INTERNATIONAL SCHOOL FOR ADVANCED STUDIES 1995
ENTRANCE EXAMINATION: CONDENSED MATTER

Solve at least one of the problems below (the order is irrelevant). Write out
solution clearly and concisely. State each approximation used. Diagrams
welcome. Number page, problem, and question clearly. Do not write your
name on the problems sheet, but use extra envelope. A single well-solved
problem is better than many half-solved ones.

Problem 1
One-Dimensional Electron Motion in a Magnetic Field

Consider a circular ring of circumference L. Place on this ring a number 2N
of electrons, where the density 2N/ L is finite, and NV is either (a) even, or (b)
odd. Electron motion is strictly one-dimensional, on the ring. The electrons
are fictitiously supposed to be non-interacting, and free of any external scalar
potential. There is however an external constant magnetic field B, orthogonal
to the ring.

1. Neglecting Zeeman coupling of the spin with the magnetic field, quantize
the motion of a single electron on the ring, starting from the classical
hamiltonian of a charged particle in a magnetic field. Find the one-electron
energy levels, and discuss their behaviour as a function of B.

2. Fill up the one-electron levels found in (1) with the 2N electrons available.
Determine the Fermi energy Fp(B). Calculate then the total electron energy
Er(B), and plot it out schematically as a function of the flux ¢(B) through
the ring, in cases (a) and (b).

3. Discuss in particular the behaviour of Er(B) for small B, and establish
whether the system is paramagnetic or diamagnetic, again in cases (a) and
(b) (neglect spin paramagnetism).

4. (Optional) Calculate and plot schematically the current J(B) on the ring,
as a funcion of flux ¢(B), and electron density.

Problem 2
Two particles on a sphere

Consider a system of two particles of mass m and charge +|e|, constrained
on the surface of a sphere of radius K. Suppose first that e = 0. so that the
particles do not interact with each other.
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1. Write down the hamiltonian of the system and discuss its symmetry
properties.

2. Describe the spectrum of the hamiltonian derived at point 1. and write
down the expression of its eigenvalues and eigenfunctions, indicating their
quantum numbers and degeneracy.

3. Write down the general expression of the hamiltonian eigenfunctions which
have the same quantum numbers as the ground state.

Suppose now that e # 0 and that the two particles interact with each other
through the Coulomb interaction.

4. Calculate the value of the ground-state energy of the system by treating
the interaction in second-order perturbation theory. Hints: the following two
relations could be useful:

1 > min(r, r')! ,
=4 (F
71-Z%ZZ—I-lmaxrr 41 Z Yim(2),

v —r'| B I m=—I

~ 0.22741
;lul )20+ 1)

Problem 3
Equilibrium shape of two-dimensional crystal

Consider a finite two-dimensional crystal, containing N atoms arranged in
a square lattice with spacing a at 7' = 0. The total crystal area is fixed to
be A = Na?, but the geometrical shape of the whole crystal is free to vary.
The presence of "surfaces” (which are called edges) in this two-dimensional
crystal implies an additional excess energy per unit length (surface energy),
due to the fact that some atomic bonds have been broken to form the edge.
The surface energy of an edge depends upon its crystallographic orientation,
relative to the square lattice.

Assuming a surface energy 7 for all the (10) orientations, a surface energy
72 = av for all the (11) orientations (with @ > 1), and neglecting the
possibility of other orientations to occur,

1. calculate the equilibrium shape of the crystal (that is, the shape which
has the full symmetry of the lattice and which minimizes total energy
keeping A constant) as a function of a;
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2. find the conditions for the equilibrium shape to be a square (that is,
when are (11) edges completely absent?);

3. examine in detail the particular case of a square lattice with first-
nearest-neighbor interactions, and an energy .J associated to each bond.
Find 4, and « as functions of J in this case, and determine the crystal
shape as J varies.

