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 call electron_scf
      do iter = 1, niter
         call c_bands    ­­>   C_BANDS        
         call sum_band   ­­>   SUM_BAND
         call mix_rho
         call v_of_rho   
      end do iter
 
      

ELECTRONS 



 call read_input_file   (input.f90)

 call run_pwscf
 
      call setup         ­­> SETUP
      call init_run      ­­> INIT_RUN
      do 
         call electrons  ­­> ELECTRONS
         call forces
         call stress
         call move_ions
         call update_pot
         call hinit1  
      end do

PWSCF 



 defines grid and other dimensions, no system 
 specific calculations yet

 
 call pre_init
 call allocate_fft
 call ggen
 call allocate_nlpot
 call allocate_paw_integrals
 call paw_one_center
 call allocate_locpot
 call allocate wfc
 call openfile
 call hinit0
 call potinit
 call newd
 call wfctinit

 
      

SETUP 

INIT_RUN 



 call electron_scf
      do iter = 1, niter
         call c_bands    ­­>   C_BANDS        
         call sum_band   ­­>   SUM_BAND
         call mix_rho
         call v_of_rho   
      end do iter
 
      

ELECTRONS 



 do ik = 1, nks 
    call get_buffer    (evc)
    call init_us_2     (vkb)        
    call diag_bands   ­­>   DIAG_BANDS
    call save_buffer
 end do ik
 
  

   DAVIDSON (isolve=0)
      hdiag = g2 + vloc_avg + Vnl_avg
      call cegterg or pcegterg

   CG (isolve=1)
      hdiag = 1 + g2 + sqrt(1+(g2­1)**2)
      call rotate_wfc
      call ccgdiagg         
   

C_BANDS 

DIAG_BANDS 



Step 4 : diagonalization



  

Diagonalization of HKS is a major step in the scf solution of any 
system.

In pw.x two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 



Davidson Diagoalization

●Given trial eigenpairs:
●Eigenpairs of  the reduced Hamiltonian

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve the solution
→ 3nbnd x 3nbnd → 4nbnd x 4nbnd … → nbnd x nbnd

●Build the correction vectors  

●Build an extended reduced Hamiltonian 



  

●Davidson diagonalization
-efficient in terms of number of  Hpsi required 
-memory intensive: requires a work space up to 
      (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to 
      david*nbnd x david*nbnd 
 where david is by default 4, but can be reduced to 2

●routines

- regterg , cegterg  real/cmplx  eigen iterative generalized

- h_psi, s_psi, g_psi

- rdiaghg, cdiaghg  real/cmplx diagonalization H generalized



Conjugate Gradient

●For each band, given a trial eigenpair:

●Minimize the single particle energy 

by (pre-conditioned) CG method
                
subject to the constraints

…. see attached documents for more details  

●Repeat for next band until completed  



  

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically 
 sequential and not efficient for large systems. 

●routines

- rcgdiagg , ccgdiagg  real/cmplx CG diagonalization generalized

- h_1psi, s_1psi

   * preconditioning



   Parallel Orbital update method
  

 and
 some thoughts about 

-bgrp parallelization 
-ortho parallelization
-task parallelization

  
  in pw.x



  arXiv:1510.07230v1 [math.NA] 25/10/2015

  arXiv:1405.0260v2 [math.NA] 20/11/2014

Some recent work on an alternative iterative methods



  arXiv:1405.0260v2 [math.NA] 20/11/2014

ParO in a nutshell



ParO as I understand it

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian

●Diagonalize the small nbnd x nbnd reduced Hamiltonian 
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian 



A variant of ParO method

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both 

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian 



A variant of ParO method  (2)

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both 

●Diagonalize the small 2nbnd x 2nbnd reduced 
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian



A variant of ParO method (3)

●Solve in parallel the nbnd  linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from 

●Diagonalize the small nbnd x nbnd reduced Hamiltonian 
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at   
 fixed Hamiltonian



Memory requirements for ParO method

●Memory required is nbnd * npwx + [nbnd*npwx] in 
the original ParO method or when                are used.

●Memory required is 3 * nbnd * npwx + [2*nbnd*npwx] 
if both                             are used.

●Could be possible to reduce this memory and/or the 
number of h_psi involved by playing with the algorithm.

Comparison with the other methods

●NOT competitive with Davidson at the moment

●Timing and number of h_psi calls similar to cg on a 
single bgrp basis. It scales !



216 Si atoms in a SC cell : Timing 

Total CPU time



216 Si atoms in a SC cell : Timing 

Total CPU time

Total CPU time h_psi



Not only Silicon: BaTiO3  320 atms, 2560 el  

Total CPU time



Not only Silicon: BaTiO3  320 atms, 2560 el  

Total CPU time h_psi

Total CPU time



Comparison with the other methods

●NOT competitive with Davidson at the moment

●Timing and number of h_psi calls similar to CG on a 
single bgrp basis. It scales well with bgrp parallelization!

                    TO DO LIST

●Profiling of a few relevant test cases

●Extend band parallelization to other parts 

●Understand why h_psi is so much more efficient in the 
Davidson method.

●See if number of h_psi can be reduced



●bgrp parallelization
●We should use bgrp parallelization more extensively    
distributing work w/o distributing data (we have R&G 
parallelization for that) so as to scale up to more 
processors.
● We can distribute different loops in different routines 
(nats, nkb, ngm, nrxx, …). Only local effects: incremental!
●A careful profiling of the code is required.
●ortho/diag parallelization
●It should be a sub comm of the pool comm (k-points) 
not of the bgrp comm. 
●Does it give any gain ? Except for some memory 
reduction I saw no gain (w/o scalapack).
●task parallelization
●Only needed for very large/anisotropic systems, intrinsically 
requiring many more processors than planes. 
●Is not a method to scale up the number of processors for a 
“small” calculation (should use bgrp parallelization for that).
●Should be activated also when  m < dffts%nogrp
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