International School for Advanced Studies 1999 Entrance Examination: Condensed Matter Multiple choice quizzes

- 1. Rare gas atoms, which attract each other very little, solidify in close-packed crystal structures. All other elements, where atoms attract each other much more, and therefore could be expected to close-pack at least as much, only rarely do. Why?
 - a) too much attraction deforms the crystal structure
 - b) it is due to temperature effects. Indeed, at zero temperature all materials are close-packed.
 - c) chemical bonding cannot be reduced to pairwise attractions
 - d) it's a surface effect: the surface applies an inwards pressure, which is minimised by the actual crystal structure
- 2. Magnetism is due to quantum mechanics, and would disappear if Planck's constant were hypothetically to vanish.
 - a) This is false, magnetism would in that case get even stronger
 - b) In that case, the effective temperature would be infinite, hence above the Curie point
 - c) The free energy can be shown to be independent of the vector potential in classical mechanics
 - d) Electrons would pair off, due to vanishing of the Fermi pressure
- 3. Para-hydrogen H_2 is a strange molecule, since it can only have even rotational angular momenta.
 - a) This is false
 - b) The reason is that vibrations couple with a Berry phase
 - c) An odd angular momentum would require molecular dissociation
 - d) Nuclear spins make the molecule antisymmetric to proton exchange

- 4. Oxygen O_2 is a magnetic molecule. Why does this happen?
 - a) because of Hund's rule, as in many atoms
 - b) because it has a nonzero orbital momentum state
 - c) it is nuclear magnetism, the nuclear spins line up in a triplet state
 - d) it is not really magnetic, only paramagnetic; but the susceptibility is very high
- 5. A gas of identical quantum particles can condense, under certain conditions. When can <u>free</u> (i.e., non interacting) identical particles condense ?
 - a) When the particles are fermions.
 - b) When the particles are bosons.
 - c) For both fermions and bosons.
 - d) For neither fermions nor bosons.
- 6. In thermal equilibrium any system
 - a) is usually found in its ground state.
 - b) is more likely to be in the ground state than in any other single state.
 - c) is more likely to have an energy near the ground state energy than near any other value.
 - d) is equally likely to be in any single state.
- 7. The Hilbert space of a system of two s = 1/2 spins (treated as distinguishable particles) consists of 4 states. How large is the Hilbert space of a system of 10 spin-1/2?
 - a) 20
 - b) 100
 - c) 1024
 - d) 10¹⁰
- 8. Consider two angular momentum variables \mathbf{L}_1 and \mathbf{L}_2 and their <u>difference</u> $\mathbf{L} = \mathbf{L}_1 \mathbf{L}_2$. What are the allowed values for the magnitude L of \mathbf{L} ?

- a) $-min(L_1, L_2) \le L \le max(L_1, L_2)$
- b) $0 \le L \le min(L_1, L_2)$
- c) $0 \le L \le |L_1 L_2|$
- d) $|L_1 L_2| \le L \le L_1 + L_2$
- 9. A molecule at temperature T = 300K can be either in the ground state, or in any of <u>three</u> excited states each with energy $k_BT \ln 2$ above the ground state energy. What is the probability that the molecule is in the ground state?
 - a) 1/4
 - b) 2/5
 - c) 3/2
 - d) 2/3
- 10. Ferromagnets are usually found to form several domains of uniform magnetization (i.e., macroscopic regions within which the spins are ferromagnetically oriented) which, however, are oriented in such a way that the resulting total magnetization is zero. This is due to:
 - a) exchange forces between spins
 - b) long-ranged dipolar spin-spin interactions
 - c) electron-electron Coulomb interactions
 - d) the presence of the surface which breaks spin rotational invariance
- 11. N distinguishable quantum spins of magnitude S are coupled ferromagnetically. The zero temperature entropy is:
 - a) zero;
 - b) $N \ln(2S+1);$
 - c) $N \ln[S(S+1)];$
 - d) $\ln(2NS+1)$.
- 12. By a dipole transition an electron can go from an orbital of p-like symmetry to
 - a) p or s or d-orbitals;

- b) p or d orbitals;
- c) s or d orbitals;
- d) just d orbitals.

