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Structure of a self-consistent type code



Step 0 : defining your system

            QE input:       namelist   SYSTEM



All periodic systems can be specified by a Bravais Lattice
and an atomic basis

Step 0 : defining your system



 Bravais Lattice / Unit cell 
Step 0 : defining your system

there are 14 Bravais Lattice types whose unit cell can
be defined by up to 6 cell parameters 



 Bravais Lattice / Unit cell 

QE input: parameter ibrav
- gives the type of Bravais 
lattice (SC, FCC, HEX, ...)

QE input: parameters {celldm(i)}

- give the lengths (& directions 
if needed) of the BL vectors 

Note that one can choose a non-primitive unit cell
(e.g., 4 atom SC cell for FCC structure).

Step 0 : defining your system



atoms inside the unit cell: How many, where?

QE input: parameter nat
   - Number of atoms in the unit cell

QE input: field ATOMIC_POSITIONS
- Initial positions of atoms (may vary when “relax” done).
- Can choose to give in units of lattice vectors (“crystal”)
or in Cartesian units (“alat” or “bohr” or “angstrom”)

QE input: parameter ntyp
    - Number of types of atoms

Step 0 : defining your system



Step 1 : defining V_ext



The external potential

Electrons experience a Coulomb potential due to the 
nuclei.

This has a known simple form.

For a single atom it is



Periodic potential



Periodic potential



Periodic potential



Periodic potential



Periodic potential



Periodic potential

  atomic form factor  crystal structure factor



nuclear potential

The Coulomb potential due to any single atom is

The direct use of this potential in a Plane Wave code
leads to computational difficulties!



Problems for a Plane-Wave based code

Core wavefunctions:
Sharply peaked close 
to nuclei due to deep
Coulomb potential.

Valence wavefunctions:
Lots of wiggles near nuclei 
due to orthogonality to 
core wavefunctions

High Fourier components are present
i.e. large kinetic energy cutoff needed



Solutions for a Plane-Wave based code

Core wavefunctions:
Sharply peaked close 
to nuclei due to deep
Coulomb potential.

Valence wavefunctions:
Lots of wiggles near nuclei 
due to orthogonality to 
core wavefunctions

Don't solve for
core wavefunction

Remove wiggles from
valence wavefunctions

Replace hard Coulomb potential 
by smooth PseudoPotentials



Solutions for a Plane-Wave based code

Core wavefunctions:
Sharply peaked close 
to nuclei due to deep
Coulomb potential.

Valence wavefunctions:
Lots of wiggles near nuclei 
due to orthogonality to 
core wavefunctions

Don't solve for
core wavefunction

Remove wiggles from
valence wavefunctions

Replace hard Coulomb potential 
by smooth PseudoPotentials

This  can be done on an empirical basis by
 fitting experimental band structure data ..



Empirical PseudoPotentials 

Cohen & Bergstresser, 
        PRB 141, 789 (1966)



Empirical PseudoPotentials 

Cohen & Bergstresser, 
        PRB 141, 789 (1966)

 transferability to other systems is problematic



ab initio Norm Conserving PseudoPotentials 

Let's consider an atomic problem ...

… in the frozen core approximation: 



ab initio Norm Conserving PseudoPotentials 

Let's consider an atomic problem ...

… in the frozen core approximation: 



ab initio Norm Conserving PseudoPotentials 

Let's consider an atomic problem ...

… in the frozen core approximation: 

if           and          do  not overlap significantly:



ab initio Norm Conserving PseudoPotentials 

... hence 

 with



ab initio Norm Conserving PseudoPotentials 

... hence 

 with

 with a Coulomb tail corresponding to 



ab initio Norm Conserving PseudoPotentials 

... hence 

 or in case of overlap we have (non-linear core correction) 

 with 

 with

 with a Coulomb tail corresponding to 



ab initio Norm Conserving PseudoPotentials 

 

 

 

                is further modified in the core region so that the 
reference valence wavefunctions are nodeless and smooth and 
properly normalized (norm conservation) so that the valence 
charge density (outside the core) is simply:

The norm-conservation condition ensures correct electrostatics 
outside the core region and that atomic scattering properties 
are reproduced correctly 

this determines transferability 



An example:      Mo 

l-dependent
     potential

Hamann, schlueter & Chiang, PRL 43, 1494 (1979)



