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March 2012 - Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely.
State each approximation used. Diagrams welcome. Number page, problem, and question
clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1: A simple model for the Born-Oppenheimer
approximation

Consider the Hamiltonian for two coupled one-dimensional oscillators:

=D e Deexe g
oM T am 2T TR g
where (x,p) and (X, P) are conjugate variables that represent an electron and an ion
position and momentum, respectively ([z,p] =i, [R,P] =i, [z, X] = [p,P] = [z, P] =
[X,p] = 0).

1. Find the exact eigenvalues of H in terms of two quantum numbers n; and ns.

2. Expand the eigenvalues in the limit of m/M < 1 and write their expression up
to first order in m/M. Draw the structure of the energy levels. (Consider that
w? = ky/m and Q2 = ko/M where k; and ky are given constants).

Consider now the Born-Oppenheimer approximation M — oo. In this limit the elec-

tron Hamiltonian is: )
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3. Solve the electronic problem and find the eigenvalues E(X) of H,; as a function of

X.

4. Reintroduce the kinetic energy of the ions and solve the ionic problem with the
electron in its ground state. (Hint: F(X) acts as the potential energy for the ions)

5. Compare the Born-Oppenheimer solution with the exact results and discuss the
validity of the approximation.



Problem 2: Long-range interaction between a hydrogen

and an anti-hydrogen

Consider a system formed by a hydrogen (a proton and an electron) and an anti-
hydrogen (an anti-proton and a positron) at a large distance R.

Assume the proton coordinates (position and momentum) are R 4, P 4; the anti-proton
coordinates are Rp, Pp; the electron coordinates are r,, p,; and the positron coordinates
are 1y, pp. Each atom (or anti atom) is neutral and has no net dipole in its ground state,
what is the interaction energy between the two atoms at large separation?

Apply the adiabatic approximation to the heavy particles and focus on the (electron-
positron) system at fixed proton/anti-proton positions.

1.

Write the Hamiltonian of the (electron-positron) system in terms of the above co-
ordinates.

. Introduce relative coordinates x, = r, — R4, X, =1, — Rp, and R = R4, — Rp.

Rewrite the Hamiltonian of the system in the above coordinates.

Show that for |R| — oo the Hamiltonian reduces to the one of two isolated atoms.
Give the value of the ground state energy.

Expand the Hamiltonian in powers of 1/|R| stopping at the first non vanishing term.

Calculate the correction to the energy computed at point 3. by applying first-order
perturbation theory and show that it vanishes.

Evaluate formally the second-order perturbation theory contribution and show that
it does not vanish.

. What is the leading power law in the interaction between the two neutral atoms?

Is the interaction always attractive, always repulsive or not defined?

Hint: the following expansion may be useful
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Problem 3: Rashba splitting

The electronic states of the surfaces of some nonmagnetic metals can be spin polarized
due to spin-orbit coupling. In this problem we study some properties of these electronic
states. Let us consider a two dimensional gas of independent electrons which move in a
square box of edge L (L is very large) with periodic boundary conditions. The electrons
have spin and interact through spin-orbit coupling with an external potential. Their
behavior can be described by the Hamiltonian:
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where o are the Pauli matrices:
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p = —th <%, a%) is the electron momentum, m is the electron effective mass and b a
positive parameter.

1. Find the band structure of this system, searching the eigenfunctions of the Hamil-
tonian in the form of two dimensional plane waves multiplied by two-component
spinors:
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Plot the eigenvalues €, along the three lines k = (k,0), k = (0, k), and k =
as a function of k. You can take A = 1, m = 1 and b positive.
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2. At the point k = (k,0) find the coefficients o and (3 of the eigenvectors of H such

that |a|*> + |3|> = 1. For the two eigenvectors calculate the expectation values of
the spin angular momentum S = %La'. In which direction is the spin pointing?

3. Repeat point 2.) at the generic point k = (kcos @, ksin#). In which direction is the
spin pointing?

4. Consider now the energy = —b*/4 (with the same units used at point 1.). In the
plane (k,, k,) find the curves e, = E. In a few k points along these curves indicate
with an arrow the direction of the expectation value of the spin on the eigenstate
of H at that point. Do a similar plot for £ = b?/4.



Problem 4: One-dimensional scattering off a localized
magnetic field

Consider spin-1/2 electrons moving in one dimension with the Hamiltonian (A = 1):
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where z is the coordinate, B the strength of a magnetic field in the = direction localized
at the origin, and the matrices act on the spin up and down components of the wave

function
v = (1)

Imagine an electron that scatters off the magnetic potential moving from x < 0, which
is prepared in the state

wole <0 = (4], 2)
with |a|? + |3]? = 1. Without loss of generality, you may take a real a.

1. Demonstrate that the scattered wave function will generally be of the form

e
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in terms of the reflection, r,, and transmission, t,, coefficients for each spin projec-
tion.

2. Write down the equations, without solving them, that r, and t, have to satisfy for
the wave function Egs. (3) and (4) to be an eigenstate of (1).

3. Solve those equations to determine o and (3 such that the transmitted electron has
only spin down component, i.e. t; = 0.

4. Interpret the result by computing the expectation value of the spin operator S = <

2
on the initial state.



