
International School for Advanced Studies

1999 Entrance Examination: Condensed Matter

Solve one of the problems below. Write out solution clearly and concisely. State each

approximation used. Diagrams welcome. Number page, problem, and question clearly.

Do not write your name on the problem sheet, but use extra envelope.

Problem 1. Free electrons in a channel

Consider electron motion in two dimensions (x; y), free but con�ned by in�nitely

hard walls to take place within a narrow "channel" of width d. Precisely, the potential

is V (jxj < d=2; y) = 0, V (jxj > d=2; y) =1.

1. Solve Schroedinger's equation for one-electron motion inside this channel. De-

termine the spectrum of eigenfunctions and eigenvalues as a function of the ap-

propriate quantum numbers. Along y, assume a large but �nite channel lenght

L >> d, and periodic boundary conditions  (x; y = �L=2) =  (x; y = L=2).

2. Repeat for antiperiodic boundary conditions, meaning  (x; y = �L=2) = � (x; y =

L=2). Point out the di�erences, and their reason, particularly concerning the

ground state.

3. Assume �lling the channel with N noninteracting electrons (linear density n =

N=L). As n increases, derive the form of the total electron energy Etot, and

describe the evolution of the Fermi energy EF and of the Fermi "surface". In

particular, determine the �rst few critical values of n where singularities appear,

both in Etot and in EF , and discuss why they happen.

4. Add a small external magnetic �eld B, chosen so that its e�ect on the eigen-

functions is negligible, the only remaining e�ect being the Zeeman coupling to

the electron spins. Including now the small �eld-induced splitting between spin

up and spin down electron states, obtain a new expression for the total electron

energy. Using this, show at least qualitatively what kind of singularities the Pauli

magnetic susceptibility would develop at the critical densities, and discuss their

meaning.
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Problem 2: A two-electron system

A two-electron system is described by the Hamiltonian H0 = 2J(S1 � S2 +
1
4
), with

J > 0 (no spatial degrees of freedom, all spins in units of �h).

1. The system is prepared initially in the state � j+;�i+� j�;+i, with j�j2+ j�j2 =

1. What is the average value of S1z? Which probability is assigned with the

occurrence of each of the S1z values? Which state would describe properties of

electron 1 only?

2. A perturbation H1 is added to H0, that couples the singlet jsi with any triplet

state jt�i, � = 1; 2; 3, such that hsjH1 jt�i = W , where W is a complex number.

All the other matrix elements of H1 are zero. Find all eigenstates and eigenvalues

of H0 +H1.

3. With H1 still present, let it be assumed that the state of the two electrons at

t = 0 is jsi. What is the probability P�(t) to �nd the two-spin system in jt�i at

a later time t? At what times is this transition probability maximum?

The two electrons are now enclosed in a cubic box of volume L3. H1 has been

switched o�, so that the Hamiltonian reads as H0 + V (r1) + V (r2), where V is

the con�ning potential.

4. Write down the new ground state of the system, its energy and degeneracy.

Problem 3: A simple model for strongly correlated electrons in a solid

A single electron in a solid is assumed to occupy (or not occupy) the highest energy

orbital of the localized atoms. The atom positions are represented by a cubic crystalline

lattice. The strong electron-electron Coulomb repulsion may be parameterized in the

following way: on each site there is an energy cost U to host a pair of electrons with

opposite spins. No electronic kinetic energy is assumed in this simple model. Try to

answer to the following questions:

1. Compute the free energy per site F = �1=(�L) log (Tre��H) (L being the total

number of sites) as a function of the inverse temperature � = 1=kBT and the

chemical potential � (the Hamiltonian is H = UD � �N , where N is the total

number of electrons and D the total number of doubly occupied sites).
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2. Compute the average number of electrons per site < n > at a given temperature.

For increasing < n >, show that for � ! 1 there is a jump in the chemical

potential when < n >= 1. Compute the value of this jump and discuss the

metalic or insulating properties of the model at < n >= 1.

3. Compute the entropy for � ! 1. Is the third \law" of thermodynamics (zero

entropy at zero temperature) veri�ed for < n >= 1 ?

4. Assume now that electrons can hop from an atom to a neighboring one with ma-

trix element t << U . Do you expect qualitative changes of the above properties

?

Problem 4: Vibrational modes of a semi-in�nite linear chain

Let us consider a semi-in�nite linear harmonic chain of atoms of mass M , with

spacing a and nearest neighbour interaction with force constant �.

1. Find the equations of motion of the system and solve them. Describe the normal

modes of the system, and discuss the existence of a solution localized mainly on

the �rst few atoms.

2. Modify the mass of the �rst atom to M0, �nd the condition for the existence of

a localized mode and determine its frequency.

3. Modify the force constant between the �rst and the second atom to �0, keeping

all the masses equal to M . Find the condition for the existence of a localized

mode, and determine its frequency.

4. Change both the mass of the �rst atom to M0 and the force constant between

the �rst and second atom to �0. Show that a localized mode exists provided that
�0
�
> f(M0

M
). Give an expression for f(M0

M
).

