
October 2012 - Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely.
State each approximation used. Diagrams welcome. Number page, problem, and question
clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1: Current in a one dimensional chain

Consider a model consisting of an infinite one dimensional chain of sites i, with nearest
neighbor spacing a. Each site carries a single orbital |i〉 and one electron. Assuming
orbitals on different sites to be orthonormal, 〈i|j〉 = δij and a Hamiltonian consisting of
a hopping matrix element −|t| between nearest-neighbor sites:

H = −|t|
∑

i

(|i〉〈i+ 1|+ |i+ 1〉〈i|) .

1) Write down the (standard) one-electron wavefunction |k〉 that is a translationally
invariant linear combination of all sites |i〉 and which possesses a wavevector k.

2) Calculate the (standard) energy εk of that wavefunction |k〉.

3) Show that the electrical current carried by the wavefunction |k〉 is proportional to k,
and give the proportionality constant, if the electron charge is −|e|.

Assuming non-interacting electrons and T = 0, fill up each level |k〉 with two electrons,
from k = −kF +Q to k = +kF +Q, where kF = π/2a is the Fermi momentum, and Q is
small, Q� KF . For Q = 0, this is the ground state of the system. For Q > 0, this state
|Ψ(Q)〉 carries a current.

4) Calculate the total energy E0 for the ground state |Ψ(Q = 0)〉, for the current-carrying
state |Ψ(Q)〉, and express their difference ∆E(Q) in powers of Q for small Q.

5) Calculate the total current J(Q) of state |Ψ(Q)〉, again for small Q. Compare the
result with the energy increase ∆E(Q), and discuss the possible physical connection
between the two quantities.
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Problem 2: A potential step in two dimensions

An electron beam (mass m, charge q, and spin 1/2) propagates in the xy plane. The
potential energy is V (x, y) = 0 for x < 0 and V (x, y) = U for x > 0 where U is a positive
constant. Assume that the electrons move from the negative to the positive x direction
and neglect electron-electron interactions.

1. Suppose first that the incident beam is parallel to the x axis, describe the electrons
by traveling waves and find the probability that the electrons are reflected or trans-
mitted by the potential step. Write the result as a function of the total energy E
of the incident particles. Study only the case E > U .

2. Then suppose that the direction of the beam forms an angle α with the −x axis.
Calculate the reflection probability as a function of the angle α and of the total
energy E of the incident particles. Find the angle β that the reflected beam forms
with the −x axis and the angle γ that the transmitted beam forms with the x
axis. Determine the maximum angle α (let us call it αM(E)) for which there is a
transmitted beam.

3. Finally suppose that in the region x > 0 there is a uniform magnetic field perpen-
dicular to the xy plane (directed as +z) that couples only with the electron spin
magnetic moment, so that the Hamiltonian in the region x > 0 is:

H =
p2

x + p2
y

2m
+ U + µBσzB (1)

where (px, py) is the momentum of the particles, σz is the z Pauli matrix, µB =
− q~

2m
is the Bohr magneton (~ is the Planck constant divided by 2π) and B is the

magnitude of the magnetic field. Using the same hypotheses as at point 2 and 3,
find the maximum angle α↑

M(E) for which there is a transmitted beam for electrons
with spin parallel to the magnetic field. Find also the maximum angle α↓

M(E) for
electrons with spin anti-parallel to the magnetic field.

4. Find the range of angles ∆α(E) for which the transmitted beam is completely spin
polarized.
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Problem 3: A free electron in an oscillating electric field

Consider a free electron, for simplicity in one dimension. Suppose at t = 0 a sinusoidal
electric field is turned on, so that the Hamiltonian of the electron, for t ≥ 0, denoting by
−e the charge of the electron and by Eac the amplitude of the ac-field, is:

Ĥ(t) =
p̂2

2m
+ eEac cos (ωt+ φ)x̂ . (2)

We assume that, at t = 0, the electron is in a given wave-packet ψ0(x) = 〈x|ψ0〉 which
is centered in the origin and with zero average momentum, i.e., such that 〈x̂〉t=0 =
〈ψ0|x̂|ψ0〉 = 0 and 〈p̂〉t=0 = 〈ψ0|p̂|ψ0〉 = 0.

1) Using the Heisenberg representation of operators, ÔH(t) = Û †(t, 0)ÔÛ(t, 0) (where
Û(t, 0) is the (unitary) evolution operator), write down the Heisenberg’s equations
of motion for the operators x̂H(t) and p̂H(t), in terms of which you should be able to
express in a simple way the expectation values of x̂ and p̂ at time t, i.e., find explicit
analytic expressions for 〈x̂〉t = 〈ψ(t)|x̂|ψ(t)〉, and 〈p̂〉t = 〈ψ(t)|p̂|ψ(t)〉. Specialize
your results, explicitly, to the two cases: a) φ = 0 and b) φ = π/2. What is the
average momentum at time t in both cases? Discuss the possible presence of a “dc”
component together with the obvious ac term. [N.B.: In deriving the Heisenberg’s

equations of motion, recall that while Û(t, 0) is not e−iĤt/~ because Ĥ is time-
dependent, it still obeys the standard time-dependent Schrödinger equation.]

2) Apply the same procedure to calculate 〈p̂2〉t = 〈ψ(t)|p̂2|ψ(t)〉.

3) Write down the average kinetic energy at time t, Ekin(t) = 〈ψ(t)|p̂2|ψ(t)〉/(2m), and
the average total energy Etot(t) = 〈ψ(t)|Ĥ(t)|ψ(t)〉. Plot and discuss these quantities
in the two cases a) φ = 0 and b) φ = π/2 mentioned above.

You can indeed solve exactly the problem by writing down the full evolution operator
Û(t, 0). Let us see how. Consider the unitary operator T̂ (t) = e−iΦ(t)eik(t)x̂e−ia(t)p̂/~,
describing a translation by a(t) followed by a boost of momentum k(t), Φ(t) being a
phase. The goal is to find k(t), a(t) and Φ(t) such that, if you make the Ansatz

Û(t, 0) = T̂ (t)e−iĤ0t/~T̂ (0)−1 ,

with Ĥ0 = p̂2/2m, this satisfies the time-dependent Schrödinger equation.

4) Write the equation that T̂ (t) has to satisfy, and find corresponding expressions for
k̇(t), ȧ(t) and Φ̇(t), which can be immediately integrated. Discuss the relationship
between k(t), a(t), Φ(t) and the quantities studied in points 2) and 3) above. [Hint:
It might be useful to remember that, for commutators, [p̂, f(x̂)] = −i~f ′(x̂) and
[x̂, g(p̂)] = i~g′(p̂), where f ′ and g′ denotes derivatives of f and g, assuming you can
Taylor-expand them.]
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