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ELECTRONS

call electron scf

do 1ter = 1, niter
call c bands - ->
call sum band -->

call mix rho
call v_of rho
end do 1ter

C_BANDS
SUM_BAND




PWSCF

call read input_ file (input.f90)

call run_pwsct

call setup --> SETUP
call init run --> INIT RUN
do

call electrons --> ELECTRONS

call forces
call stress
call move 1ions
call update_pot
call hinitl

end do




SETUP

defines grid and other dimensions,
specific calculations yet

INIT RUN

call
call
call
call
call
call
call
call
call
call
call
call
call

pre _1init
allocate fft
ggen

allocate nlpot
allocate _paw_integrals
paw_one_center
allocate locpot
allocate wfc
openfile

hinitO

potinit

newd

wictinit

no system




ELECTRONS

call electron scf

do 1ter = 1, niter
call c bands - ->
call sum band -->

call mix rho
call v_of rho
end do 1ter

C_BANDS
SUM_BAND




C BANDS

do 1k = 1, nks

call get _buffer (eve)
call init us_ 2 (vkb)
call diag bands --> DIAG BANDS
call save buffer
end do ik
DIAG BANDS

DAVIDSON (isolve=0)
hdiag = g2 + vloc_avg + Vnl avg
call cegterg or pcegterg

CG (isolve=1)
hdiag = 1 + g2 + sgrt(l+(g2-1)**2)
call rotate wfc
call ccgdiagg




Step 4 : diagonalization

construct V_ext

guess rho_in ¢

compute V_KS

diagonalize H_KS

compute rho_out

mix to get
new rho_in

compute forces, stress,
and other properties




Diagonalization of Hks is a major step in the scf solution of any
system.

In pw.x two methods are implemented:

Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
(14+3*david) * nbnd * npwx
and diagonalization of matrices up to
david*nbnd x david*nbnd
where david is by default 4, but can be reduced to 2

Conjugate gradient

-memory friendly: bands are dealt with one at a time.

-the need to orthogonalize to lower states makes it intrinsically
sequential and not efficient for large systems.




Davidson Diagoalization

*Given trial eigenpairs: {\¢(n>> (n)}
-Elgenpalrs of the reduced Hamlltoman
= (6" | Hicslo{"), = (0" 15]¢5")

*Build the correction vectors |gb§”)>
6:") = (Haiag — iSiag) " (His — £:5)|¢;")
-Build an extended reduced Hamiltonian

= (87 0™ Hies |65 167), 8 = (017 /617151677 105)

*Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

(H—eSw=0 — {lp"t"y "t

Repeat if needed in order to improve the solution
— 3nbnd x 3nbnd - 4nbnd x 4nbnd ... - nbnd x nbnd




Davidson diagonalization
-efficient in terms of number of Hpsi required
-memory intensive: requires a work space up to
(1+3*david) * nbnd * npwx
and diagonalization of matrices up to
david*nbnd x david*nbnd

where david is by default 4, but can be reduced to 2

eroutines

- regterg , cegterg real/cmplx eigen iterative generalized
- h psi, s psi, g psi

- rdiaghg, cdiaghg real/cmplx diagonalization H generalized



Conjugate Gradient
For each band, given a trial eigenpair: {’¢7(;n)>» €}

Minimize the single particle energy
E(|¢i)) = (¢i|Hx s|®;)
by (pre-conditioned) CG method

subject to the constraints

(@:|S|pj) = 0s5, Vj <

.... see attached documents for more details

Repeat for next band until completed



Conjugate gradient

-memory friendly: bands are dealt with one at a time.

-the need to orthogonalize to lower states makes it intrinsically
sequential and not efficient for large systems.

routines

- rcgdiagg , ccgdiagg real/cmplx CG diagonalization generalize

-h 1psi, s 1psi

* preconditioning



Parallel Orbital update method

and
some thoughts about

-bgrp parallelization
-ortho parallelization
-task parallelization

In pw.x



Some recent work on an alternative iterative methods

A PARALLEL ORBITAL-UPDATING APPROACH FOR
ELECTRONIC STRUCTURE CALCULATIONS *

XIAOYING DAIT, XINGAO GONGH, AIHUI ZHOUT | AND JINWEI ZHUT

Abstract. In this paper, we propose an orbital iteration based parallel approach for electronic
structure calculations. This approach is based on our understanding of the single-particle equations
of independent particles that move in an effective potential. With this new approach, the solution
of the single-particle equation is reduced to some solutions of independent linear algebraic systems
and a small scale algebraic problem. It is demonstrated by our numerical experiments that this new
approach is quite efficient for full-potential calculations for a class of molecular systems.

arXiv:1405.0260v2 [math.NA] 20/11/2014

A PARALLEL ORBITAL-UPDATING BASED OPTIMIZATION
METHOD FOR ELECTRONIC STRUCTURE CALCULATIONS *

XIAOYING DAIf, ZHUANG LIU+%, XIN ZHANGE, AND AIHUI ZHOUY

Abstract. In this paper, we propose a parallel optimization method for electronic structure
calculations based on a single orbital-updating approximation. It is shown by our numerical experi-
ments that the method is efficient and reliable for atomic and molecular systems of large scale over

supercomputers.
arXiv:1510.07230v1 [math.NA] 25/10/2015



ParO in a nutshell

ALGORITHM 1.1.
1. Gwen initial data ()\ED) (D)) € R x H}(Q) with (u ED), E,D)) = dij, (1,7 =
1,2,---,N), define Ty and Vi, and let n =0
2. Construct Tn+1 and V41 based on an adaptive procedure to ()\En),ugn)).

