INTERNATIONAL SCHOOL FOR ADVANCED STUDIES
1998 ENTRANCE EXAMINATION: CONDENSED MATTER

Solve one of the problems below. Write out solution clearly and concisely. State each
approximation used. Diagrams welcome. Number page, problem, and question clearly. Do

not write your name on the problem sheet, but use extra envelope.

Problem 1

A chain of harmonic oscillators bounded to a plane.

A closed chain of N classical particles in dimension d = 3 is in equilibrium at temperature
T. Between the i-th and the 7 + 1-st particle there is a harmonic potential /2 (7; — 7;41)2.
Furthermore, each particle is bounded to the z = 0 plane by a harmonic potential ky/2 2}
and the first particle is constrained to lie on the z axis.

Calculate:

i) The free energy per particle of the system in the thermodynamic limit (N — oo) for

0<T < o0.
ii) The specific heat per particle.
iii) The average potential energy per particle.

iv) The average square displacement per particle in the z direction and in the directions

perpendicular to the z axis. Discuss the result in the £y — 0 limit.

(hint: 1/27 J7, dk Infa+beosk] = In[(a+va> =) /2] if a > [b] > 0)



Problem 2

A simple toy molecule

Consider a perfect rigid hexagon made up of six hydrogen atoms, i = 1,2,...,6, (a toy
model of benzene). Assuming an electrons in each atom ¢ to hop quantum mechanically to its
two neighboring atoms 41 with an amplitude —¢ = (¢|H|i+1), so that H = —t Y, |i)(i+1],
and neglecting further all overlaps, (i[i £ 1) = 0:

i) Find all one-electrons orbitals of this system, their energy, and their degeneracy.

ii) Ignoring electron-electron repulsion, fill up the lowest orbitals, and describe the elec-
tronic ground state of the toy molecule (i.e. give the wavefunction, total spin, energy and
degeneracy).

iii) In the same approximation, describe the first excited states with spin zero, and with
spin one.

Now release the rigidity condition, and consider each atom to be kept at their equi-
librium distance ry, from its two neighbors by hard spings of stiffness K, described by
Hi = &5 (v —risa| — ro)°. Assuming here that ¢t — texp[—a(|r; — rip1| — 70)], with
a >0,

iv) Discuss what the effect of K being large but finite will be on the ground state energy.

v) Now remove one electron, and discuss, at least qualitatively, the new five-electron

ground state, and what will happen to the molecule geometry.



Problem 3

Vibrational spectrum of biatomic molecules

The interatomic potential of homopolar biatomic molecules can be modeled by the Morse
potential, U(xz) = A [exp(—2ax) — 2exp(—ax)]|, with A and « positive constants.
The vibrational spectrum of this model is known exactly and is given by the continuum

for positive energies and a finite number of bound states satisfying the relation: —F, =

VA [1 — \/;‘T‘Z—A (n + %)] , with integer n.

i) Consider the harmonic approximation around the minimum of the potential, and
calculate the corresponding spectrum. Compare it with the exact one (ground state energy,
spacing of the energy levels and number of bound states).

ii) Calculate by first order perturbation theory the ground state energy of the Morse
oscillator.

iii) Calculate an improved variational value for the ground state energy considering
gaussian trial wavefunctions.

iv) The following table gives the classical dissociation energy D, and the vibrational
frequency v for first and second row dimers. From the exact spectrum, calculate the number
of vibrational bound states and the hanarmonic correction to the first excitation energy for

each dimer.