An example:      Mo 

Hamann, schlueter & Chiang, 
                  PRL 43, 1494 (1979)



ab initio Norm Conserving PseudoPotentials 

 semilocal form

where projects over  L = l(l+1)2



ab initio Norm Conserving PseudoPotentials 

 

 

semilocal form

is local with a Coulomb tail 

is local in the radial coordinate, short ranged
 and  l-dependent

where projects over  L = l(l+1)2



ab initio Norm Conserving PseudoPotentials 

 

 

 

semilocal form

is local with a Coulomb tail 

is local in the radial coordinate, short ranged
 and  l-dependent

where projects over  L = l(l+1)

is a full matrix !   NO use of dual-space approach

2



ab initio Norm Conserving PseudoPotentials 

 … to Kleinman-Bylander fully non-local form

 from semilocal form ... 



ab initio Norm Conserving PseudoPotentials 

 

 

… to Kleinman-Bylander fully non-local form

is local with a Coulomb tail 

                                 are localized radial functions 
such that the transformed pseudo acts in the same 
way as the original form on the reference config.

 from semilocal form ... 

One has 



ab initio Norm Conserving PseudoPotentials 

 

 

 

Kleinman-Bylander fully non-local form

is local with a Coulomb tail 

                                 are localized radial functions 
such that the transformed pseudo acts in the same 
way as the original form on the reference config.

The pseudopotential reduces to a sum of dot products

One has 



ab initio Norm Conserving PseudoPotentials 

 Kleinman-Bylander fully non-local form

The KB form is more efficiently computed than the original 
semi-local form.



ab initio Norm Conserving PseudoPotentials 

 Kleinman-Bylander fully non-local form

The KB form is more efficiently computed than the original 
semi-local form.

By construction it behaves as the original form on the 
reference configuration … but … there is no guarantee that 
the reference configuration is the GS of the modified 
potential.



ab initio Norm Conserving PseudoPotentials 

 Kleinman-Bylander fully non-local form

The KB form is more efficiently computed than the original 
semi-local form.

By construction it behaves as the original form on the 
reference configuration … but … there is no guarantee that 
the reference configuration is the GS of the modified 
potential.

When this happens the pseudopotential has GHOST states 
and should not be used.



ab initio Norm Conserving PseudoPotentials 

Desired properties of a pseudopotential are

  - Transferability  (norm-conservation,  small core radii,
                       non-linear core correction, multi projectors) 

  - Softness  (various optimization/smoothing strategies,
                     large core radii)

For some elements it's easy to obtain “soft” Norm-Conserving
PseudoPotentials. 

For some elements it's instead very difficult!

Expecially for first row elements (very localized 2p orbitals)
      and 1st row transition metals (very localized 3d orbitals)  



Norm-Conserving PseudoPotentials 
           basic literature 

 <1970   empirical PP.   es: Cohen & Bergstresser, PRB 141, 789 (1966)
  
1979 Hamann, Schlueter & Chang,  PRL 43, 1494 (1979), ab initio NCPP
1982 Bachelet, Hamann, Schlueter, PRB 26, 4199 (1982), BHS PP table 
1982 Louie, Froyen & Cohen, PRB 26, 1738 (1982), non-linear core corr.
1982 Kleinman & Bylander, PRL 48, 1425 (1982), KB fully non local PP

1985 Vanderbilt, PRB 32, 8412 (1985), optimally smooth PP
1990 Rappe,Rabe,Kaxiras,Joannopoulos, PRB 41, 1227 (1990), optm. PP
1990 Bloechl, PRB 41, 5414 (1990), generalized separable PP
1991 Troullier & Martins, PRB 43, 1993 (1991), efficient PP
….

1990 Gonze, Kackell, Scheffler, PRB 41, 12264 (1990), Ghost states

1991 King-Smith, Payne, Lin, PRB 44, 13063 (1991), PP in real space



Ultra Soft PseudoPotentials  

In spite of the devoted effort NCPP’s are still “hard”and 
require a large plane-wave basis sets (Ecut > 70Ry) for
first-row elements (in particular N, O, F) and for transition
metals, in particular the 3d row: Cr, Mn, Fe, Co, Ni, …

                                                                Copper 3d orbital
                                                                              nodeless

RRKJ, PRB 41,1227 (1990)



Ultra Soft PseudoPotentials  

Even if just one atom is “hard”, a high cutoff is required. 