Problem 5: An \Ideal Gas" of Classical Particles

Consider a gas of classical particles on a lattice of N sites. Let ni = 0; 1; 2; : : : be the

number of particles on site i = 1; : : : ; N . The Hamiltonian is given by

H = �
NX
i=1

ni + �
NX
i=1

�ni;0

where � is the chemical potential.
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1. Discuss the ground state of H for i) � > � > 0, ii) � > � > 0. Then compute the

Grand Canonical partition function, the free energy and from this show that the

density � � hni of particles tends to 1 or 0 as the temperature vanishes if � > �

or � < � respectively.

2. Consider now the Hamiltonian

H 0 = �
NX
i=1

ni + �
NX
i=1

log(ni + 1)

where � is again the chemical potential.

Find the free energy and discuss the behavior of the density � = hni as a function

of � for i) T > Tc � �=2 and for ii) T < Tc (draw a qualitative graph).

3. Consider the same system as in point 2 at �xed density �. Show that for T < Tc

there is a critical density �c(T ) such that the previously derived description holds

only if � < �c(T ). The critical density diverges as �c(T ) � jT � Tcj
� when

T ! T�c . Compute the exponent .

4. In order to understand what happens for � > �c(T ), add a term ��n1 to the

Hamiltonian H 0 (note that this term breaks the symmetry between sites) and

discuss qualitatively what happens in the limit � ! 0 when T < Tc. Discuss the

similarity of your �ndings with Bose-Einstein condensation. (Hint: the number

of particles in the system is �N).

Problem 6: Statistical mechanics of a discrete model.

A physical system of N degrees of freedom has a con�guration determined by

~� = f�1; �2; ::::; �Ng;

where each variable �i can assume the discrete values 0; 1; 2; : : : ; q.

In terms of the variable n = f number of �'s di�erent from zero g, the energy of a

con�guration ~� is

H(~�) = un� "�n;0 u > 0; " > 0:

Calculate:

1. the number of states with a given n;
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2. the free-energy at temperature T and the equilibrium probability P eq
n , to �nd the

system in a state with a given n;

3. the free-energy per degrees of freedom in the limit N ! 1 and " = vN with v

�xed, and describe the possible phase transition and the behaviour of the thermal

average of n=N as a function of T .

4. Consider again the case of �nite N and �xed " at equilibrium. The time evolution

of the probability to be in a state with a given n, Pn(t), is determined by the

master equation

dPn
dt

= Pn�1w(n�1! n)�Pnw(n! n�1)+Pn+1w(n+1! n)�Pnw(n! n+1)

where n � 0 and w(m! m�1) is the transition rate from a state m to the state

m� 1 (and for n = 0 the terms involving n� 1 are missing).

Given that w(m ! n � 1) = m � k for m > 0, determine the remaining w0s by

assuming that detailed balance holds.

If " is large enough one can assume that for all n > 0 Pn(t) is proportional

to Pn(eq). Within this approximation show that P0(t) � P eq
0 � exp(�t=�) and

calculate � .

Problem 7: �-like potential barrier in one dimension

Consider the stationary Schr�dinger equation of a particle moving in one dimension

in the presence of a �-function potential centered at x = 0,

�
�h2

2m

@2 (x)

@x2
+ U�(x) (x) = E (x);

where U can be either positive or negative.

1. Calculate the eigenfunctions and eigenvalues of the Hamiltonian, for both positive

and negative U .

Suppose that at time � = 0, you prepare a wave packet 	(x) centered around a wave

vector k0 > 0 and around the position x0 < 0, that is

	(x) =
Z
1

�1

dk f(k)ei(k0+k)(x�x0); (1)

where f(k) is peaked at k = 0 and decays fast over an interval �k � k0. Assume that

1

�k
� jx0j �

k0
�k2

:
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Show qualitatively that this condition implies that the wave packet at the beginning

is su�ciently far from the barrier, and that it will not spread too much in the time it

will reach the barrier. Let this wave packet impinge on the potential barrier. Part of it

will be transmitted on the right of the barrier. In a time � , the trasmitted wave packet

will be centered around position 0 < x1 � k0=�k
2. In the absence of the barrier, the

same wave packet arrives at x1 in a time �1, so that � � �1 = �W (k0) can be considered

as the delay time induced by the barrier (the so called Wigner delay time).

2. Calculate �W (k0) as a function of k0 both for positive and negative U and discuss

the result. To simplify the analysis, asssume that the length

a =
�h2

mU
�

1

�k
:

The following problem is suggested for candidates interested in the bio-

simulation curriculum

Problem 8: Aromatic compounds

This problem is concerned with the � electrons of benzene, pyridine (C5NH5) and

pyrazine (C4N2H4) molecules in the H�uckel (i.e., tight binding) approximation. Assume

that i) the bond terms � are the same for carbon and nitrogen; ii) the atomic terms

are � for carbon and �0 = � +KN� for nitrogen, with KN = 0:5.

1. Calculate the orbital energy levels and indicate the electron con�guration for the

neutral ground state.

2. In terms of delocalization energy, which molecule is the most stable?

3. Explain why KN can be expected to be a positive number.
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