INTERNATIONAL SCHOOL FOR ADVANCED STUDIES
1997 ENTRANCE EXAMINATION: CONDENSED MATTER

Solve one of the problems below. Write out solution clearly and concisely. State each
approximation used. Diagrams welcome. Number page, problem, and question clearly. Do
not write your name on the problems sheet, but use extra envelope.

Problem 1

Three non-interacting electrons in one dimension

Consider the one-dimensional motion of three non-interacting “electrons” on a rigid seg-
ment of length L.

1) Suppose initially the segment to be closed onto itself in a large circle (periodic
boundary conditions). Write down the eigenfunctions, the energy and the degeneracy of
the three-electron ground state, for total spin S=1/2 and S=3/2 respectively. Do the same
for the first and second excited states.

2) Next, imagine cutting the circle, so that the three electron now move on the same
linear segment, but with open boundary conditions. By assuming electrons to flow into
the new ground state, determine magnitude and sign of the ”cutting energy” for S=1/2,
and that for S=3/2.

Now return to closed boundary conditions, and allow for a hypothetical small periodic
deformation of the circle in some unspecified external field, whose net result is an additional
periodic potential

V(z) = vgcos(Qx + ¢) ,

where z is the coordinate on the circle, and vq is the amplitude, ¢ the phase, and 27/Q
the periodicity (in principle arbitrary relative to L) of the new potential. Assume that
the onset of such a deformation will cost an energy %kv%, to be added to the total system
energy (k is a positive stiffness constant).

3) Determine what value of @ is most effective in splitting the degeneracy of the
ground state found at point 1, for either value of total spin. For that Q value, calculate
and discuss the total energy change of the three electrons as a function of vy and ¢.
Determine in particular whether the total energy will be lower than that for vy = 0, and
calculate by how much, assuming large k£ and small vy.
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Problem 2
Two-spin system

Consider a simple model of two quantum spins of magnitude S = 1/2, whose Hamiltonian
is
H=J§1'§2+U'(§1+§2), (1)

v being a vector providing a preferential direction of the spins.

1) Discuss the behavior of magnetic susceptibilities, entropy and specific heat as functions
of the temperature, especially pointing out the role of the two energy scales present
in Eq.(1), for the cases: (a) J >0, (b) J < 0.

2) Suppose one has the possibility to perform a spin-polarized neutron scattering at
zero temperature. In this experiment, an incoming beam of neutrons with a given
spin-polarization o =1, | at a given wavevector k is scattered, and the detector can
determine the intensity, the wavevector k' and the spin-polarization (3 of the outgoing
beam. Is it possible by this experiment to estimate the sign of J, its strength, and
the value and direction of #/?

In order to answer this question, assume that the scattering potential V(F’) felt by a neutron
is simply:
V() = U (8(7 ~ 1) + (7~ %)) + & - B(7)), 2)

where U > 0, & is the spin operator of the neutron, and B is the magnetic field generated
by the magnetic dipoles S; and S,. In terms of the spin density S(7) of the two-system,
defined by

S(7) = S16(F — 1) + S26(F — ), (3)

the magnetic field is

mm=-ﬁ*/ﬁﬁ”yGfrx (4)

where p is the magnetic moment of the spin S.

[Hints: To solve the point (2) make use of the Fermi golden rule to evaluate the transition
probability P;E)Ef_)ﬂ K that an incoming neutron with spin oz and momentum k is scattered
by the potential (2) into a state with spin 8 and momentum %/, inducing in the spin system
a transition from an initial state |i) to a final state |f).

You may find useful to work directly in Fourier space, i.e. with the Fourier components of

Eqgs.(3) and (4), and probably to know the following identity:

M-¥ - MxT7
V X
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bl



as well as the Fourier transform of 7/r3, which is 4mig/q¢?].

Problem 3
Rotating rod filled with benzene

Consider a rod (a very elongated, hollow cylinder), of length L = 1 m and with an internal
diameter of 1cm. The rod is filled with benzene (CgHg), and placed at a temperature
To = 6.4°C (1 degree above the melting point), and atmospheric pressure P, ~ 0.1 MPa
(NB: 1MPa = 10°N/m? = 10bar = 9.87atm = 107 dyne/cm? = 107 erg/cm?®). T, and
P, will remain constant throughout the experiment. One extremity of the rod is closed,
while the other is open. The open extremity is connected to the axle of an engine, which
puts the whole rod into rotation with angular speed w, the closed extremity describing a
circular trajectory with radius L.

1) Explain why solidification of benzene is expected to occur for a sufficiently high rota-
tional speed, and where you expect it to begin.

2) Estimate the rotational speed required to start the solidification process. Assume a
constant compressibility k7 = —(1/V)(0V/OP)r = 8 x 10~*MPa~!. Other useful
data are the liquid density at P,, po = 0.90 g/cm3, the latent heat of melting, L =
1.3 x 10% erg/g, and the volume change on melting, AV = Vjjq — Vgo1 = 0.11cm3/g.

3) Sketch a plot of the local Gibbs free energy along the rod when benzene is partly solid
and partly liquid.

4) Explain what you expect to happen if benzene were replaced by water (with T, still
slightly above the melting point).

Problem 4
Crystal of molecular hydrogen

Consider a crystal of hydrogen molecules (Hz) at zero temperature. Assume that each
molecules can be approximated with a one-dimensional harmonic oscillator of restoring
constant k, independent of the hydrogen isotope. Neglect the interactions between the
molecules, as well as internal rotations. The atomic mass of hydrogen is Mp.

