PWSCF
and

diagonalization

construct V_ext

b 4

guess rho_in ¢

w

compute V_KS

r

diagonalize H_KS

b 4

compute rho_out

mix to get
new rho_in

yes

compute forces, stress,
and other properties

ELECTRONS

call electron scf

do 1ter = 1, niter
call c bands - ->
call sum band -->

call mix rho
call v_of rho
end do 1ter

C_BANDS
SUM_BAND

PWSCF

call read input_ file (input.f90)

call run_pwsct

call setup --> SETUP
call init run --> INIT RUN
do

call electrons --> ELECTRONS

call forces
call stress
call move 1ions
call update_pot
call hinitl

end do

SETUP

defines grid and other dimensions,
specific calculations yet

INIT RUN

call
call
call
call
call
call
call
call
call
call
call
call
call

pre _1init
allocate fft
ggen

allocate nlpot
allocate _paw_integrals
paw_one_center
allocate locpot
allocate wfc
openfile

hinitO

potinit

newd

wictinit

no system

ELECTRONS

call electron scf

do 1ter = 1, niter
call c bands - ->
call sum band -->

call mix rho
call v_of rho
end do 1ter

C_BANDS
SUM_BAND

C BANDS

do 1k = 1, nks

call get _buffer (eve)
call init us_ 2 (vkb)
call diag bands --> DIAG BANDS
call save buffer
end do ik
DIAG BANDS

DAVIDSON (isolve=0)
hdiag = g2 + vloc_avg + Vnl avg
call cegterg or pcegterg

CG (isolve=1)
hdiag = 1 + g2 + sgrt(l+(g2-1)**2)
call rotate wfc
call ccgdiagg

Step 4 : diagonalization

construct V_ext

guess rho_in ¢

compute V_KS

diagonalize H_KS

compute rho_out

mix to get
new rho_in

compute forces, stress,
and other properties

Diagonalization of Hks is a major step in the scf solution of any
system.

In pw.x two methods are implemented:

Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
(14+3*david) * nbnd * npwx
and diagonalization of matrices up to
david*nbnd x david*nbnd
where david is by default 4, but can be reduced to 2

Conjugate gradient

-memory friendly: bands are dealt with one at a time.

-the need to orthogonalize to lower states makes it intrinsically
sequential and not efficient for large systems.

Davidson Diagoalization

*Given trial eigenpairs: {\¢(n>> (n)}
-Elgenpalrs of the reduced Hamlltoman
= (6" | Hicslo{"), = (0" 15]¢5")

*Build the correction vectors |gb§”)>
6:") = (Haiag — iSiag) " (His — £:5)|¢;")
-Build an extended reduced Hamiltonian

= (87 0™ Hies |65 167), 8 = (017 /617151677 105)

*Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

(H—eSw=0 — {lp"t"y "t

Repeat if needed in order to improve the solution
— 3nbnd x 3nbnd - 4nbnd x 4nbnd ... - nbnd x nbnd

Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
(1+3*david) * nbnd * npwx
and diagonalization of matrices up to
david*nbnd x david*nbnd

where david is by default 4, but can be reduced to 2

eroutines

- regterg , cegterg real/cmplx eigen iterative generalized
- h psi, s psi, g psi

- rdiaghg, cdiaghg real/cmplx diagonalization H generalized

Conjugate Gradient
For each band, given a trial eigenpair: {’¢7(;n)>» €}

Minimize the single particle energy
E(|¢i)) = (¢i|Hx s|®;)
by (pre-conditioned) CG method

subject to the constraints

(@:|S|pj) = 0s5, Vj <

.... see attached documents for more details

Repeat for next band until completed

Conjugate gradient

-memory friendly: bands are dealt with one at a time.

