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Motility

Motility is the capability of exhibiting directed, purposeful movement.

Motile cells provides fascinating examples of motility at microscopic 
scales (1-50 µm)

Tumor cells
(crawling on a solid surface) MouseMelanoma.flv FishKeratocytes2.mov
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Sperm cells
(swimming in a fluid)

Bacteria 
(swimming in a fluid)

spermswimming_56k.rm Sperm.mp4



Need better understanding of underlying 
mechanisms

Control mechanisms and interactions with surroundings to enhance 
(infertility) or reduce (metastasis) motility

We are currently unable to obtain self-propulsion at microscopic 

Engineer self-propelled artificial micro-motile systems (nano-robots 
inside the human body for diagnostics and therapy)
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We are currently unable to obtain self-propulsion at microscopic 
scales artificially

Maybe we can learn from Nature ? 
(bio-mimetic or bio-inspired design)

Using Nature as a template is sometimes naive 
(airplanes don’t flap their wings) PeregrinFalconTrim.flv



Microscopic bio-swimmers: bacteria and cells

Euglenoids
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Eutrep2.mov Ccmp389a.movEscherichia Coli (E. Coli)

Two movies of metaboly 
in Eutreptiella sp.

Aniso2.mov

One movie of swimming 
in Anisonema sp. 



Man made micro-swimmers: micro-robots
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H. Stone et al., Nature (2005) G. Whitesides et al., Science (2007)

polymer film + muscle cellsred blood cell + flexible magnetic filament



Linear stepper motors.
They drive sliding among adjacent fibers 

causing muscle contraction,

Molecular motors
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causing muscle contraction,
bending of flagella, ....)

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)



Cell Motility
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Actin-based motility

Neuron1.flv
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Listeria monocytogenes.mp4

cellix.imba.oeaw.ac.at fileadmin conferences Videotour_.mov



Actin polymerization at the leading edge drives 
motility of crawling cells*

FishKeratocytes2.mov

(* metastatic tumor cells,
immune system response ...)
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Protrusion

Adhesion

Detachment

(Re)Traction

Protrusion

Governed by a large number
of well identified bio-chemical 

reactions mediated by actin-binding 
proteins



Long range order: where from?

Long range order at the µm scale of the cell
(the front is flat)

emerging from uncoordinated growth at the 
nm scale of the individual filaments.
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Hypothesis: 
self-organized growth is orchestrated by 
long range mechanical interactions
mediated by the membrane.

After all, it’s filaments pushing against the membrane
(Mogilner, Theriot, Keren, Marenduzzo, Prost, Sykes, Plastino...)

Pollard & Earnshaw, 2002



Gathering of facts: 1. F vs V relation

11Motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)

Trout keratocytes,  M. Prass et al., J. Cell Biol.  (2006)

Growth velocity rather insensitive 
to opposing force, up to a stall force.



Fact 2. Filament orientation
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Actin filaments symmetrically oriented with respect to the protrusion direction.



A mechanical model for the active layer at 
the leading edge (2d horizontal slice)

An “active” layer of growing actin network between

the plasma membrane (above)

and  the previously grown, immobilized network
(entanglements, crosslinks, and  adhesion to 
substrate mediated by moleular clutches, below)

13Motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)

Molecular clutch, 
Giannone et al., 2009

Pollard & Earnshaw, 2002



The model. 1: growth and branching events
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Starting from a set of  fixed “seeds”, at each time step i a random  filament grows at its barbed end, and a
branch originates at a random location with probability Pb.  (growth and branching)

At exposed pointed ends,  filaments get depolymerized at speed D. (depolymerization)

Growth events that would lead to overlap with existing filaments are not allowed. (steric hindrance)

Contact among filaments and between filaments and membrane explicitly accounted for .



The model. 2: mechanical stresses

15Motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)

Monomers with stress exceeding threshold (filam. rupture bend. mom.) are cleaved away;
equilibrium states are computed iteratively until no monomer exceed the critical stress.