1) Find the quantum zero-point energy of the system in the case where a fraction = of
the molecules are isotopically substituted with deuterium molecules (D2). The atomic
mass of deuterium is Mp = 2Mpg.

2) Find the zero-point energy of the system where a fraction z of the hydrogen atoms
are randomly substituted with deuterium atoms (such a system will be composed
by Hz, HD, and Dy molecules). Show that the system is unstable against complete
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phase separation (i.e. against the formation of two separate isotopically pure crystals
composed of Hy and Ds, respectively).

3) Assuming that the entropy of the random crystal of point (2) is only determined by
the number of configurations, calculate, for x = 0.5, the temperature 7, at which it
becomes stable against complete phase separation. [Hint: logn! ~ nlogn]

Problem 5
Simple model with a transition

A quantum system of N degrees of freedom is in equilibrium at temperature 7. The
number of states with energy in the interval (E,E + AE) is exp [V(F)] O(V(E)) AFE
where U(FE) = aN — |E|/eg (©(z) is the step function which is 0 for negative valves of the
argument and 1 otherwise), and « and e( are given constants. Calculate:

1) The free energy of the system in the thermodynamic limit (N — oo) for 0 < T' < co.

2) The latent heat at the transition point.

3) Repeat point 1 when W(E) = aN — & (£)?

4) The specific heat for case 3: is there still a transition?
[Hint: for point 3 use the following results fab exp(—N f(z))dz ~ exp(—N Ming<.<sf(z))
valid in the large N limit).

Problem 6
Ground-State of a modified harmonic oscillator
Consider the modified harmonic oscillator in one dimension:
2 2
P mw
H=—
2m * 2

1) Calculate the ground-state energy of this hamiltonian by first- and second-order per-

z? + K(pz + zp)

turbation theory in the limit of k — 0.

2) Is the first order energy an upper bound to the true ground-state energy?

3) In general the second-order energy is not guaranteed to give an upper bound to the
ground-state. Can you obtain an improved upper bound using the same ingredients?

4) (optional) Can you find the exact ground-state energy and wavefunction of this sys-
tem?

Problem 7
Bose-Einstein condensation in a gas

Bose-Einstein condensation (BEC) has been recently observed in a dilute gas of trapped
atoms. The condensate can be described by a common macroscopic one-body wave-

function
U(r,t) = v/p(r,t) explif(r, t)] (1)
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normalized to the total number of atoms: [ |¥|*dr = N.

For a weakly interacting BEC ¥ obeys the non-linear Schroedinger equation:

v h?
h—— = ——V?U |2 2
s = =SV - Ve + Vo9 2)
where V,,; is the external field due to the trap.
Let us consider the one-dimensional problem of bosons in a double-well trap given by

1 2
Vewt(z) = Qmw2 z? + Vbexp[—%], Vo > 0. (3)

Vezt(z) can be approximated by two symmetric harmonic wells A and B with a repulsive
barrier between them.
Let us first consider the non-interacting boson gas (Uy = 0).

1) Find the approximate eigenfunction g (z) and the eigenvalue E 4 of the ground state
of the harmonic well A and similarly for the well B.

2) Assuming that [ dzga(z)gs(z) ~ 0, find the wave functions ¥+ (z) and U~ (z) of the
ground and first excited state for the full trap V() in terms of g4 (x) and gp(z), and
the corresponding energy expectation values. Discuss the results and the conditions
on the parameters of V,.¢(z) which justify the ortogonality assumption.

3) Solve eq.(2) (with Uy = 0), under the approximations which are consistent with g4
and gp being roughly orthogonal. Take the initial conditions N4(t = 0) = N, Np(t =
0)=0and 64(t =0) =60p(t=0).

[Hint: Write eq.(1) in the form U(z,t) = C(aa(t)ga(z) + ap(t)gp(z)) (with ap(t) =
Np(t)e?s®) | N,(t) and Np(t) are the number of atoms at the time # in the well A,B

respectively) and replace it in eq.(2) (setting Uy = 0). Try to describe the dynamics as a

two state problem (with a 2 x 2 hamiltonian acting on a two-components state-vector).]

4. Find the frequency of the oscillating flux.

5. (optional) Let us now switch on the interaction between atoms (Uy # 0) in the
eq.(2). How should the 2 x 2 hamiltonian be modified? Discuss qualitatively the
effects of the non-linear term in the oscillating flux of bosons.

Problem 8
m orbitals of allyl radical.

1) Within the framework of Hiickel theory, calculate the energies of the m molecular orbitals
of the allyl radical: [CHy = CH — CH;|.

Indicate the atomic orbitals as |u) and and |v). Set:
The Coulomb integral (u|H|u) = .
The bond integral (u|H|v) = B if |v) = |u) £ 1, (u|H|v) = 0 otherwise.
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The overlap integral (u|v) = d,,.
Recall that o and 3 are negative quantities.

2) The resonance energy AF,., is defined as the difference of the energy of a molecule of
n delocalized double bonds and the energy of n noninteracting double bonds or ethylene
units. In terms of AFE,. s, which ion is more stable?

(a) the allyl cation [CHy = CH — CH,|™.

(b) the allyl anion [CHy = CH — CH,|™.