-the need to orthogonalize to lower states makes it intrinsically
sequential and not efficient for large systems.

routines

- rcgdiagg , ccgdiagg real/cmplx CG diagonalization generalize

-h 1psi, s 1psi

* preconditioning

Parallel Orbital update method

and
some thoughts about

-bgrp parallelization
-ortho parallelization
-task parallelization

In pw.x

Some recent work on an alternative iterative methods

A PARALLEL ORBITAL-UPDATING APPROACH FOR
ELECTRONIC STRUCTURE CALCULATIONS *

XIAOYING DAIT, XINGAO GONGH, AIHUI ZHOUT | AND JINWEI ZHUT

Abstract. In this paper, we propose an orbital iteration based parallel approach for electronic
structure calculations. This approach is based on our understanding of the single-particle equations
of independent particles that move in an effective potential. With this new approach, the solution
of the single-particle equation is reduced to some solutions of independent linear algebraic systems
and a small scale algebraic problem. It is demonstrated by our numerical experiments that this new
approach is quite efficient for full-potential calculations for a class of molecular systems.

arXiv:1405.0260v2 [math.NA] 20/11/2014

A PARALLEL ORBITAL-UPDATING BASED OPTIMIZATION
METHOD FOR ELECTRONIC STRUCTURE CALCULATIONS *

XIAOYING DAIf, ZHUANG LIU+%, XIN ZHANGE, AND AIHUI ZHOUY

Abstract. In this paper, we propose a parallel optimization method for electronic structure
calculations based on a single orbital-updating approximation. It is shown by our numerical experi-
ments that the method is efficient and reliable for atomic and molecular systems of large scale over

supercomputers.
arXiv:1510.07230v1 [math.NA] 25/10/2015

ParO in a nutshell

ALGORITHM 1.1.
1. Gwen initial data ()\ED) (D)) € R x H}(Q) with (u ED), E,D)) = dij, (1,7 =
1,2,---,N), define Ty and Vi, and let n =0
2. Construct Tn+1 and V41 based on an adaptive procedure to ()\En),ugn)).

3. Fori=1,2,---,N, find u§n+1/2) € V11 satisfying
a(U(”);ugnH/Q),u) —)\z(.”) (ugn),fu) Vv e Vg
in parallel.

J. Project to eigenspace: find (A1) (D)) € Rx V11 satisfying ||u
1 and

a(UMH/2. 0, (4D)y = AHD (3, (041) W € Viiq

to obtain eigenpairs (Az(-nJrl) (n+1))(=1,2,---,N).

! 1

. Let n=n+1 and go to Step 2.

Here Vn—l—l — span {u(+1/2)?ugn+1/2)?m ?u§1+1/2)}; [7(n) — (ugn) ugn)? B E\f’))}
Ut1/2) = (y §”+1/2), §n+1/2)? x ,ug;’ﬂ/z)), and a(-;-,-) is the nonlinear mmatmnal

form associated the Kohn-Sham equation defined in Section|2.2
arXiv:1405.0260v2 [math.NA] 20/11/2014

ParO as I understand it

Given trial eigenpairs: {‘¢§n>>v ggn)}
*Solve in parallel the nbnd linear systems
(His +AS)|6;") = (e + NS|e;")
*Build the reduced Hamiltonian
= (6" | Hsly”), Siy = (67" 1S16)™)

*Diagonalize the small nbnd x nbnd reduced Hamiltonian
to get the new estimate for the eigenpairs

(H—eSuw=0 — {g"ty &ntih

Repeat if needed in order to improve solution at
fixed Hamiltonian

A variant of ParO method

*Given trial eigenpairs: {‘¢§n>>7 6§”)}

*Solve in parallel the nbnd linear systems

(His +A9)|6") = (" + 1)S]6;™)
-Build the reduced Hamiltonian from both |$§n)> & |q57(;n)>
= (@ /6\ | Hics |65 /05), Sy = (6 /615165 /™)

*Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

(H—eSuw=0 — {g"ty &ntih

Repeat if needed in order to improve solution at
fixed Hamiltonian

A variant of ParO method (2)

*Given trial eigenpairs: {\¢§n>>a €§”)}
*Solve in parallel the nbnd linear systems

