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Fall 2007 — Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out Solus clearly and concisely. State each approxima-
tion used. Diagrams welcome. Number page, problem, andigonedearly. Do not write your name on the
problem sheet, but use extra envelope.

Problem 1. Spin, orbital and total angular momentum.

Consider an electron with spiry2, described by a two-component spinor wavefunction

P4 (r)
U(r) = 1
(x) ( wm) M
with ¢, (r) = \/2/3R(r)Y (0, ¢) andy_(r) = \/1/3R(r)Y;* (0, $), wherer = (r,0,¢) are the spherical

coordmates of the position vecterand Ylm(e, ¢) are the spherical harmonics, eigenvectors of the orbital
angular momentum operatof§ and L, with LY, = h*l(l + 1)Y;™ and L,Y;" = hmY;™. The radial
function R(r) is supposed to be normalized in such a way that) is normalized to one.

1. Calculate the mean value of the orbital angular momertumand of the spin angular momentusn on
U(r).

2. Show that¥(r) is an eigenvector of the total angular momentum operatbend./, (whereJ = L+ S)
and find the corresponding eigenvalues.

3. Find the subspace of degenerate eigenvectass efith the same eigenvalue of the state (1). Describe
this subspace with eigenvectors.hfand find their eigenvalueslint : Use the operator$, = J, +1iJ,
andJ_ = J, —iJ,.

4. Calculate the mean value 6f in the states found at point 3.

5. Consider now an atom with a singleslectron outside closed shells. Without calculating exthji the
radial part, write the ground state one-electron wavefanst Write also the wavefunctions of the first
excited stateHint: The ground state wavefunctions are eigenvector&ofith eigenvalue}hQ.



Problem 2. Electron emission.

Non-interacting electrons in a metal with surface can sctmally be seen as trapped inside a (semi-infinite
sized) potential well of depth|V;|. Here they fill with Fermi statistics all states betweefV,| and —|V;| +
Er = —W (at T=0), whereEr > 0 andW > 0 are the Fermi energy and the work function, respectively.
Note that all electrons possess negative energies, thgyepnero being associated to the vacuum. Ca# 0
the metal surface plane. In order to be emitted, an electnast imave a nonzero probability to be found far
outside of the surface, — oo .

1) What is the emission probability when the metal is in its grbatate?

Temperature. The metal can emit electrons at finite temperature T, tHidhgrmal excitation to a positive
energy state.

2) Describe qualitatively the temperature dependence to peated for the probability of thermal emission
(this is called thermionic emission).

Electric field. An electric field normal to the surface will greatly affete@ron emission. Assume a uniform
electric fieldF' for = > 0, and callF’ > 0 the field direction pointing out of the surface (force on agcéion
pointing into the surface).

3) Describe what happens to thermal emission when 0.

Consider the potential profile seen by an electron wheq 0, and take for simplicityl’ = 0. Describe a
possible electron escape process, through the effectiviebaf fixed heigth W but field dependent thickness.

4) Draw the potential, and find the field dependent barrier théslsi( F') at the Fermi energy.

5) Treat this as a square barrier, and find the approximate fegp@rdence and work function dependence of
the electron emission probability for increasing fiégldrom a state at the Fermi energy= —W.

Electric field plus interaction. Consider finally the effect of coulomb interaction betwdiea electrons.
In particular, consider the fact that when an electron akissurface and sits at> 0, things go roughly as
though it was leaving behind a mirror image, a “hole” with pigs charge and z;0.

6) Work out the effect that this will have on the field emissiollpability. In particular, does it enhance or
suppress emission?



Problem 3. An electronic monocromator.

Consider the scattering of an electron from a single one déo@al barrier.

1) By using the fact that the form of a wavefunctign on the left of the barrier is?** + r(k)e~%*, and on
the rightt(k)e?**, and that)?} is also a possible wavefunction with the same energy, shatitiie most
general wavefunction has the form

1)

Ap etke + Ap _e~ke  (Left of barrier)
Y(z) = ‘ . ;
Apet® + Ag _e~**  (Right of barrier)

A A . - o
where| "% | = M. < Lot ) determining the coefficients of tlex 2 transfer matriXM in terms
R,— L,—
of the reflection and transmission amplitudék) and¢(k).

