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Motility is the capability of exhibiting directed, purposeful movement.

Motile cells provides fascinating examples of motility at microscopic
scales (1-50 um)

Tumor cells
(crawling on a solid surface)

Sperm cells
(swimming in a fluid)

Bacteria
(swimming in a fluid)
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Need better understanding of underlying

'SISSA mechanisms

Control mechanisms and interactions with surroundings to enhance

(infertility) or reduce (metastasis) motility

Engineer self-propelled artificial micro-motile systems (nano-robots

Inside the human body for diagnostics and therapy)

We are currently unable to obtain self-propulsion at microscopic

scales artificially

Maybe we can learn from Nature ?
(bio-mimetic or bio-inspired design)

Using Nature as a template is sometimes naive
(airplanes don't flap their wings)
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H. Stone et al., Nature (2005) G. Whitesides et al., Science (2007)
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3. Types of molecular motors

Cells generally store chemical energy in two forms: high-
energy chemical bonds, such as the phosphoanhydride bonds
in ATP (adenosine triphosphate); and asymmetric ion gradients
across membranes, such as the electrical potential seen in
nerve cells. These sources of chemical energy drive all cell
processes, from metabolism through DNA replication. The
subset of cell proteins and macromolecular complexes that
convert chemical energy into mechanical force are generally
called molecular motors. Their astonishing variety reflects the
diversity of cell movements necessary to life.

Known biological molecular motors may be divided into
five general groups: (1) rotary motors, (2) linear stepper
motors. (3) assembly and disassembly motors, (4) extrusion
nozzles, and (5) prestressed springs. All of the various cell
movements already described are performed by ensembles of
molecular motors that fall into these categories (see table 1).
Coordinated actions of many small individual components can
give rise to large-scale (cellular or organismal) movements.
Because the molecular motor appears to be the fundamental
unit of biological motility, much experimental and theoretical
effort has focused on understanding these motor elements.

Molecular motors

Kinesin Myosin
light
o neck hes d\
heads reqgulatory
domain
- {lever arm) tail

tail

motor
domain

Linear stepper motors.

They drive sliding among adjacent fibers
causing muscle contraction,
bending of flagella, ....)
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Cell Motility

Table 1. Cell movements and their molecular mechanisms.
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Cell movement Cell structure needed Molecular motor Motor category
Movements through liguid
Bacterial swimming Flagella (bacterial) Flagellar rotor {MotA /MotB) Rotary
Eukaryotic swimming Cilia, flagella (eukaryotic) Dynein Linear stepper
Metabaoly Unknown Unknown Unknown
Movements on solid surfaces
Amoeboid motility (crawling)  Lamellipodia, filopodia, pseudopodia  Actin Assembly /disassembly

Bactenal gliding
Parasite gliding
Bactenal twitching

Intracellular movements
Chromosome segregation

Organelle transport

Rapid cell shape changes
Muscle contraction
Cytokinesis
Stalked ciliate recoil
Acrosome extension (Thyone)

Acrosome extension (Limulus)

Junctional pore complex
Pellicle
Type IV pili

Mitotic spindle

Microtubule arrays
Actin gels
Actin comets

Sarcomere
Division furmow
Spasmoneme
Acrosomal vesicle
Acrosomal bundle

Myosin (several)

Shme extrusion nozzle
Myosin (class XIV)
Pilus base motor (PilT)

Kinesin (several), dynein
Tubulin
Kinesin (several), dynein

Myosin (class V, class VI, othersT)

Actin

Myosin (class IT)
Myosin (class IT)
Spasmin

Actin

Actin

Linear stepper

Extrusion

Linear stepper (probably)}
Assembly /dizassembly?
Linear Stepper?

Linear stepper
Assembly /disassembly
Linear stepper
Linear stepper
Assembly /disassembly

Linear stepper
Linear stepper
Prestressed spring
Assembly
Prestressed spring
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Actin-based motility

S neuronal growth cones
fibroblasts Neuron1.flv

listeria

Listeria monocytogenes.mp4

cancer cells

macrophages
keratocytes

| cellix.imba.oeaw.ac.at fileadmin conferences Videotour_.mov |
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& Actin polymerization at the leading edge drives
motility of crawling cells*

(* metastatic tumor cells,
Immune system response ...)

