} \int_{\mathcal{V}} V_{KS}(r) \ e^{-i(G-G')r} \ dr$$
$$= \frac{1}{\Omega} \int_{\Omega} V_{KS}(r) \ e^{-i(G-G')r} \ dr$$
$$= V_{KS}(G-G')$$

a local potential becomes a convolution if $|k+G|, |k+G'| < G_{max}$ then $|G-G'| < 2G_{max}$

The Fast Fourier Transform and the dual space formalism *a uniform N point sampling in real space (1D)*

$$x_j = \frac{j}{N}a, \quad j = 0, 1, 2, ..., N-1$$

describes exactly f(r) if its Fourier components are such that $G_k = k \frac{2\pi}{a}, \quad N/2 \le k < N/2$

Discrete Fast Fourier Transforms allow to go back and forth.. $\tilde{f}(G_k) = \frac{1}{\Omega} \int_{\Omega} f(r) \exp(-iG_k r) dr = \frac{1}{N} \sum_j f(r_j) e^{-i2\pi \frac{jk}{N}} \text{ fwfft}$ $f(x_j) = \sum_k \tilde{f}(G_k) \exp(iG_k x_j) = \sum_k \tilde{f}(G_k) e^{i2\pi \frac{jk}{N}} \text{ invfft}$

... in N log N operations

The Fast Fourier Transform and the dual space formalism

```
H * psi can be computed very efficiently
```

```
psi(r) = invfft[psi(k+G)]
```

```
vpsi(r) = v(r) * psi(r)
```

```
vpsi(k+G) = fwfft[vpsi(r)]
```

```
hpsi(k+G) = h2/2m (k+G)**2 * psi(k+G) + vpsi(r)
```

The result is exact if the FFT grid can describe Fourier components up to $2G_{max}$ where psi is limited to G_{max}

NB: this is also the required grid to describe correctly the charge density (i.e. the square of the wavefunctions) and the Hartree potential.

Exact diagonalization is expensive

find eigenvalues & eigenfunctions of H k+G,k+G'

Typically, NPW > 100 x number of atoms in unit cell.

Expensive to store H matrix: NPW^2 elements to be stored

Expensive (CPU time) to diagonalize matrix exactly, ~ NPW^3 operations required.

Note, NPW >> Nb = number of bands required = Ne/2 or a little more (for metals).

So ok to determine just lowest few eigenvalues.

How things scale with system size ?

How things scale with system size ?

 N_{at} number of atoms Ω system volume $\propto N_{at}$ N_{elec} number of electrons $\propto N_{at}$ N_{band} number of bands $\approx N_{elec}$ N_{PW} number of plane waves $\propto \Omega G_{max}^3$, $\Omega E_{cut}^{3/2}$ N_r number of FFT grid points $\approx 10 N_{PW}$ N_K number of BZ k-points $\propto 1/\Omega$ computational cost $\propto N_{PW} + N_r \log N_r + N_r$ 1 Hpsi Iter. Diag. $\propto N_{band}N_{Hpsi} + N_{band}^2N_{PW} + N_{band}^3$ new rho $\propto N_K (N_r \log N_r + N_r)$ **new pot** $\propto N_r \log N_r + N_r$

strongly dependent on N_{elec} and N_{PW} (E_{cut})

The external potential

Electrons experience experience a Coulomb potential due to the nuclei

This has a known simple form

$$V_{nuc} = -\frac{Z}{r}$$

But this leads to computational problems !

Problems for Plane-Wave basis

Core wavefunctions: Sharply peaked close to nuclei due to deep Coulomb potential. Valence wavefunctions: Lots of wiggles near nuclei due to orthogonality to core wavefunctions

<u>High Fourier component are present</u> <u>i.e. large kinetic energy cutoff needed</u>

$$_{1s} \approx 1/Z \qquad Ecut \approx \left(\frac{2\pi}{r_{1s}}\right)^2 \approx 40Z^2$$

r

An analogy!

 Obviously it can't reproduce all the functions of a real cop, but should be convincing enough to produce desired results.... cement agencies!

ng as it works