2) Consider explicitly a square barrierine [—a/2, a/2], of widtha and height/,. Denoting, forE' > V;, by
q = +/2m(E — Vy/h the wavevector in the barrier region, and knowing that tardmission coefficient
can be expressed as:

2)2 -1

2
(k sin? ga , (2)

tk)> = |1+ ——LL
determine the values of the enerfy= %*k?/2m of the impinging particle for which the transmission
coefficient|t(k)|?> = 1. Explain physically this result. What is the form of the nafvI for such values

of E?

3) Suppose you have solved the transmission problem for a dimeter V' (x) centered around the origin
x = 0, determining the matrid(®), and you are now asked to solve the same problem when thembarri
is translated and centered around= b, i.e., it isV(x — b). Show that the matrid () describing the
transmission of the wave to the right is now given by:

M® =D, - MO . D;l ) ()
What is the expression of the matiiX,?

4) Imagine now a sequence of identical barriers, like the ones considered in 2), wheeetkte separation
between the centers of theh and(n + 1)th barrier is a random numbeéy, > a (no need to specify

o [ A
better the distribution of,,, for our scope). How would you express the coeffici tiR”L of the

R,—
wave in the region to the right of all barriers, with respecttie coefficients to the left of all barriers
A . . . .
AL"JF . What happens to the global transmission at the enefgigstermined at point 2) above?
L,—

DIFFICULT (optional): What do you think will happen when the enefgdliffers from the one of point
2)?



Problem 4. Finite linear harmonic chain.

Consider a system of three point particles of magsconstrained on a circle of radidg and let us indicate
with ¢; the angular coordinate of each particle. Suppose that thielpa interact among each other through
the potential:

V(xl,xg,xg) = %k ((xl - .%'2)2 + (1'2 — x3)2 + (1'3 - ZCl)Q) , (1)

wherex; = Ry;.

1. Write down the Hamiltonian of the system.

2. Verify that the ground-state wavefunction of the systensyimmetric under permutation of the three
particles.HINT : this question can be answered either explicitly, by caresiing the wavefunction (see
point 4), or by invoking some more or less general arguments.

3. Write down the Hamiltonian in terms of the normal coordésathat diagonalize the quadric form, Eq.
(1). HINT : it may be useful to note that the present problem is analegmiinding the normal modes
of afinite linear harmonic chain with periodic boundary conditionsj ase the Bloch theorem to find
such normal modes.

4. Calculate the ground-state energy and wave-function.
5. Find the excited-state spectrum and discuss it in terntsecfymmetry properties of the system.

6. DIFFICULT , optional. Suppose now that the three particles are sgmfkrmions. Find the ground-
state energy and wavefunctiddlNT : the fermion ground-state can be considered as an excétslaft
the Hamiltonian for distinguishable particles. Any exdigtate wavefunction of a harmonic system is
given by the product of a homogeneous polynomial with theigdsstate wavefunction. What is in this
case the minimum degree of the polynomial that would makenidneefunction totally antisymmetric?
What can be said of the normal modes that are excited in thisfraction?



Problem 5. Simple model of electron solvation in a polar medim.
Consider the situation of an electron dissolved in a polatioma, such as water or ammonia.

In a very simplified model of electron solvation the electtan be viewed as self-trapped by the polarization
induced in the medium inside a spherical cavity of radiusr@ated in the solvent that is approximated as a
continuum of large and homogeneous dielectric constani( ~ 80, ey g, ~ 20).

1. Calculate the total electrostatic potential generateithé the electron in the solvent (outside the cavity)
and separate the direct term coming from the electron andribecoming from the polarization of the
medium.

2. Calculate the potential induced by the polarization gaanside the cavity and show that this leads to a
stabilizing (negative) interaction energy of the electsmivent system.

3. Calculate the minimum kinetic energy of the electron ia tlavity assuming that the electron is com-
pletely confined inside the cavity. (i.e. solve the Schrogdi equation in polar coordinates for the
lowest state of s-symmetry).

4. Combining the above results, calculate the binding gnefdhe electron in the cavity and its radius,
neglecting any effect associated to the surface tensidmecgdlvent.

5. (Optional) Knowing that the experimental values for tiveding energies and cavity radius in ammonia
are~ 0.8¢V and~ 74, discuss whether allowing for an imperfect confinement efalectron in the
cavity would improve or worsen the agreement of this simpbelet with experiment.