[ FishKeratocytes2.mov ]

Protrusion

Governed by a large number

of well identified bio-chemical
reactions mediated by actin-binding
proteins

T. D. Pollard and J. Berro (2009)
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Long range order at the um scale of the cell
(the front is flat)

emerging from uncoordinated growth at the
nm scale of the individual filaments.

Hypothesis:

self-organized growth is orchestrated by
long range mechanical interactions
mediated by the membrane.

After all, it's filaments pushing against the membrane
(Mogilner, Theriot, Keren, Marenduzzo, Prost, Sykes, Plastino...)

Pollard & Earnshaw, 2002
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Trout keratocytes, M. Prass et al., J. Cell Biol. (2006)

to opposing force, up to a stall force.
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Fact 2. Filament orientation

0.8

)

Maly and Borisy (2001)

Actin filaments symmetrically oriented with respect to the protrusion direction.
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Pollard & Earnshaw, 2002

A mechanical model for the active layer at
the leading edge (2d horizontal slice)

g,

An “active” layer of growing actin network between

the plasma membrane (above)

and the previously grown, immobilized network
(entanglements, crosslinks, and adhesion to
substrate mediated by moleular clutches, below)

Engaged clutch

I
I I
: Extension
{c) |
Low flow
|
:D' = 0 o i 8 O i 0 g
| & B R R
L 85 |
|
i
| Strengthening
- ANANRNSNN #
High stress <:]
Key:
PR F-actin -\h Myosin @ Clutch proteins
\/\/\ Matrix or ligand- Adhesion
expressing cell molecule
_ Bt flow Stress al
adhesion sites
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Molecular clutch,
Giannone et al., 2009
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The model. 1: growth and branching events

bending — 2 external pressure
o £ Z Kﬂmd _Sm:mhnm: = ZLE E_" .IF P
i 2 RE oA

~ g somiat = d
ﬁa{i ends ¥ ‘?E& W M)
[ membrane

side branches

broken monomers

Starting from a set of fixed “seeds”, at each time step i a random filament grows at its barbed end, and a
branch originates at a random location with probability Pb. (growth and branching)

At exposed pointed ends, filaments get depolymerized at speed D. (depolymerization)
Growth events that would lead to overlap with existing filaments are not allowed. (steric hindrance)

Contact among filaments and between filaments and membrane explicitly accounted for .
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The model. 2: mechanical stresses

(bc:nd].nh 5 ; wp? 2 4 chml‘lnm:. = Z— external pressure
é’- contast —
ﬁed ends ‘? gfa M

‘.1(1& branches

1
broken monomers

Stresses are computed by minimizing total elastic energy at each growth step

) 1 1 bendin
G0 =Y SEakile, G =Y S Enepln, 67 =Txppd, =Y T, yldu).
~ 2 =52 W kZh

.
& — f}actm_F ;}mtmbraﬂe_l_é:; ending @conim:t__g}m’

+ &5 {u®?}; = argmind({u};).

{u};

Monomers with stress exceeding threshold (filam. rupture bend. mom.) are cleaved away;
equilibrium states are computed iteratively until no monomer exceed the critical stress.
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Growth periods alternate with retractions (avalanches of local rupture events).

Sustained growth when structures fit for pushing (uniform stress distribution thanks to
mutual support between neighbors) emerge spontaneously (evolution: mutation through
random growth and branching; selection: through failure of overstressed filaments).

Active sites for growth and branching are localized near the membrane

Motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)
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Self-organization of the orientation
(optimal shape design ?)