3. Fori=1,2,---,N, find u§n+1/2) € V11 satisfying
a(U(”);ugnH/Q),u) — )\z(.”) (ugn),fu) Vv e Vg
in parallel.

J. Project to eigenspace: find (A1) (D)) € Rx V11 satisfying ||u
1 and

a(UMH/2. 0, (4D )y = AHD (3, (041 ) W € Viiq

to obtain eigenpairs (Az(-nJrl) (n+1))( =1,2,---,N).

! 1

. Let n=n+1 and go to Step 2.

Here Vn—l—l —  span {u( +1/2)?ugn+1/2)?m ?u§1+1/2)}; [7(n) — (ugn) ugn)? B E\f’))}
Ut1/2) = (y §”+1/2), §n+1/2)? x ,ug;’ﬂ/z)), and a(-;-,-) is the nonlinear mmatmnal

form associated the Kohn-Sham equation defined in Section|2.2
arXiv:1405.0260v2 [math.NA] 20/11/2014




ParO as I understand it

Given trial eigenpairs: {‘¢§n>>v ggn)}
*Solve in parallel the nbnd linear systems
(His +AS)|6;") = (e + NS|e;")
*Build the reduced Hamiltonian
= (6" | Hsly”),  Siy = (67" 1S16)™)

*Diagonalize the small nbnd x nbnd reduced Hamiltonian
to get the new estimate for the eigenpairs

(H—eSuw=0 — {g"ty &ntih

Repeat if needed in order to improve solution at
fixed Hamiltonian



A variant of ParO method

*Given trial eigenpairs: {‘¢§n>>7 6§”)}

*Solve in parallel the nbnd linear systems

(His +A9)|6") = (" + 1)S]6;™)
-Build the reduced Hamiltonian from both |$§n)> & |q57(;n)>
= (@ /6\ | Hics |65 /05), Sy = (6 /615165 /™)

*Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

(H—eSuw=0 — {g"ty &ntih

Repeat if needed in order to improve solution at
fixed Hamiltonian



A variant of ParO method (2)

*Given trial eigenpairs: {\¢§n>>a €§”)}
*Solve in parallel the nbnd linear systems

(His — =S +as|o" ) (6("15) 16{") = ~(Hxs — =" 9)|{")
-Build the reduced Hamiltonian from both |¢.")) & |4\
= (6" /00" | Hics |67 105"), Sy = (67 /{15165 /6™

*Diagonalize the small 2nbnd x 2nbnd reduced
Hamiltonian to get the new estimate for the eigenpairs

(H—eSuw=0 — {g"ty &ntih

Repeat if needed in order to improve solution at
fixed Hamiltonian



A variant of ParO method (3)

*Given trial eigenpairs: {\¢§n>>a €§”)}
*Solve in parallel the nbnd linear systems
(His = ='s +as|o" ) (6("1S) 16") = ~(Hxs — =" 9)|o}")
*Build the reduced Hamiltonian from \"gbg )> = \qﬁ§n)> q5<n)>
= (0" |Hislo}"), Siy = (0" I76{")

*Diagonalize the small nbnd x nbnd reduced Hamiltonian
to get the new estimate for the eigenpairs

(H—eSuw=0 — {g"ty &ntih

Repeat if needed in order to improve solution at
fixed Hamiltonian



Memory requirements for ParO method

Memory required is nbnd * npwx + [nbnd*anX] in
the original ParO method or when W >> are used.

‘Memory requlred 1s 3 *nbnd * npwx + [2*nbnd*npwx]
if both |¢ > & ]gb > are used.

*Could be possible to reduce this memory and/or the

number of h psi involved by playing with the algorithm.
Comparison with the other methods

‘NOT competitive with Davidson at the moment

*Timing and number of h psi calls similar to cg on a
single bgrp basis. It scales !
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Not only Silicon: BaTiO3 320
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Not only Silicon: BaTiO3 320 atms, 2560 el
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Comparison with the other methods
‘NOT competitive with Davidson at the moment

*Timing and number of h psi calls similar to CG on a
single bgrp basis. It scales well with bgrp parallelization!

TO DO LIST
Profiling of a few relevant test cases
Extend band parallelization to other parts

Understand why h psi is so much more efficient in the
Davidson method.

*See if number of h psi can be reduced



bgrp parallelization

We should use bgrp parallelization more extensively
distributing work w/o distributing data (we have R&G
parallelization for that) so as to scale up to more
Processors.

« We can distribute different loops in different routines
(nats, nkb, ngm, nrxx, ...). Only local effects: incremental!
A careful profiling of the code is required.

cortho/diag parallelization

It should be a sub comm of the pool comm (k-points)
not of the bgrp comm.

*Does it give any gain ? Except for some memory
reduction I saw no gain (w/o scalapack).

task parallelization

*Only needed for very large/anisotropic systems, intrinsically
requiring many more processors than planes.

]s not a method to scale up the number of processors for a
“small” calculation (should use bgrp parallelization for that).
Should be activated also when m < dffts%nogrp
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