
SISSA ISAS
SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI - INTERNATIONAL SCHOOL FOR ADVANCED STUDIES

I-34014 Trieste ITALY - Via Beirut 4 - Tel. [+]39-40-37871 - Telex:460269 SISSA I - Fax: [+]39-40-3787528

Spring 2006 - Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely.
State each approximation used. Diagrams welcome. Number page, problem, and question
clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1: Interaction of two distant atoms

Two hydrogen atoms A and B, a large distance RAB = |RA−RB| apart, are described

by the Hamiltonian H = HA
0 + HB

0 + V , where HA
0 = − h̄2

2m
∇2

1 − e2/r1A and HB
0 =

− h̄2

2m
∇2

2−e
2/r2B describe the two separate atoms, with r1A = |r1−RA| and r2B = |r2−RB|

their respective electron-proton distances. The interaction term is, with obvious notation:

V =
e2

RAB

+
e2

r12
−

e2

r1B

−
e2

r2A

(1)

1. For large RAB , express the perturbation V in a simplified form (obtained by expan-
sion), and interpret the physical significance of the leading term.

Treating the protons as classical, and calling E(RAB) the total ground state energy when
the atoms are at distance RAB , consider the interaction energy U(RAB) = E(RAB)−E(∞)
and, in particular, its calculation by perturbation theory:

2. Beginning with the unperturbed ground state ψ0(r1, r2) = φ100(r1)φ100(r2) of HA
0 +

HB
0 use simple symmetry arguments to derive the qualitative analytical form of

U(RAB) and its sign. Do the atoms attract or repel?

3. Carry out the explicit (approximate) perturbation calculation of U(RAB). In place of
the true excited state spectrum of the atom, assume a single 2p excited state for each
hydrogen atom. Evaluate numerically the interaction energy U(RAB), preferably
expressed in Hartree or in eV [1 Hartree = e2

aB

= 27.2 eV] when RAB = 10 aB ≈ 5 Å
apart.

Hint: Use φ100(r) = 1
aB

√
πaB

e−(r/aB), φ210(r) = 1
aB

√
32πaB

(z/aB)e−(r/2aB).
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Problem 2: The number of singlets in a correlated

model

Consider a finite one dimensional model within a simple tight-binding scheme. The elec-
trons can occupy atomic orbitals located in a finite number L of lattice sites. For simplicity
we assume that on each site there is only one orbital orthogonal to the remaining L − 1
ones. Each orbital can be occupied at most by two electrons with opposite spins. In the
following N↑ and N↓ indicate the number of electrons with spin up or spin down along
the z−direction, respectively.

1. Compute the total number of many-electron states with given total spin along the
z axis Sz = (N↑ −N↓)/2 and total electron number N = N↑ +N↓.

Hint: recall that the number of possible combinations of q indistinguishable objects
in p states is given by the combinatorial coefficient C(p, q) = p!

q!×(p−q)!
.

2. By using the above result, compute the total number of possible N -electron states
with vanishing total spin (singlets).

3. As above, compute the total number of singlets with the constraint that two elec-
trons of opposite spin cannot occupy the same orbital (e.g. due to the strong
repulsion).
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Problem 3: Vibrational spectrum of the ammonia

molecule

The equilibrium structure of the ammonia molecule, NH3, is a pyramidal. All the HH
bond lengths are equal to aHH = 1.62 Å, whereas the NH bond lengths are aNH = 1.01 Å.
One of the vibrational modes of the molecule can be described to a high accuracy with
the variation of the height, z, of the pyramid.

1. Assuming that the potential energy for this normal mode can be described by a
function:

V (z) = Az2 +Bz4,

determine the value of the A and B constants in such a way that the corresponding
vibrational frequency is ω = 950 cm−1 (The atomic weight of Nitrogen is AN = 14).