Stresses are computed by minimizing total elastic energy at each growth step



Results

ActinMovie.mov
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Growth periods alternate with retractions (avalanches of local rupture events).

Sustained growth when structures fit for pushing (uniform stress distribution thanks to
mutual support between neighbors) emerge spontaneously (evolution: mutation through 
random growth and branching; selection: through failure of overstressed filaments).

Active sites for growth and branching are localized near the membrane



Self-organization of the orientation
(optimal shape design ?)
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Flexible filaments: large deformations
(elastic deflections compensate misalignment)

Stiff filaments: selection
(cleavage of misoriented filaments)



Force vs growth Velocity
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Growth against higher values 
of opposing force requires higher density of 
actin monomers

Growth velocity depends only weakly on the
opposing force, up to stall force when growth 
becomes impossible 



Mechanical self-organization: summary
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•Mechanical stresses may govern the emergence of long range order through 
the following evolutionary scheme:

- Filaments that try to grow alone break and depolymerize away.
- Only when filaments happen to grow cooperatively they can support each other and

manage to push the membrane without being crushed. 

• Accumulation of mechanical stresses in randomly growing, breakable filaments that 
push against the membrane.   This simple model exhibits (“explains”) :

- Characteristic F vs V and the ability of the network to self-organize its orientation, 
- ....

L. Cardamone et al.: Proceedings of the National Academy of Sciences, 108: 13978–13983 (2011)



Appendix: values of material parameters
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d  = 7 nm

Fr in the range between 100 and 600 pN



Lecture 3: zero Re hydrodynamics

E.M. Purcell: 
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E.M. Purcell: 
Life at low Reynolds numbers,  

Am. J. Physics, 1977



From Navier-Stokes to Stokes

Navier-Stokes

Non-dimensionalization
V

u
V

p
p

T

t
t

L

x
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η
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Stokes

VVTL η

VT

L
  and  Re == σ

η
ρVL

All inertial effects neglected, formal limit.



Reynolds Number (Re)

η
ρVL=Re

Velocity (typical order of magnitude)   V

Mass density of the fluid                      ρ

Diameter (typical length scale)            L

Viscosity of the fluid                             η
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Re is a dimensionless measure of relative importance of inertia vs. viscosity

For water at room temperature ρ/η = 106 (m2s-1)-1. 

Orders of magnitude for swimmers:

Men, tuna, sharks: L=1m, V=1-10 ms-1 Re=106-107

Bacteria: L=1x10-6m, V=1-10x10-6 ms-1 Re=10-6-10-5



G.I Taylor and low Re flows

http://web.mit.edu/hml/ncfmf.html
National Committee for Fluid Mechanics Films:

G.I. Taylor’s movie on low Re flows:

http://modular.mit.edu:8080/ramgen/ifluids/
Low_Reynolds_Number_Flow.rm
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http://www.deas.harvard.edu/brenner/taylor/physic_today/taylor.htm

Modern classical physics through the work of G.I. Taylor:

One scientist’s work provides material for an entire course, covering topics 
ranging from hydrodynamic stability and turbulence to electrohydrodynamics 
and the locomotion of small organisms. 
-- Michael P. Brenner and Howard A. Stone



Flow past a sphere (Stokes formula)

Re = 0 Re > 250
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Drag = 6 π µ R V  (Stokes, 1851)



Resistance matrix for ellipsoidal shapes
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Gel electrophoresis of DNA and RNA

27Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)



Viscous drag on a filament
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Lecture 4: from mobility to motility

Swimming: a definition

the ability to advance in water 
by performing a cyclic shape change (a stroke) 

in the absence of external propulsive forces
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It’s a control problem:
Can we reach B from A (with B≠A)

by executing (periodic) shape changes
(or by prescribing suitable internal forces) ?



Two conceptual ingredients

1.

How does the surrounding medium react (namely, which forces does it exert ?) 
to shape changes of the swimmer?

(equations of motion of the surrounding medium)
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2.

How does the swimmer move in repsonse to the forces that the surrounding 
medium applies to it ?

