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October 2008 - Entrance Examination: Condensed Matter

Solve one of the following problems. Write out solutions clearly and concisely. State each
approximation used. Diagrams welcome. Number page, problem, and question clearly.
Do not write your name on the problem sheet, but use extra envelope.

Problem 1: Benzene diamagnetism

[Preamble. Graphene – a single graphite sheet made of carbon atoms arranged in a
2-dimensional honeycomb lattice – is currently a hot subject. One notable property of
graphite is its diamagnetism, namely an increase of energy in presence of a magnetic field,
attributed to orbital currents in the special graphene lattice. The present problem is a
cartoon inspired by the orbital diamagnetism of graphene, and to that, closely related, of
benzene C6H6].

Consider an idealized hexagonal molecule made up of six identical atomic sites i =
1, ..., 6. Each site has a nondegenerate, orthonormal orbital |i〉 and a single electron.
Electrons can hop from each site |i〉 to the two neighboring sites |i − 1〉 and |i + 1〉 with
hopping energy −t, with t > 0. The Hamiltonian is H0 = −t

∑

i |i〉〈i + 1|.

1. Calculate the electron levels en of this molecule, their degeneracy gn, and their
wavefunction expressed as a linear combination of the |i〉 orbitals. (Hint: treat as a
“tight binding” linear chain with periodic boundary conditions)

2. Filling these levels with six electrons and Pauli’s principle, calculate the total (non-
interacting) electron energy E0 =

∑

n engnfn where fn = 2 for an occupied level,
zero otherwise.

Add now a magnetic field B perpendicular to the hexagon, and vary its magnitude
so that the molecule is threaded by a flux Φ = BA (A is the hexagon’s area). Ignoring
the Zeeman coupling to electron spin, the simplest way to include the field is to change
nothing, but pick eigenfunctions of H0 so that they no longer obey periodic boundary
conditions, and must instead accommodate a phase shift exp[i2π(Φ/Φ0)], where Φ0 = hc/e
is the flux quantum.

3. Calculate the new levels, and discuss the new total energy for arbitrary flux Φ/Φ0.

4. For small flux, describe the total energy dependence upon Φ/Φ0, and discuss whether
and why that may describe diamagnetism or not.
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Problem 2: Spin-orbit coupling in a cylindrically

symmetric potential

Let us consider a spin 1/2 electron in a cylindrically symmetric potential V (ρ). We assume
that the spin of the electron is coupled to the electric field through a spin-orbit term so
that the Hamiltonian in cylindrical coordinates (ρ, φ, z) is given by:

H = −
h̄2

2m

[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2

]

+
1

2m2c2
S ·

(

∇V (ρ) × p
)

+ V (ρ), (1)

where p = −ih̄∇ is the momentum of the electron that in cylindrical coordinates reads
p = −ih̄

(

∂
∂ρ

, 1
ρ

∂
∂φ

, ∂
∂z

)

and S = h̄
2
σ is the spin angular momentum written using Pauli

matrices.

1. Express the spin-orbit term in cylindrical coordinates using the fact that the poten-
tial depends only on ρ.

2. Show that this Hamiltonian commutes with the z component of the total angular
momentum Jz = Lz + Sz, where Lz is the z component of the orbital angular
momentum L = r × p.

3. Show that the eigenstates of the Hamiltonian have the form

φn,mj
(ρ, φ, z) = fn,mj

(ρ, z)
(

Aeimφχ1 + Bei(m+1)φχ−1

)

, (2)

where mj = m+ 1
2
, χs is an eigenstate of σz and s = ±1 indicates the corresponding

eigenvalue. A and B are two constants.
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Problem 3: Roto-vibrational lines of a diatomic

molecule

The roto-vobrational levels of a diatomic molecule in one of its electronic levels (say,
the ground state) can be described by an effective interatomic potential that, including a
centrifugal barrier, reads:

Vl(r) = V0(r) +
h̄2l(l + 1)

2µr2

≈ V0(r0) +
1

2
V ′′

0 (r0)(r − r0)
2 +

h̄2l(l + 1)

2µr2
0

,

where r0 is the interatomic equilibrium distance defined by the relation V ′

0(r0) = 0, µ is
the reduced mass, and the centrifugal potential has been approximated by a constant, so
as to decouple the vibrational motion from the rotational one.

1. Discuss the accuracy of the approximation of the centrifugal barrier as a constant,
in terms of the properties of the molecule.

2. Show that the roto-vibrational levels of the molecule can be described by the for-
mula: Eν,l = E00 +Aν +Bl(l+1), and indicate how E00 can be calculated from first
principles (i.e. by solving the Schrödinger equation for the system of interacting
electrons and nuclei: no general treatise, here - just a few lines of explanation of the
general concepts).

The experimental data for the molecules HF, HCl, and HBr can be described by the
following values of the A and B constants (data are in cm−1 : 1 cm−1 = 1.24 × 10−4eV;
the atomic masses of F, Cl, and Br are 19, 35, and 80 amu, respectively)

A 2B

HF 4003 41.1
HCl 2907 20.8
HBr 2575 16.7

3. Estimate the values of the equilibrium interatomic distances for the three given
molecules and the amplitude of the nuclear zero-point motion. Can you give an
estimate of the molecular dissociation energy?

4. Calculate the wavelength of the first purely rotational line (E00 7→ E01) and of the
first roto-vibrational one (E00 7→ E11) for the three molecules. Which regions of the
electromagnetic spectrum do they belong to? Discuss the possibility of observing
the E00 7→ E10 transition in an optical absorption experiment.

5. Calculate the A and B constants for the DCl molecule, where D (deuterium) is the
hydrogen isotope with nuclear mass equal to 2 amu.
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Useful constants

h̄ = 1.0546 × 10−34 m2 Kg sec−1

Electron mass:
me = 9.1094 × 10−31 Kg

amu:
amu = 1.66054 × 10−27 Kg
amu = 1822.89 me

Bohr radius:
1 a0 = 0.52918 Å

Energy:
1 Hartree = 27.2114 eV
1 eV = 1.602 × 10−19 Joules
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