2. Show that in the harmonic approximation the vibrational ground state is doubly
degenerate.

3. Show that anharmonic effects lift the degeneracy found in (2) and find an approx-
imate value for the tunneling splitting. [Hint: consider the linear combinations of
the two degenerate harmonic ground states that satisfy the symmetry requirements
of the Hamiltonian]

4. Calculate the effects of an isotopic substitution (H → D) on the vibrational fre-
quency and tunneling splitting.

3



Problem 4: Relativistic electronic structure of a

monatomic wire

Let us consider an infinite monatomic wire with atoms at distance a:

and assume that each atom has three atomic p orbitals: p1, p0, p−1. The atomic wave-
functions can be written as: φpm

(r) = φp(r)Y1,m(Ω
r
) where (r,Ω

r
) are the spherical coor-

dinates of r and Y1,m(Ω
r
) are the spherical harmonics with l = 1.

1. Use a tight-binding model to calculate the electronic band structure of the wire
for Bloch wave-vectors k = (0, 0, kz) with −π

a
≤ kz ≤ π

a
. Assume that the matrix

elements of the Hamiltonian between orbitals centered on the same atom are:
∫

φ∗
pm

(r)H0φpm
(r) d3r = εp,

while the hopping integrals between orbitals centered on nearest-neighbor atoms
are:

∫

φ∗
pm

(r)H0φpm
(r ± aẑ) d3r =

{

−t for m = ±1
t0 for m = 0

where t and t0 are positive numbers and t0 > t. The matrix elements between
orbitals with different m or between orbitals of atoms more distant than the first
nearest-neighbor are zero. Orbitals on the same site are orthogonal while overlaps
between orbitals centered on different sites are neglected.

2. Now consider an additional term in the Hamiltonian which represents the intra-
atomic spin-orbit coupling, Hso = αL ·S, where L is the orbital angular momentum
and S is the spin angular momentum. α is a parameter which measures the spin-
orbit coupling strength. Consider a tight-binding model with six atomic orbitals per
atom. Take for instance φpm

(r)χ↑ and φpm
(r)χ↓ where χ↑, χ↓ are the eigenfunctions

of the spin operator. Write the 6 × 6 matrix which represents Hso in this basis.

3. Calculate and plot the electronic band structure in presence of spin-orbit coupling,
by diagonalizing the total Hamiltonian H0 + Hso. Discuss the two limiting cases
α � t and α � t0.

Hint: In this problem Jz = Lz + Sz is conserved so that states with different values of Jz

cannot mix.
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Problem 5: Electronic states of a finite linear chain

of alkali atoms

Consider a regularly spaced linear chain formed by N alkali atoms (Li, Na, K,..) with
atomic electronic configuration [core]ns1 and assume that only the outer ns electron is
relevant for the valence properties addressed here.

The valence electronic states of the system can be calculated with good approximation
expressing the wave-functions of the system as linear combinations of atomic orbitals:

ψ(x) =
N

∑

i=1

ciφ
at
ns(x− xi)

and assuming that the only non-vanishing matrix elements in the single-particle Hamil-
tonian of the system are the on-site energy, 〈φi|H|φi〉 = εns, and the nearest-neighbor
hopping, 〈φi|H|φi+1〉 = −t.

1. Consider the simplest cases with N = 2, 3, 4 and determine the corresponding elec-
tronic states (eigenvalues and eigenvectors up to a normalization constant) exploit-
ing the symmetry of the system to simplify the problem.

2. Make a schematic drawing of the corresponding wave-functions in the different cases
and compare them with the solutions that can be obtained for a particle in a finite
box with hard wall at 0 and L.

3. Based on the analogy of the solutions in the two systems, write down the solution
of the linear chain problem for general value of N (again provide eigenvalues and
eigenvectors up to a normalization constant).

4. Assuming one electron per site and the independent electron approximation give the
expression for the binding energy per site of the system (EB = N−1Etot(N) − εns)
and evaluate it explicitly in the N = 2, 3, 4 cases and in the limit for N → ∞.
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