UltraSoft (Vanderbilt) PseudoPotentials (USPP) are devised 
to overcome such a problem.

                                                                Oxygen 2p orbital
                                                                              nodeless

Vanderbilt, PRB 41, 7892 (1991)



Ultra Soft PseudoPotentials  

where the “augmentation charges” are 

are projectors

are atomic states (not necessarily bound) 

are pseudo-waves (coinciding with        beyond some core radius) 



Ultra Soft PseudoPotentials  

where 

leading to a generalized eigenvalue problem

Orthogonality with USPP: 



Ultra Soft PseudoPotentials  

where 

There are additional terms in the density, in the energy, in the hamiltonian
in the forces, ... 



Ultra Soft PseudoPotentials  

Electronic states are orthonormal with a (configuration dependent) 
overlap matrix 

There are additional terms in the density, in the energy, in the hamiltonian
in the forces, ... 

The “augmentation charges” typically require a larger cutoff for the 
charge density:  

QE Input parameter: ecutrho (SYSTEM namelist)

Default value is ecutrho = 4 × ecutwfc (OK for NC PP)

For USPP a larger value ecutrho  is often needed.



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

It is always possible to express the AE wfc via augmentation
of a smooth   (pseudo) wfc using atomic reference states

an all-electron method !

where...



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

all-electron wave function

pseudo wave function

all-electron atomic partial waves

pseudo atomic partial waves

 localized projectors on the atomic
 partial waves such that

It is always possible to express the AE wfc via augmentation
of a smooth   (pseudo) wfc using atomic reference states

an all-electron method !

where



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

It is always possible to express the AE wfc via augmentation
of a smooth   (pseudo) wfc using atomic reference states

an all-electron method !

pictorially

's   coincide outside the core region
                                 and we can truncate them 

's and 

The      's  projectors are localized in the core region...

is a localized operator !



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

AE matrix elements of any operator can then be computed as

an all-electron method !

for local operators (kinetic energy, potential,...) one can show

if the        expansion is complete 



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

AE matrix elements of any operator can then be computed as

an all-electron method !

for local operators (kinetic energy, potential,...) one can show

if the        expansion is complete 

and normalization of wfc is computed with



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

AE results can be computed from the PS matrix elements 
augmented by KB-like contributions that can be computed 
from atomic AE and PS reference calculations. 



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

The charge density is therefore



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

The charge density is therefore

 but it is convenient to add/subtract a compensating charge
 so that the AE and PS atomic references have the same
 Multipole expansion 



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

The charge density is therefore



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

…

The different energy contributions so become



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

Finally the KS eigenvalue problem is as for USPP 

with

where



Step 2 : initial guess for rho_in



Initial choice of rho_in

Various possible choices, e.g.,:

● Superpositions of atomic densities.
● Converged n(r) from a closely related calculation (e.g., 
one where ionic positions slightly different).
● Approximate n(r) , e.g., from solving problem in a 
smaller/different basis.
● Random numbers.



Initial choice of rho_in

Various possible choices, e.g.,:

● Superpositions of atomic densities.
● Converged n(r) from a closely related calculation (e.g., 
one where ionic positions slightly different).
● Approximate n(r) , e.g., from solving problem in a 
smaller/different basis.
● Random numbers.

Initial guess of wfc

QE input parameter startingwfc

'atomic'  |  'atomic+random' | 'random' | 'file' 



Pseudopotentials in Quantum ESPRESSO 

Go to http://www.quantum-espresso.org/



Pseudopotentials for Quantum ESPRESSO 
Click on the element for which the PP is desired



Pseudopotentials for Quantum ESPRESSO 

Pseudopotential's name gives
Information about

-exchange correlation functional

-type of pseudopotential



Atomic and V_ion info for QE

ATOMIC_SPECIES
Ba 137.327 Ba.pbe-nsp-van.UPF
Ti 47.867 Ti.pbe-sp-van_ak.UPF
O 15.999 O.pbe-van_ak.UPF

QE input card ATOMIC_SPECIES example:

NOTE
should use the same XC functional for all pseudopentials.
ecutwfc, ecutrho depend on type of pseudopotentials used 
(should test for system & property of interest).
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