Parallelization strategies
in
PWSCF
(and other QE codes)

MPI vs Open MP

MPI - Message Passing Intertace

distributed memory, explicilit communications

Open MP - open Multi Processing

shared data multiprocessing

MPI vs Open MP

MPI - Message Passing Intertace

distributed memory, explicilit communications

multicore processors (workstations, laptops),
cluster of multicore processors interconnected
by a fast communication network.

Open MP - open Multi Processing

shared data multiprocessing

parallelization inside a multilicore processor,
standalone or part of a larger network.

MPI - Message Passing Interface

distributed memory, expliclit communications

call mp_bcast (data, root, grp_comm)
call mp_sum (data, grp_comm)
call mp_alltoall (sndbuff, rcvbuff, grp_comm)

call mp_barrier (grp_comm)

Ogoen MP - open Multi Processing

red data multiprocessing

!$omp parallel do
DO 73 =1, n
a(j) = a(3j) + b(J)
ENDDO
!$omp end parallel do

MPI - Message Passing Interface

distributed memory, explicit communications

Data distribution i1s a big constraint, usually made
at the beginning and kept across the calculation.
It 1s pervasive and rather rigid: a change in data
distribution or a new parallelization level impacts
the whole code.

Computation should mostly involve local data.
Communications should be minimized.

Data distribution reduces memory footprint.

Open MP - open Multi Processing

shared data multiprocessing
Can be used inside a memory-sharing multil-processor
node. Cannot be used across nodes.

Scalability with the number of threads may vary.
Tts implementation can be incremental.

Network important factors

Bandwidth and Latencuy

A fast interconnection is important but how often and
how much one communicates is also very important.

Blocking vs non blocking communications may also play
a role.

Disk I/O is typically bad and should be avoided.
On parallel machines even more so.
If RAM allows for it keep things in memory.

Amdahl's law

P
T: S I I C Nroc
Nproc (P)

Nproc

No matter how well you parallelize your code on
the long run the scalar fraction dominates.

Amdahl's law

P
T: S I I C Nroc
Nproc (P)

Nproc

No matter how well you parallelize your code on
the long run the scalar fraction dominates.
Even before communication becomes an issue.

Strong Scaling vs Weak Scaling

Strong Scaling: scaling when system size remains fixed
Weak Scaling: scaling when system size also grows

Strong Scaling is much more difficult to achieve than
Weak Scaling.

Computer centers are OK with Weak Scaling because
they can use it to justify their existence, but they really
push for Strong Scaling.

Many times one does not need to perform huge
calculations but rather many medium/large calculations.
Extreme parallelization would not be needed but queue
scheduler constraints enforce the use of many cores.

MPI - Message Passing Interface

distributed memory, expliclit communications

MPI - Message Passing Interface

multinle processes, multiple data, single program

if MPI library i1s linked and invoked

CALL MPI Tnit(ierr)

1t 1s possible to start several coples of the code
on different cores/processors of the machine/cluster

prompt> mpirun -np 4 pw.x < pw.ln > pw.out

each core executes the code starting at the beginning
and following the flow and computation instructions
as determlned by the information available locally

to that core/processor.

MPI - Message Passing Interface

multinle processes, multiple data, single program

prompt> mpirun -np 4 pw.X < pw.ln > pw.out

1t may be useful to know how many cores are running

CALL mpil_comm size (comm world,numtask,ierr)
and my id-number in the group
CALL mpil_comm rank (comm world, taskid, ierr)

comm _world i1s the global default communicator
— defined on MPI 1nitialization.

MPI - Message Passing Interface

using a hierarchy of parallelization levels

communication groups can be further split as needed/desired

my_ grp_id = parent_mype / nproc_grp ! the sub grp I belong to

me_grp MOD (parent _mype, nproc_pgrp) ! my place in the sub grp
|

! ... an intra_grp_comm communicator is created (to talk within the grp)
|

CALL mp_comm_split(parent_comm, my grp_id, parent _mype, intra grp_comm)
|

! ... an inter grp_comm communicator is created (to talk across grps)
|

CALL mp_comm_split(parent_comm, me _grp, parent _mype, inter_grp_comm)

parent_comm intra_grp_comm -->

E i

gB 0] [1 1% 2% 31| o
9

=AY 7 0l B 1] b 2| [7 3
sl I | I |
(]

