
April 2011 - Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely.
State each approximation used. Diagrams welcome. Number page, problem, and question
clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1: Electrons in a 2D Box

Consider electrons moving in two dimensions inside a square box with hard walls and
side length a.

1. Solve Schrödinger's equation and determine the energy, the eigenfunctions, and the
symmetry of the three lowest energy levels.

2. Fill the lowest levels with three electrons �rst, then with four electrons, always
assumed to be non-interacting but obeying Pauli's principle. Give the resulting
overall total energy, and degeneracy (each state with its total spin) in both cases.

3. Imagine now that the box could deform from square to a general rectangular form
of sides (ax, ay), at an energy cost (1/2)k[(ax − a)2 + (ay − a)2], where k > 0 is a
box sti�ness parameter. Treating ax and ay as classical variables, minimize total
energy to determine their optimal value as a function of the sti�ness k for three and
for four electrons, specifying again in each case the resulting symmetry, degeneracy,
and spin.

4. Introduce now electron-electron Coulomb repulsion as a small perturbation. De-
scribe what will happen in the four electron case due to that repulsion, as the
inverse box sti�ness k−1 is gradually increased from zero.

5. Returning �nally to the square box of side a, and ignoring again electron repulsion,
increase now the electron number to a macroscopically large 2N . Calculate the total
energy as a function of N and a, and from the latter derive the electron chemical
potential µ(N, a) and also the pressure P (N, a) exerted by the electrons on the box
walls.
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Problem 2: Estimating the number of bound states

The following theorem concerns the energy eigenvalues En (with E1 < E2 < E3 < . . .)
of the Schrödinger equation in one dimensional systems: if the potential V1(x) gives the

eigenvalues E
(1)
n and the potential V2(x) gives the eigenvalues E

(2)
n , and V1(x) ≤ V2(x) for

all x, then E
(1)
n ≤ E

(2)
n .

� Prove the theorem.
Hint: Consider a potential V (λ, x), where V (0, x) = V1(x) and V (1, x) = V2(x) and
dV
dλ
≥ 0, and calculate dEn

dλ
.

� Now consider the potential

V (x) =

{
k
2
x2 |x| < a

ka2

2
|x| ≥ a

(1)

We want to determine rigorous upper bounds for the number of bound states N of
this potential.

1. Estimate an upper bound by using an harmonic potential and the previous
theorem.

2. Do the same by using a square box potential.
Hint: you have to estimate the maximum number of bound state that this
latter potential can hold.

3. What is the most useful bound?
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Problem 3: Magnetic susceptibility of a spin system

Let us consider a system with spin angular momentum S and consider the subspace
{|+〉, |−〉} of the two eigenstates of S2 and Sz with eigenvalues 3/4~2 and ±~/2, respec-
tively. Let assume that the Hamiltonian of the system is:

H0 = aSz +
b

~
S2

z (2)

where a and b are two given parameters.

1. Write H0 as a 2× 2 matrix in the basis {|+〉, |−〉} and �nd the eigenvalues.

2. Apply a static magnetic �eld B to the system. Assume that the �eld is in the
direction u = (sin θ cos φ, sin θ sin φ, cos θ) given by the polar angles θ and φ. Write
the Hamiltonian of the system assuming that the magnetic moment of the system
is M = γS where γ is the gyromagnetic ratio, a negative number.

3. Write the term of the Hamiltonian found at point 2 in the basis {|+〉, |−〉}.

4. Assuming that the term written at previous point is a small perturbation on H0

�nd the perturbed wavefunction for the ground state of the system at �rst order in
the magnetic �eld B.

5. Calculate, at �rst order in the magnetic �eld, the expectation value of the M oper-
ator on the perturbed wavefunction found at previous point.

3



Problem 4: Elasticity of a rubber string

Suppose that a rubber string can be described by a linear chain of N building blocks,
each one of which can be in two di�erent states, a and b. The energy ε and length l of a
block in states a and b are: εa = ε0, εb = ε0 + ∆, la = l0 and lb = l0 + δ. The total length
and energy of the string are thus: E0 = naεa + nbεb and L = nala + nblb. Also suppose
that the string is subject to an external force, which adds a term −fL to the total energy:
E(f) = E0 − fL.

1. Calculate the partition function of the string, as a function of temperature.

2. Calculate the internal energy of the string, as a function of temperature, total
number of blocks, and force.

3. Calculate the length of the string as a function of the same variables. Find and
comment the value of the length when δ = 0.
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