(equations of motion of the swimmer)



Outer Stokes problem

∂Ω

Find u induced in the fluid surrounding swimmer Ω by its shape changes:
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u = vDir on ∂Ω

vDir

Ω

σ n  = DNΩ [vDir]   viscous “reactive” force p.u. area on ∂Ω



Equation of motion = Self-propulsion

The motion of the swimmer  induced by its shape changes is a-priori unknown.

Equations of motion:

m  (xc),tt   =  Ftot

0       =   F neglecting swimmer’s inertia
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0       =   Ftot neglecting swimmer’s inertia

0       =   Fext + Fvisc

0       =             Fvisc self-propulsion

Similarly, total viscous torque  = 0 .



Life at low Reynolds numbers

in a flow regime obeying Stokes equations, 
a scallop cannot advance through the 
reciprocal motion of its valves

whatever forward motion will be produced 
by closing the valves, it will be exactly 
canceled by a backward motion upon 
reopening them (see Marta’s talk)

GITaylorSwimmers.mpeg
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G.I. Taylor, 1951

H. Berg, 1973

(eukariotic flagella)
(cilia)

(bacterial flagella)



Lecture 5: the 3-sphere swimmer

A. Najafi and R. Golestanian: 
Simple swimmer at low Reynolds numbers: three linked spheres, 
PRE 69, 062901 (2004)
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•F. Alouges, ADS, A. Lefebvre: Optimal strokes of low Reynolds number swimmers: an 
example. Journal of Nonlinear Science 18, 277-302 (2008).
• F. Alouges, ADS, A. Lefebvre:  Biological fluid dynamics. Springer Encyclopedia of 
Complexity and Systems Science (2009). 
• F. Alouges, ADS, A. Lefebvre: Optimal strokes of axisymmetric microswimmers. 
European Physical Journal E  28, 279–284 (2009).
• F. Alouges, ADS, L. Heltai: Numerical strategies for stroke optimization at low Re 
numbers. M3AS 21, 361-397 (2011). 



Mathematical swimming in a nutshell

)1()2(
1 xx −=ξ

)2()3(
2 xx −=ξ
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=

= position

Swimming is .....

ξ1 ξ2
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executing cyclic shape changes

net positional change after one period

no external force (self-propulsion)

producing

under

ξ1(t), ξ2(t) periodic of period T

f(1) + f(2) + f(3) =0

0
0

≠=∆ ∫
T

dtcc &



Positional change from shape change (axisym.)

i
vDir Dirichlet data on ∂Ω

dA  ]v[0 Dir∫
Ω∂

⋅= ξDNi

DNξ[vDir]=σ n   surface force on ∂Ω

cccc &&&  ),( ),( ),( 32211 ξϕξξϕξξϕ ++= / / / by transl. inv.

ξ1 ξ2
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cccc & ),( ),( ),( 32211 ξϕξξϕξξϕ ++= / / / by transl. inv.

≠0

Then     is uniquely determined and depends linearly on      and c& 1 ξ&
2ξ&

dt

d
V

dt

d
V

dt

dc 2
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ξξξξ +=
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nonlinear dep. on ξ !



Swimming with one formula

∫ ∫∫ =+==∆
T T

ddVdt
dt

d
V

dt

d
Vdtcc

0

21 

0
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2
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ω
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&

c
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ξ1 ξ2

space of states

∆c=0 ∆c=0(notice that it’s entirely geometric!)
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Swimming rests on the differential form   V1dξ1 + V2dξ2 not being exact

ξ1

ξ2

(ξ10,ξ20,c0)

(ξ10,ξ20,c1)

space of shapesξ1

ξ2

ω

space of shapes

(ξ1(t),ξ2(t))

Swimming = Controllability ; Optimal Swimming = Optimal Control

V(ξ) summarizes hydrodynamic interactions and swimming capabilities of a swimmer



Controllability (see Jerome’s talk)
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The three-spere swimmer 
is globally controllable (Lie-bracket
generating or totally nonholonomic
control system)

0),( curl),,]](,[||det[ 213212121 ≠= qqVqqqgggg
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Swimming at max efficiency (geodesic strokes)

Rescale to unit time interval. Minimize expended power

∫ ∫
Ω

•
1

0

 vn     dtσ ∫∫ ∫ ⋅=⋅=
Ω∂

1

0

1

0

DirDir  )(v ]v[ dtGdAdtDN ξξξξ
&&

at given ∫∫ =⋅=∆
ω

ξξξξ dVVc  )( curl)(
1

0

&

(strokes of max Lighthill efficiency)

stroke “length”

enclosed area
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Optimal paths are sub-riemannian geodesics.
Optimal strokes exist.
They can be computed numerically. 