=

MPI - Message Passing Interface

basic communication operations

call mp_barrier (grp_comm)
call mp_bcast (data, root, grp_comm
call mp_sum (data, grp_comm)

call mp alltoall (sndbuff, rcvbuff,

)

grp_comm)

MPI - Message Passing Interface

a simple example

Bilpy) = > B (k+ Gk + G)

k+G

MPI - Message Passing Interface

a simple example

Bilvs) =

psi (npw, nbnd)

beta (npw, nproj)
nproj

nbnd

npw

npw

npw

npw

> Bk + Gk + G)

k+G

betapsi (nproj,nbnd)
nond

—

nproj

how one gets betapsi?

MPI - Message Passing Interface

a simple example

Bilpy) = > B (k+ Gk + G)

k+G

beta (npw,nproj) psi (npw, nbnd)

NpIO)J nbnd betapsi (nproj,nbnd)
1 B
npw
npw
B -
CALL ZGEMM('C', 'N', nproj, nbnd, npw, (1.0_DP,0.0_DP), &

beta, npwx, psi, npwx, (0.0_DP,0.0_DP), &
betapsi, nprojx)

‘<, each processor has a partially summed betapsi

MPI - Message Passing Interface

a simple example

Bilpy) = > B (k+ Gk + G)

. . k+G
beta (npw,nproj) psi (npw,nbnd)
NPT O] nbnd betapsi (nproj,nbnd)
. . —
npw E=p
nproj
npw
B ...
CALL ZGEMM('C', 'N', nproj, nbnd, npw, (1.0 _DP,0.0_DP), &

beta, npwx, psi, npwx, (0.0_DP,0.0_DP), &
betapsi, nprojx)
CALL mp_sum(betapsi, intra bgrp_comm)

‘s, at the end each processor has the complete betapsi !

R & G parallelization

evc (npw, nbnd) FE'T
G(3,ngm) nbnd G-space R-space
npw
ngm npw
npw
ngm

F(Gx,Gy,Gz) F(Rx,Ry,Rz)

y 1d fft 4 vy 24 fft 4

F(Gx,Gy,Rz) ‘:, F(Gx,Gy,Rz)
fft_scatter

<« fwfft (R - @G)
~» 1nvfift (G - R)

MPI - Message Passing Interface

hierarchy of parallelization 1in PW

call mp comm split (parent comm, subgrp 1id,
parend grp_ 1d, subgrp_ comm)

mplirun -np $N pw.xXx -nk $NK -nb $NB -nt $NT -nd $ND
< pw.1ln > pw.out

-nk (-npool, -npools) # of pools
-ni (-nimage, -nimages) # of i1mages for NEB or PH
-nb (-nband, -nbgrp, -nband group) # of band groups
-nt (-ntg, -ntask groups) # of FFT task groups
(-ndiag, -northo, -nproc_diag, -nproc_ortho)
of linear algebra groups

-nd

$N = $NI x $NK x $NB

MPI - Message Passing Interface

hierarchy of parallelization 1in PW

-R & G space parallelization
data are distributed, communication of results 1is
frequent. High communication needs, reduction of
processor memory footprint.

-K-point parallelization

different k-polints are completely independent during
most operations. Needs to collect contributions from
all k-points from time to time. Mild communication
needs, no lowering of the processor memory footprint
unless all k-point are kept 1in memory...

-Image parallelization

different NEB images or different irreps in PH are
practically independent. Low communication needs,
no lowering of the processor memory footprint

MPI - Message Passing Interface

additional levels of parallelization

-Band parallelization

different processors deal with different subset of
the bands. Computational load distributed, no memory
footprint reduction for now.

-Task group parallelization

FFT data are redistributed to perform multiply FFT
at the same time. Needed when number of processors
1s large compared with FFT dimension (nrx3).

-linear algebra parallelization
diagonalization routines are parallelized

MPI/openMP scalability issues

-openMP can be used 1nside a memory-sharing
multi-processor node. Cannot be used across nodes.
Scalability with the number of threads may vary.

-whenever possible use i1mage and k-point parallelism
as they involve low communication. Beware of the
granularity of the load distribution and the size of
the individual subgroups.

-R & G space distribution really distributes memory !
It 1s communication intensive. FFT dimension limited}

To extend scalability to large number of processors
-task _groups, -band _group and/or -ndiag are needed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

