
- 1 A metallic sphere of radius r_0 is placed at a distance R from a point charge. The sphere and the point charge attract each other with a force f:
 - A. $f(R) \propto \frac{r_0^2}{R^5}$.

 - B. $f(R) \propto \frac{r_0^2}{R^4}$. C. $f(R) \propto \frac{1}{r_0^2} e^{-\frac{R}{r_0}}$.
 - D. $f(R) \propto \frac{1}{R^2} e^{-\frac{R}{r_0}}$.
- 2 Deep-sea divers use to breath a kind of artificial air in which Nitrogen is replaced by Helium. When they emerge from the sea, their voice is shifted to higher frequencies. This is so because:
 - A. The ionization potential of He is much larger that that of N_2 .
 - B. The mass of He is smaller than that of N_2 .
 - C. Contrary to N₂ molecules, He atoms do not have internal vibrational degrees of freedom.
 - D. N₂ molecules have a non-vanishing quadrupole moment which enhances their mutual interaction.
- 3 Which of the following wavefunctions is a good candidate for the ground state of the unidimensional hamiltonian: $H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} - U_0 e^{-|x/a|}$?

- 4 A fluid in a container is subject to an adiabatic expansion. Which of the following statements is true?
 - A. The entropy increases.
 - B. The temperature increases.
 - C. The entropy remains constant.
 - D. The pressure increases.
- **5** Rising the temperature all materials eventually melt. This is so because:
 - A. Temperature weakens the interaction between atoms because electrons are excited across their energy gap.
 - B. The entropy of the liquid is larger than that of the solid.
 - C. Solid and liquid are not qualitatively different states of matter and melting depends on details of the interaction.
 - D. The density of the liquid is lower than the one of the solid.
- 6 A coin has two perfectly equivalent faces: top and bottom. What is the probability to get the top of a coin after many unsuccessful trials?
 - A. Is more likely to get the top.
 - B. 50%
 - C. Is more likely to obtain the bottom.
 - D. $1/N_{trial}$.
- 7 The resistivity of a normal metal does not go to zero as the temperature goes to zero. This is due to:
 - A. Zero-point quantum oscillations of the lattice which scatter the electrons
 - B. Presence of impurities
 - C. Scattering due to phonons
 - D. Both A and C.
- 8 Down to very low temperature, helium remains liquid due to zero-point motion and thus becomes superfluid, while molecular para-hydrogen, whose mass is about one half that of helium, solidifies and thus possesses no superfluid phase. This is because:

- A. Para-hydrogen is not a boson
- B. Free molecular rotation would require the quantum liquid phase to be too expanded
- C. Quantum melting of the solid is impeded by macroscopic singlet spin coherence
- D. Intermolecular forces are much stronger for para hydrogen.
- 9 You might have heard of many elementary excitations which occur in condensed matter systems present in nature: among them magnons, phonons, excitons, plasmons, rotons. Suppose that for a given material, you could change the mass of all nuclei from their actual value M_i to some other close-by value M_i , which of these excitations do you expect to shift strongly in energy?
 - A. all of them
 - B. magnons, excitons, plasmons
 - C. phonons, plasmons, rotons
 - D. phonons, rotons
- 10 A polished metal surface acts as a mirror because
 - A. photons cannot be absorbed and thus bounce back because of the electronic gap
 - B. photons cannot penetrate because there is no electronic gap, and thus bounce back
 - C. photons are totally adsorbed, and thus the virtual image remains
 - D. photons hybridize with electron-hole pairs of the metal, which are partly reflected and partly transmitted
- 11 Modern electronics is based on semiconductors, such as silicon. This is so because
 - A. the conductivity can be controlled by impurities and external fields
 - B. they are light, abundant, and nearly perfect materials
 - C. their conductivity is the right medium range, while metals conduct too much, and insulators not at all
 - D. the metal contacts necessary for transistor action are only feasible with semiconductors
- 12 Transparent insulating materials are characterized by the magnitude of their electronic energy gap. The material which in nature is likely to possess the largest gap is
 - A. solid iron at extremely high pressure
 - B. diamond
 - C. sodium chloride
 - D. liquid helium
- 13 The magnetic susceptibility of a free electron gas as the temperature $T \to 0$
 - A. diverges as 1/T;
 - B. is finite and positive;
 - C. is finite and negative;
 - D. is zero.
- 14 The contribution to the specific heat of a phonon branch decays exponentially with temperature, hence it is
 - A. an acoustic branch;
 - B. an optical branch;
 - C. both of the above;
 - D. none of the above.
- 15 Two electrons interact through a central force. The lowest energy state has angular momentum L=0 and
 - A. spin S = 0;
 - B. spin S = 1/2;
 - C. spin S = 1;
 - D. none of the above.
- 16 The zero-frequency long-wavelength dielectric constant of a metal is
 - A. slightly larger than one;

- B. 0;
- $C. \infty;$
- D. slightly smaller than one;
- 17 The vanadium atom has 23 electrons in a configuration Argon $+ 3d^34s^2$. Therefore, according to the Hund's rules, it has the total spin S, the angular momentum L and total angular momentum J equal to
 - A. S = 3/2, L = 5, J = 13/2;
 - B. S = 3/2, L = 3, J = 5/2;
 - C. S = 3/2, L = 5, J = 7/2;
 - D. S = 3/2, L = 3, J = 3/2.
- 18 In the derivation of the canonic ensemble from the microcanonic one it is necessary that
 - A. the subsystem be macroscopic
 - B. the interparticle interactions be small
 - C. both A and B above
 - D. nor A nor B
- 19 Consider a particle on a one dimensional infinite lattice whose position at time t is x(t). The particle performs a random walk with $Prob\{x(t+1) = x(t) + 1\} = p$ and $Prob\{x(t+1) = x(t) 1\} = 1 p$. The square fluctuation is $dx^2(t) = \langle x^2 \rangle \langle x \rangle^2$:
 - A. dx^2 grows linearly with t for all p
 - B. dx^2 grows linearly with t only for p=1/2 and is proportional to t^2 otherwise
 - C. dx^2 is proportional to t^2 for all p
 - D. dx^2 is proportional to \sqrt{t} for all p
- 20 Consider a finite volume divided into two equal parts one of which contains a gas in equilibrium and the other is empty. If, removing the wall separating the two parts, the temperature of the gas decreases, one can conclude that
 - A. the gas is monoatomic
 - B. the entropy of the gas has decreased
 - C. the potential energy of the gas has increased
 - D. the potential energy of the gas has decreased

The following questions should be answered only by candidates interested in the bio-simulation curriculum

- 26 All the aminoacids in proteins except glycine are chiral molecules
 - A. with configuration D
 - B. with configuration L
 - C. with both configurations L and D
 - D. with either L or D configuration depending on the protein
- 27 DNA, the polymer that contains the genetic code, is
 - A. a neutral and nonpolar molecule
 - B. a neutral and polar molecule
 - C. a negatively charged molecule
 - D. a positively charged molecule
- 28 ATP, the central carrier of chemical energy in the cell, is
 - A. an aminoacid
 - B. a monosaccharide
 - C. a component of the cell membrane
 - D. an enzyme cofactor
- 29 Can the three dimensional structure of globular proteins be determined at atomic resolution by using spectroscopic techniques?
 - A. Yes, using IR spectroscopy

- B. Yes, using NMR spectroscopyC. Yes, using EPR spectroscopyD. No. It can be determined only using X-ray diffraction techniques