13. A perfectly spin-isotropic ferromagnet in <u>one dimension</u> is

- a) ordered at zero temperature but disordered otherwise;
- b) always disordered;
- c) ordered for temperatures below a finite Curie temperature;
- d) ordered only at finite temperature.
- 14. The low-temperature specific heat of a certain material is found to behave like $aT^{\frac{3}{2}} + bT^{3}$. How do you interpret this measurement:
 - a) The effect is due to electrons and phonons.
 - b) The effect is due to optical and acoustic phonons.
 - c) The effect is due to magnons and phonons.
 - d) The effect is due to magnons and electrons.
- 15. How can you measure the dipole moment of a molecule?
 - a) Measuring the intensity of the rotational spectrum.
 - b) Measuring the intensity of the vibrational spectrum.
 - c) Measuring the intensity of the electronic excitations.
 - d) None of the above.
- 16. Let $H = p^2/(2m) + V(x)$ be the Hamiltonian of a spinless particle in <u>one dimension</u> with V(x) = V(-x), and $\psi(x)$ be a trial wavefunction which is odd $(\psi(x) = -\psi(-x))$. The expectation value $\langle \psi | H | \psi \rangle / \langle \psi | \psi \rangle$ is:
 - a) lower than the ground state energy.
 - b) lower than the first excited state energy.
 - c) exactly zero.
 - d) higher than or equal to the first excited state energy.
- 17. For an electron in a crystal, which of the following statements is true?

- a) The Bloch functions $\psi_{\mathbf{k}}$ computed at two different \mathbf{k} points in the Brillouin zone are orthogonal.
- b) The periodic part of the Bloch functions $u_{\mathbf{k}}$ computed at two different \mathbf{k} points in the Brillouin zone are orthogonal.
- c) The Bloch functions $\psi_{\mathbf{k}}$ and $\psi_{\mathbf{k}'}$ computed at two different \mathbf{k} points in the Brillouin zone differ just in the phase factor $\exp i(\mathbf{k} \cdot \mathbf{r})$
- d) All Bloch functions can be taken to be periodic for an appropriate choice of the phase.
- 18. Physical quantities at a continuous phase transition exhibit in general power-law singularities, but the true exponents are not classical, as in simple mean field theory. This is due to the fact that:
 - a) forces are generally long-ranged power laws
 - b) critical fluctuations destroy classical behaviour
 - c) boundary effects become dominant near long-range ordering
 - d) in reality all transitions are slightly first-order

The following questions should be answered only by candidates interested in the bio-simulation curriculum

- 19. Water undergoes a reversible ionization to yield a hydrogen ion and a hydroxide anion. In pure water, at 300 K
 - a) about one of every 10 molecules is ionized.
 - b) about one of every 10^{-5} molecules is ionized.
 - c) about one of every 10^{-7} molecules is ionized.
 - d) about one of every 10^{-14} molecules is ionized.
- 20. Consider the peptide Glu-Gly-Ser-Ser-Ala at physiological pH. What is its net electric charge?
 - a) +1
 - b) 0
 - c) -1

- d) -2
- 21. Disulfide bonds in proteins are formed:
 - a) between two Gly residues.
 - b) between two Ser residues.
 - c) between two Met residues.
 - d) between two Cys residues.
- 22. Hydrogen bonds are crucial for structure and function of biological systems. Usually, the bond holding a hydrogen bond complex:
 - a) is weaker than both covalent bonds and van der Waals forces.
 - b) is weaker than covalent bonds but stronger than van der Waals forces.
 - c) is weaker than van der Waals forces but stronger than covalent bonds.
 - d) is stronger than both covalent bonds and van der Waals forces.