ξ1

c

ξ2

(ξ10,ξ20,c0)

(ξ10,ξ20,c1)

Euler-Lagrange eqn. 



Three sphere swimmers: a race

race
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race



Optimal stroke

ξ2
ξ2
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Level curves of curl V(ξ1,ξ2)
Optimal stroke maximizes flux  of 
curl V at given energy input, 
or minimizes power consumption at given 
flux  of curl V

ξ1ξ1



Summary and perspectives

- Self-propulsion yields the key equation(s) giving positional change from shape change
- Swimming problem as a problem of controllability
- Optimal strokes of low Re swimmers computable; sub-riemannian geodesics

- The picture is qualitatively similar for general swimmers with finitely many shape dofs.
(6 ODEs rather than 1 equation of motion. But: rotations !)

- What about the genuinely infinite-dimensional case ?

42Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)

- What is the biological function of metaboly motion (swimming ???) 

- Is there something being optimized by the stroke of this micro-organism ? 

Metaboly of Eutreptiella sp.Eutrep2.mov



Lecture 6: the infinite-dimensional case

G.I. Taylor:
Analysis of the swimming of microscopic organisms, 

Proc. Roy. Soc. A 209, 447- 461 (1951).

G. Gray and G.J. Hancock:
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G. Dal Maso, ADS, M. Morandotti: An existence and uniqueness result for the self-
propelled motion of micro-swimmers, SIAM J. Math Analysis 43, 1345-1368 (2011).

G. Gray and G.J. Hancock:
The propulsion of sea-urchin spermatozoa, 

J. Exp. Biol. 32, 802- 814 (1955).



Taylor’s swimming sheet

Solving the outer Stokes problem:

Solve for the fluid velocity u in the surrounding fluid. No-slip plus fluid at rest at infinity.

BCs in a frame moving with the sheet:

Wave vector:  k ex

Wave speed:  ω / k
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Transversal (bending/shape) wave:
sheet moves to the left

Wave travels to the right

Longitudinal (stretching) wave:
sheet moves to the right
(see Ezio’s talk on Monday)

Solving the outer Stokes problem:

where U is the swimming speed of the sheet.



Swimming direction from drag anisotropy 
(heuristics)

Since ξ 
┴

> ξ||
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Transversal (bending/shape) wave:
sheet moves to the left

Wave travels to the right

net force towards left

If the sheet is blocked:
the sheet pumps fluid towards right



Gray-Hancock beating  flagellum

Local drag approximation (??)
or “resistive force theory”

Eq. of motion:

0fF =+ ∫head
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Remark: get back Taylor’s formula with L > > � (head radius) and ξ 
┴

= 2 ξ|| (??)

Average over one period of oscillation:

0fF =+ ∫head

Solve for the unknown swimming velocity:



Resistive force theory works surprisingly well

ξ 
┴

= 1.8 ξ||
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BullSpermCell.mov

B.M. Friedrich et al., High precision tracking of sperm swimming fine structure provides strong test of resistive force theory.
J. Exp. Biol. 213, 1226-1234 (2010).



Generic swimming blob

Polar Decompostition

“ϕt(x0) = Rt Ut

Velocity at points of swimmer:
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“ϕt(x0) = Rt Ut
= “rt “st (x0)

Eq. of motion: total viscous force and torque = 0

Theorem:  for any suff. smooth (Lip w/r to t) st
there exist a unique (AC w/r to t) rigid motion rt generated by st
(see also Jerome’s talk)
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