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Fall 2004 – Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely. State each approxima-

tion used. Diagrams welcome. Number page, problem, and question clearly. Do not write your name on the

problem sheet, but use extra envelope.

Problem 1. Electrons in two dimensions.

Consider electrons in a hypothetical crystal consisting of a 2-dimensional square lattice, with lattice param-

eter a.

1. Assuming at first free electron motion (i.e., negligible effect of the lattice) compare the electron energy

E(k) at three points the the 2D Brillouin Zone (BZ), namely (i) E(0) at the center; (ii) E(k1) at the

midpoint of the BZ side face; (iii) E(k2) at the BZ corner. Calculate the ratio of kinetic energies r =

[E(k2) −E(0)]/[E(k1) −E(0)].

Assume now the opposite limit of tightly bound electrons, with an s-orbital per site, zero overlap between

sites, and first-neighbor hopping energy −|t|.

2. Write down the electron band energyE(k) in this case. Re-calculate E(0), E(k1), E(k2), and compare

the new ration r with the free electron case (1).

3. Assuming now a concentration n = 1 of electrons occupying the lattice sites, consider the 2D Fermi

surface E(k) = EF corresponding to free electrons (1), and to tightly bound electrons (2). Sketch

qualitatively their respective shapes, and discuss their comparison.



2

Problem 2. One electron in an antiferromagnetic background.

Consider one particle propagating on the sites of a one-dimensional lattice j = 1, · · ·L (with L even) in the

presence of a background of classical spins σj = ±1. The particle can propagate only when the spins of the

background are all parallel in a given region of the lattice, and the wave function of the particle ψ(j) satisfies

the Schrödinger equation:

−t[ψ(j + 1) + ψ(j − 1)] = Etψ(j),

the wave function vanishing when σj changes sign (see figure).

The magnetic energy of the background spins is given by:

EJ = J

L
∑

j=1

[σjσj+1 − 1],

and periodic boundary conditions σL+1 = σ1 are assumed.

The total energy is the sum of the two contributionsEtot = Et +EJ .

1. Consider ferromagnetic interactions between spins, i.e., J < 0, and |J | >> t: what is the ground state

of this systems and the first excited states?

Optional: Discuss qualitatively what happens if |J | << t.

2. Take now the more interesting case of antiferromagnetic interactions, i.e., J > 0. Compute the minumum

of the magnetic energy contribution EJ , by assuming that the particle propagates in one region with l

(odd) parallel and consecutive spins, i.e., j = 2, 3, · · · l + 1 < L.

3. Compute the energy levels of the particle in this region and in particular write down the ground state.

4. Finally, find the total ground state energy (minimum of Etot as a function of l) and the degeneracy of the

ground state. Discuss what happens to the spread l of the one particle wave function in the limit J/t→ 0.

In this limit provide an analityc expression of the total energy as a function of J/t. (Hint: suppose l very

large and verify this assumpion)

5. Optional: Discuss what happens if l is even.
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Problem 3. Electric susceptibility of a harmonic oscillator.

A particle of mass m and charge q moves in a harmonic potential which depends only on the x coordinate:

V (x) = (k/2)x2. The particle is in an electric field E parallel to the x axis. Consider only the motion along x.

The Hamiltonian of the system is:

H =
p2

2m
+

1

2
kx2 − qEx, (1)

where p = mẋ is the momentum of the particle.

1. Write the classical equations of motion and solve them with the initial conditions that at t = 0 the particle

is in x0 with zero velocity.

2. Show that the classical motion is a harmonic oscillation with center in x1. Find x1 as a function of q,

ω =
√

k
m

and E.

3. Assume that at the origin there is an equal and opposite fixed charge so that the dipole moment induced

by the electric field is P = qx1. Show that P is proportional to E and find the electric susceptibility

χ = P/E.

4. Solve the same problem in Eq. (1) using quantum mechanics. Show that the problem can be solved

exactly, and find the ground state energy of the particle and the ground state wave-function, in terms of

the ground state φ0(x) of the harmonic oscillator which you are not required to write down explicitly.

5. Calculate the average value of the position operator 〈X〉 on the ground state and find the quantum me-

chanical expression of the electric susceptibility. Compare with the classical expression and comment on

the fact that χ does not depend on the Planck constant h.

6. Let’s assume now that the electric field causes only a small perturbation on the harmonic oscillator. Using

stationary perturbation theory, find the perturbed ground state wavefunction to first order and use it to

calculate the average value of the position operator on this state. Calculate the electric susceptibility of

the system in this approximate way, compare with the exact value and comment the result.

Hints: TheX operator can be written in terms of creation and destruction operators as X =
√

h̄
2mω

(a† + a)

where, for the wavefunctions of the harmonic oscillator |φn〉, we have 〈φn′ |a|φn〉 =
√
nδn′,n−1 〈φn′ |a†|φn〉 =√

n+ 1δn′,n+1.
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Problem 4. Interaction between two distant neutral atoms.

Consider two far-apart “charged oscillators” as depicted in the Figure below.

The Hamiltonian describing the system is taken to be:
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= H0 + V (2)

where R is the distance between the two positive charges, which we imagine to be fixed at their position,

and aligned along the z-direction. This is a rough model for two far-apart neutral atoms, with fixed (positive)

nuclei, the basic approximation being that the Coulomb attraction between the electron and the corresponding

nucleus has been replaced by a spring of frequency ω, to simplify the calculation. The interaction potential

V = (e2/R3)(x1x2 + y1y2 − 2z1z2) is, instead, the correct expression for the dipole-dipole interaction of the

two neutral objects. We are interested in the quantum mechanics of this system, neglecting the spin of the two

particles.

1. By neglecting V at first, classify the first three low-lying states of the two independent three-dimensional

harmonic oscillators (i.e., ground state, first and second excited states), including the degeneracy of each

level, its energy E0
α, and the associated unperturbed wave-functions (in terms of the single oscillator

wavefunctions φn(x), which you do not need to write down explicitly).

2. Consider now the changes in the ground state energy induced by the presence of the dipole-dipole term

V . Calculate the shift of the ground state energy from the unperturbed value, ∆Egs = Egs −E0
gs to first

order in V .

3. Perform now the calculation of the shift ∆Egs up to second order in V , and plot how the resulting ground

state energy Egs(R) depends on R for large separations R.

Hint: Use the fact that, for a single one-dimensional harmonic oscillator, the only relevant non-vanishing

matrix element of the operator x, if φn denotes the nth eigenstate and φ0 the ground state, is:

〈φn|x|φ0〉 =
√

h̄/(2mω)δn,1 .