(His — =S +as|o") (6("15) 16{") = ~(Hxs — =" 9)|{")
-Build the reduced Hamiltonian from both |¢.")) & |4\
= (6" /00" | Hics |67 105"), Sy = (67 /{15165 /6™

*Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

(H—eSuw=0 — {g"ty &ntih

Repeat if needed in order to improve solution at
fixed Hamiltonian

A variant of ParO method (3)

*Given trial eigenpairs: {\¢§n>>a €§”)}
*Solve in parallel the nbnd linear systems
(His = ='s +as|o") (6("1S) 16") = ~(Hxs — =" 9)|o}")
*Build the reduced Hamiltonian from \"gbg)> = \qﬁ§n)> q5<n)>
= (0" |Hislo}"), Siy = (0" I76{")

*Diagonalize the small nbnd x nbnd reduced Hamiltonian
to get the new estimate for the eigenpairs

(H—eSuw=0 — {g"ty &ntih

Repeat if needed in order to improve solution at
fixed Hamiltonian

Memory requirements for ParO method

Memory required is nbnd * npwx + [nbnd*anX] in
the original ParO method or when W >> are used.

‘Memory requlred 1s 3 *nbnd * npwx + [2*nbnd*npwx]
if both |¢ > &]gb > are used.

*Could be possible to reduce this memory and/or the

number of h psi involved by playing with the algorithm.
Comparison with the other methods

‘NOT competitive with Davidson at the moment

*Timing and number of h psi calls similar to cg on a
single bgrp basis. It scales !

700

600

200

400

300

200

100

216 Si atoms in a SC cell : Timing

| . . .
L/ Total CPU time
|
¥

Fl‘arD
david

cg
25+520/x+3%x

#*

>K

35

216 Si atoms in a SC cell : Timing

| ' ' ' ParO x
700 L . david :
M Total CPU time 25:4520/x+3°%
|
600 [
¥ | ' ' I Fliaro *
|| 700 | | david
| | . . Y.
500 - | | Total CPU time h psi P00
'. 600 | ||
400 |
500 - +
300 | "l
400 [|
W
200 - \
% 3
300
100 - .
200 ¥\
0 | \ A
0 00 | L
— o
*x .
0 | [| 1 L %

Not only Silicon: BaTiO3 320

60000

20000

40000

30000

20000

10000

atms, 2560 el

Total CPU time

P'arO *
david
cg —¥—
6000+75000/x
T T
1
30

35

Not only Silicon: BaTiO3 320 atms, 2560 el

60000 — : : :
|I ParO *
. david
| Total CPU time og —x—
| 6000+75000/x
50000 35000 . . : . : :
.I | ParO ¥
¥ david
3 . C
oo Total CPU time h psi 640008
40000 |
25000 |-
30000 |- |
20000 f
20000 - \\\ o
15000. | A\
3
10000 |
10000 |+ N\
| *
00 5 5000
.
I ——
D | | 1 | 1 1

Comparison with the other methods
‘NOT competitive with Davidson at the moment

*Timing and number of h psi calls similar to CG on a
single bgrp basis. It scales well with bgrp parallelization!

TO DO LIST
Profiling of a few relevant test cases
Extend band parallelization to other parts

Understand why h psi is so much more efficient in the
Davidson method.

*See if number of h psi can be reduced

bgrp parallelization

We should use bgrp parallelization more extensively
distributing work w/o distributing data (we have R&G
parallelization for that) so as to scale up to more
Processors.

« We can distribute different loops in different routines
(nats, nkb, ngm, nrxx, ...). Only local effects: incremental!
A careful profiling of the code is required.

cortho/diag parallelization

It should be a sub comm of the pool comm (k-points)
not of the bgrp comm.

*Does it give any gain ? Except for some memory
reduction I saw no gain (w/o scalapack).

task parallelization

*Only needed for very large/anisotropic systems, intrinsically
requiring many more processors than planes.

]s not a method to scale up the number of processors for a
“small” calculation (should use bgrp parallelization for that).
Should be activated also when m < dffts%nogrp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