HQ LZQ B62 B2 02 N2 02 FQ

D, (eV)| 4.75 1.06 0.11 3.08 6.31 9.91 5.23 1.66

v (THz)| 132 10.5 88 31.5 55.7 70.7 47.4 26.7

[hints: h = 4.1357 x 107'%eVs. Ground state wavefunction of the harmonic oscillator:

o) = () " oxp (322 )



Problem 4

Classical antiferromagnet in a magnetic field

Assume a classical spin, 77, on each site R; of a cubic lattice with L sites. The spins
are represented by three dimensional unit vectors 7 = (n*, n¥,n*) subject to the constraint
7|2 = 1. At zero temperature the energy depends on the spin orientation at each lattice
site by the following hamiltonian:

H=>" [Jznj’zinﬁgj + Jo(ng,ng, + n’{zin%j)] —HY nj, (1)

<%,j> J
where the symbol < 7, 7 > denotes nearest neighbor summations. The cubic lattice sites can
be subdivided in two compenetrated sublattices, A and B, such that nearest neighbor bonds
connect atoms of different sublattices. For instance at H = 0 and J, > J, the minimum
energy is £ = —NJ, and is obtained by an antiferromagnetic arrangement of the spins

n® = 1in the A sublattice and n* = —1 in the B one (or viceversa). In general the minimum

energy is obtained when all the spins are parallel in each sublattice but not in all the lattice.

1. Find the spin arrangement which minimizes the hamiltonian as a function of H/J in

the spin isotropic case J, = J, = J.
2. What happens for arbitrarily small H/J?
3. and for large H/J ?

4. Consider the spin anisotropic case J; < J, , which stabilizes the antiferromagnetic
solution along the z—direction for H = 0. How many transitions do you find as a

function of H/J?

5. Determine the possible order parameters in the various phases and the corresponding

order of the transitions.



Problem 5

Simple singlet ground state of a particular spin-1/2 chain model

1. Consider three sites, 1,2, and 3, each occupied by a spin-1/2 operator S; (i = 1,2, 3)

[here S = (1/2)3 where & are the Pauli matrices] and the three-site Hamiltonian

H1’2’3 - (gl + §2 + §3)2

SN

Y L 4 4 4 o9
:5(51-52+SQ-53+51-53+§), (1)

with J > 0.

By simple considerations of addition of angular momenta, determine the minimum

eigenvalue of H; 53 and the corresponding eigenstates.

2. Consider now a ring with an even number N
of sites, and a spin-1/2 operator S”, on each
site = 1---N. Consider also the Hamilto-
nian

N N
H‘gg) = JZSZ - Si+1 + JIZSZ - Si+2 y (2)
=1 i=1

with J > 0 and J' > 0. [Clearly, the ring

geometry implies that one has to assume
SN_|_1 = Sl and SN_|_2 = SQ]
(2a) Determine the value of J' for which it is possible to rewrite Hjy in terms of

three-site Hamiltonians as follows:

H}.]]Y) =Hio3+ Hyza+---+ Hx_1n1 + Hy,1,2 + const . (3)

(2b) Fix from now on J' to the particular value, determined in (2a) above, for which
Eq. 3 holds true. Using the fact that for this particular value of J' H J(j\{) is a

sum of positive definite terms (the three-site Hj;1i12), of which one knows the



minimum energy states, show that the ground state |¥(™) of the Hamiltonian

in Eq. 3 can be written as a product of N/2 singlets as follows:

where

1

V2

(4,i+1) = (I il Dirr = [l Dhira) -

(2c) Calculate the ground state energy of |¥(M).

(2d) Can you provide another simple ground state of H }f]\f) closely related to |¥(M) ?



Problem 6

Electronic Structure of 1,3-butadiene and ethylene.

In the Hiickel formalism,

1) Calculates orbital energies of the 7 electrons of 1,3-butadiene and ethylene in terms
of Coulomb and resonance integrals. Calculate also the orbital coefficients for the two
molecules.

2) Calculate the stabilization due to delocalization of the 7 electrons in 1,3-butadiene
relative to two molecules of ethylene.

3) In terms of m-bond orders, explain why the formula CH,=CH-CH=CH,, which indi-
cates two pure double bonds and one single bond, is not an adequate description of the =

bonding in 1,3-butadiene.