Problem 4
States in a one-dimensional well

Consider a particle moving in a generic one dimensional potential well with
reflection symmetry with respect to the origin:

Suppose the well has N bound states: ¢; < ey < ... < ey, with wavefunctions
¢1(I)7 ¢2($)7 ng("L‘)

a) discuss the simmetry and the degeneracy of the levels.

Consider a new well obtained by adding an impenetrable barrier at the origin
to the old one.

) ) V(e) ifz>0
V(:c)_{—l—oo ifz<0

b) How many bound states does this well possess for even N7 And for odd
N?

¢) Which are their energies? And the wavefunctions?

Consider now a generic (i.e. non symmetric) one dimensional well V,(z) with
2M bound states.

d) Where shall one put an impenetrable barrier in order to obtain a well v,
with its M-th bound-state being degenerate with the last (2M-th) one of the
original well V57

¢) What is the best upper bound that you can give for the ground state of
the new well V,, without additional information on its shape?

f) What is the maximum number of bound states that the new well can have?



Problem 5
Ising spins in a one-dimensional lattice

On the N sites of a one dimensional ring, Ising spins o, = +1 (z =
1,2,..., N) interact with a Hamiltonian
N N/2
H=- Z Z Uxaor+|7’|‘](|r|) (1)
z=1 |r|=1

where the integer N is assumed to be even.

1. Determine the free energy per site in the N — oo limit at any temperature
T for the case J(r) =0 when r > 1, and J(1) = J.

Sketch the way to solve the case J(2), J(1) different from 0 and J(r) =0
when r > 2.

2. Determine the ground state energies and the corresponding spin
configurations as a function of J(2)/J(1) for the case J(r) = 0 when r > 2.
(Hint: rewrite the Hamiltonian as H = — Y [J(1)(020241 + 0z410242)/2 +
J(2)0,0212)].)

3. Consider the case of the long-range interaction J(r) = J/r* (J > 0) and
evaluate the energy difference of the following two spin configurations:

l.o,=1 xz=1,2,....N;
2.0, =1 x=1,2,...,N/2, o,=—-1 x=N/2+1,...,N.
Neglect boundary effects and use the approximation:

Zrﬁ N/l drr? (2)
r=1

Given that an estimate of the entropy difference between configurations of
type 2 and 1 i1s AS ~ log N. discuss the stability of ferromagnetic ordering
as a function of a.

Problem 6
Fermions with spin-dependent interaction

Consider a system constituted by two fermions of spin 1/2 and mass m,
interacting through the potential:



V(ri2) = v(r12) + vo(r12)or - 02, (3)

where r;; = |r; — ry| is the interparticle distance, and o; are the Pauli
matrices. The functions v(r12) and v,(r12) have the following expressions:

’U(Tlg) = _EO —|— 3[(7"%27 (4)

and

’UU(Tlg) = EO + I(T‘%Q. (5)

Find the eigenvalues of the energy for the two cases: (1) the two particles are
in the spin singlet state (S = 0); (2) the two particles are in the spin triplet
state (5 =1).

Problem 7
Spin-1/2 in a magnetic field

a) A spin-1/2 is immersed in a uniform magnetic field in the z-direction
B, = B,z. At time t = 0 the spin is pointing in the x-direction, i.e.,
(Sz)(t = 0) = 1/2 (with & = 1). Calculate the state |¥(¢)) of the system,

and the expectation value of the spin operator S at time ¢.

b) An additional magnetic field
B:(t) = Bi[cos (wt)x — sin (wt)y] .

is applied, so that the spin now moves in the field B(t) = B,+B1(t). Assume
that the spin is pointing along +z at time ¢ = 0. Solve the time-dependent
Schrodinger equation to find the state of the system |W(t)) for ¢ > 0. What
is the probability that the spin will have flipped to —z at time ¢ ?

Hints: 1) Neglecting constants, take as hamiltonian of a spin-1/2 in a
magnetic field H = —S - B. ii) If & are the three Pauli matrices and 7
is a unit vector, then the following property could be useful

Qu

¢ = cos (¢)1 + isin ()7 -



