
PWSCF

and

diagonalization

 call electron_scf
 do iter = 1, niter
 call c_bands ­­> C_BANDS
 call sum_band ­­> SUM_BAND
 call mix_rho
 call v_of_rho
 end do iter

ELECTRONS

 call read_input_file (input.f90)

 call run_pwscf

 call setup ­­> SETUP
 call init_run ­­> INIT_RUN
 do
 call electrons ­­> ELECTRONS
 call forces
 call stress
 call move_ions
 call update_pot
 call hinit1
 end do

PWSCF

 defines grid and other dimensions, no system
 specific calculations yet

 call pre_init
 call allocate_fft
 call ggen
 call allocate_nlpot
 call allocate_paw_integrals
 call paw_one_center
 call allocate_locpot
 call allocate wfc
 call openfile
 call hinit0
 call potinit
 call newd
 call wfctinit

SETUP

INIT_RUN

 call electron_scf
 do iter = 1, niter
 call c_bands ­­> C_BANDS
 call sum_band ­­> SUM_BAND
 call mix_rho
 call v_of_rho
 end do iter

ELECTRONS

 do ik = 1, nks
 call get_buffer (evc)
 call init_us_2 (vkb)
 call diag_bands ­­> DIAG_BANDS
 call save_buffer
 end do ik

 DAVIDSON (isolve=0)
 hdiag = g2 + vloc_avg + Vnl_avg
 call cegterg or pcegterg

 CG (isolve=1)
 hdiag = 1 + g2 + sqrt(1+(g2­1)**2)
 call rotate_wfc
 call ccgdiagg

C_BANDS

DIAG_BANDS

Step 4 : diagonalization

Diagonalization of HKS is a major step in the scf solution of any
system.

In pw.x two methods are implemented:

●Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically
 sequential and not efficient for large systems.

Davidson Diagoalization

●Given trial eigenpairs:
●Eigenpairs of the reduced Hamiltonian

●Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve the solution
→ 3nbnd x 3nbnd → 4nbnd x 4nbnd … → nbnd x nbnd

●Build the correction vectors

●Build an extended reduced Hamiltonian

●Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
 (1+3*david) * nbnd * npwx
 and diagonalization of matrices up to
 david*nbnd x david*nbnd
 where david is by default 4, but can be reduced to 2

●routines

- regterg , cegterg real/cmplx eigen iterative generalized

- h_psi, s_psi, g_psi

- rdiaghg, cdiaghg real/cmplx diagonalization H generalized

Conjugate Gradient

●For each band, given a trial eigenpair:

●Minimize the single particle energy

by (pre-conditioned) CG method

subject to the constraints

…. see attached documents for more details

●Repeat for next band until completed

●Conjugate gradient
-memory friendly: bands are dealt with one at a time.
-the need to orthogonalize to lower states makes it intrinsically
 sequential and not efficient for large systems.

●routines

- rcgdiagg , ccgdiagg real/cmplx CG diagonalization generalized

- h_1psi, s_1psi

 * preconditioning

 Parallel Orbital update method

 and
 some thoughts about

-bgrp parallelization
-ortho parallelization
-task parallelization

 in pw.x

 arXiv:1510.07230v1 [math.NA] 25/10/2015

 arXiv:1405.0260v2 [math.NA] 20/11/2014

Some recent work on an alternative iterative methods

 arXiv:1405.0260v2 [math.NA] 20/11/2014

ParO in a nutshell

ParO as I understand it

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian

●Diagonalize the small nbnd x nbnd reduced Hamiltonian
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

A variant of ParO method

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both

●Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

A variant of ParO method (2)

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from both

●Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

A variant of ParO method (3)

●Solve in parallel the nbnd linear systems

●Given trial eigenpairs:

●Build the reduced Hamiltonian from

●Diagonalize the small nbnd x nbnd reduced Hamiltonian
to get the new estimate for the eigenpairs

●Repeat if needed in order to improve solution at
 fixed Hamiltonian

Memory requirements for ParO method

●Memory required is nbnd * npwx + [nbnd*npwx] in
the original ParO method or when are used.

●Memory required is 3 * nbnd * npwx + [2*nbnd*npwx]
if both are used.

●Could be possible to reduce this memory and/or the
number of h_psi involved by playing with the algorithm.

Comparison with the other methods

●NOT competitive with Davidson at the moment

●Timing and number of h_psi calls similar to cg on a
single bgrp basis. It scales !

216 Si atoms in a SC cell : Timing

Total CPU time

216 Si atoms in a SC cell : Timing

Total CPU time

Total CPU time h_psi

Not only Silicon: BaTiO3 320 atms, 2560 el

Total CPU time

Not only Silicon: BaTiO3 320 atms, 2560 el

Total CPU time h_psi

Total CPU time

Comparison with the other methods

●NOT competitive with Davidson at the moment

●Timing and number of h_psi calls similar to CG on a
single bgrp basis. It scales well with bgrp parallelization!

 TO DO LIST

●Profiling of a few relevant test cases

●Extend band parallelization to other parts

●Understand why h_psi is so much more efficient in the
Davidson method.

●See if number of h_psi can be reduced

●bgrp parallelization
●We should use bgrp parallelization more extensively
distributing work w/o distributing data (we have R&G
parallelization for that) so as to scale up to more
processors.
● We can distribute different loops in different routines
(nats, nkb, ngm, nrxx, …). Only local effects: incremental!
●A careful profiling of the code is required.
●ortho/diag parallelization
●It should be a sub comm of the pool comm (k-points)
not of the bgrp comm.
●Does it give any gain ? Except for some memory
reduction I saw no gain (w/o scalapack).
●task parallelization
●Only needed for very large/anisotropic systems, intrinsically
requiring many more processors than planes.
●Is not a method to scale up the number of processors for a
“small” calculation (should use bgrp parallelization for that).
●Should be activated also when m < dffts%nogrp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

