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Fall 2006 - Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely.
State each approximation used. Diagrams welcome. Number page, problem, and question
clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1: electron motion in a circular ring

A single free electron is constrained to move on a circular ring, of radius R. Its space
coordinate, R = R(cosθ, sinθ, 0), is thus fully specified by a single angle θ describing its
position on the ring, and the electron behaves like a rotor.

1. Write down the electron’s Hamiltonian (do not worry too much about numerical
factors).

2. Solve Schroedinger’s equation, and find the spectrum of eigenvalues and eigenvec-
tors.

Now turn on a magnetic field B perpendicular to the ring. If Φ = BπR2 is its flux through
the ring, and Φ0 = hc/e is the unit flux quantum, let B vary so that φ = Φ/Φ0 runs from
0 to 1.

3. Write down the new electron Hamiltonian including the field (neglect Zeeman cou-
pling of the field to the electron spin) [ Hint: A = B×R

2
]. From Schroedinger’s

equation find the new spectrum as a function of φ. Comment on what happens
when φ= 1/2, 1, and larger than 1.

4. Now consider two electrons instead of one (still neglecting Zeeman coupling), and
take B such that φ= 1/2. Keeping into account spin and the Pauli principle, write
down the possible degenerate ground states that the two electrons can form if as-
sumed to be hypotetically non-interacting.

5. Recalling finally that the two electrons repel, specify (without doing any actual
calculation) what their unique ground state will be. (Hint: use analogy with Hund’s
first rule of atomic physics).
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Problem 2: Dynamics of a particle with a random

force

Consider a one dimensional particle that moves according to the following iterative
process:

xn+1 = xn + ∆ · fxn
+
√

∆ · η(α)
n (1)

where ∆ is the “time step” of the iteration process (ignore the fact that its physical
dimension is not time, but rather time2/mass), n ≥ 0 is an integer (the iteration step),
xn is the coordinate of the particle at step n, fxn

= −Kxn is a harmonic force of spring
constant K acting on the particle, and finally η(α)

n is a random term acting at “time” n:
the label α = 1, 2, · · ·M identifies several possible realizations of such a random term.

1. Write the position of the particle x
(α)
N after N steps with the initial condition x

(α)
n=0 =

x0, in terms of the random terms η(α)
n , for a given realization α. What is the

maximum value ∆max of ∆ such that the iterative process is not unstable (i.e., the
xN grow wildly as N grows)?

2. Let us assume that the different realizations of the random term ηn are uncorrelated,
have zero average and variance 2D, namely:

1

M

∑

α

η(α)
n = 0 (2)

1

M

∑

α

η(α)
n η(α)

m = 2Dδn,m , (3)

where δn,m = 1 for n = m and δn,m = 0 for n 6= m. Consider the position x
(α)
N

and its square (x
(α)
N )2 and average them over the M realizations of the disorder, to

compute 〈xN〉 and 〈x2
N〉, as a function of the initial condition x0, the variance D,

the spring constant K and the “time” step ∆.

3. Suppose now that ∆ is infinitesimally small. What happens for large N → ∞ to
〈xN 〉 and 〈x2

N〉? If this process has to represent, for N → ∞, the equilibrium state
of the oscillator at temperature T , what must be the value of the variance D? [Hint:
Use classical equipartition of the potential energy of the oscillator.]
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Problem 3: A particle on a the surface of a sphere

Consider a particle with mass m and charge -e constrained onto the surface of a
neutralizing, uniformly charged, sphere.

1. Calculate the energy levels of the system.

2. Calculate the electrical polarizability of the ground state

3. Discuss one possible strategy for evaluating numerically the energy levels in a finite
electric field.
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Problem 4: Earth Energy Balance

From a global thermodynamical point of view the Earth is and open system where
energy is received from the Sun, and eventually converted into heat and re-emitted as
radiation into space.

Both Sun and Earth can to a good approximation be considered as black bodies,
adsorbing all impinging radiation and re-emitting it according to the Stefan-Boltzmann
law which states that the emitted power per unit area is W = σT 4 where T is the black

body temperature and σ =
2π5k4

B

15c2h3 = 5.67 × 10−8Wm−2K−4

1. Calculate the solid angle under which the Sun is viewed from Earth knowing that
the Sun radius is 6.96 × 108m and the average Sun-Earth distance is 1.5 × 1011 m.

2. Neglecting human or geothermic energy contributions, estimate the Sun surface
temperature from the global energy balance of Earth, that is assuming that the total
power adsorbed from the Sun is equal to the power radiated by the Earth. Take the
average Earth temperature equal to 14 oC=287 K and compare your estimate with
the measured Sun temperature (5870 K).

3. Calculate the total energy adsorbed by the Earth from the Sun in one year and
compare it with the world energy consumption in 2003 which was 123×1012 KWh/yr
and with the estimated consumption in 2010 (149 × 1012 KWh/yr ). Was the
neglect of such contributions in the previous point a good approximation ? Earth
circumference is 40000 Km.

Optional:

A model system realizing the black body emission is a cavity of volume V containing
electromagnetic radiation in equilibrium with the cavity walls at temperature T and
with a small hole whose emission is measured.

4. Calculate the black body radiation energy density u =
∫

hνρ(ν)dν, where ρ(ν) is the
density of photons with frequency between ν and ν + dν. [ Hint:

∫
∞

0
x3

exp(x)−1
dx = π4

15
]

5. Show that for a black body the emission power per unit area is w = c

4
u where u is

the black body radiation energy density.

6. Obtain from the previous results the expression of the Stefan-Boltzmann constant
σ in terms of the fundamental constants kB, c, h.
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