£=200d,6=10°-50° £=2000 d, B=random

l'\_. ol

e o -90
0.08 0-95_0‘ :

h<25d )
-25d=h<50d |-
h>50d

120\

180 180

Flexible filaments: large deformations Stiff filaments: selection
(elastic deflections compensate misalignment) (cleavage of misoriented filaments)
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0 400 800 1200 1600 velocity [10%d/clock]
clock

velocity [10d/clock]

Growth velocity depends only weakly on the
opposing force, up to stall force when growth
becomes impossible

5036

5t2 & _ _

g 5033 Growth against higher values

T 5 . . . .
T — _ of opposing force requires higher density of

. force [F] | C actin monomers
0 16 1/3 1/2 2/3 5/6
force [F]
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L. Cardamone et al.: Proceedings of the National Academy of Sciences, 108: 13978-13983 (2011)

height [d]
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*Mechanical stresses may govern the emergence of long range order through

the following evolutionary scheme:

- Filaments that try to grow alone break and depolymerize away.

- Only when filaments happen to grow cooperatively they can support each other and
manage to push the membrane without being crushed.

* Accumulation of mechanical stresses in randomly growing, breakable filaments that

push against the membrane. This simple model exhibits (“explains”) :
- Characteristic F vs V and the ability of the network to self-organize its orientation,

Motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)
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Table 51. Model parameters. Parameters for the benchmark simulations in units of filament thickness 4 and filament rupture
force F..

parameter description value References

i actin hlament thickness 7 nm 18, 9]
i) characteristic angle of the truss structure 60

i monomer edge length deos( 3/2)

fi initial orientation of seeds +30°

@ branching angle B0~ [5,10,11]
Py branching probability 0.3

I3 depolymerization spead 10

£ filament persistence length 10°d [4,12]
F: filament rupture force 100 pN [1]

Je edge rupture force F. 2
Em membrane stretching stiffness 2 Fr [13,14]
# membrane bending stiffness 0.1 F, . d? [11]

¢ contact stiffness 30 pN-nm

i contact length 0.5a

d =7nm

F, in the range between 100 and 600 pN

Motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 20




Lecture 3: zero Re hydrodynamics

E.M. Purcell:
Life at low Reynolds numbers,
Am. J. Physics, 1977

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 21




v " 1] = — avh
Pae + (2 Vie) | Ta” o ”'j"'l Navier-Stokes

dive=0
Nondimensionalizat w=X p=t p=P =V
on-dimensionalization e V/7’ TV
ﬂﬂf%:- + Relu, - T‘:Iu, —_ '_"'i.‘u_ +'\.—,p_ = (], Re:M and U:L
div.u, =0 4 vT
—nAv+Vp =0
! . TV Stokes
div v =

All inertial effects neglected, formal limit.

22
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Reynolds Number (Re) =
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Velocity (typical order of magnitude) V

Re = VL,O Diameter (typical length scale) L
,7 Mass density of the fluid P
Viscosity of the fluid n

For water at room temperature p/n = 10° (m?s1)-1.

Re is a dimensionless measure of relative importance of inertia vs. viscosity
Orders of magnitude for swimmers:

Men, tuna, sharks: L=1m, V=1-10 ms Re=106-10"
Bacteria: L=1x10°%m, V=1-10x10%ms! Re=10°-10°

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 23
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G.I Taylor and low Re flows

National Committee for Fluid Mechanics Films:

Ma. 2I81T

G.l. Taylor’'s movie on low Re flows:

http://

Modern classical physics through the work of G.I. Taylor:

One scientist’s work provides material for an entire course, covering topics
ranging from hydrodynamic stability and turbulence to electrohydrodynamics
and the locomotion of small organisms.

-- Michael P. Brenner and Howard A. Stone

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 24
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Drag=6TTlH RV (Stokes, 1851)

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA 25
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Gel electrophoresis of DNA and RNA
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Lecture 4: from mobility to motility

Swimming: a definition
the ability to advance in water
by performing a cyclic shape change (a stroke)

In the absence of external propulsive forces

i i

It's a control problem:
Can we reach B from A (with B#A)
by executing (periodic) shape changes
(or by prescribing suitable internal forces) ?

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 29




Two conceptual ingredients

How does the surrounding medium react (namely, which forces does it exert ?)
to shape changes of the swimmer?

(equations of motion of the surrounding medium)

2.

How does the swimmer move in repsonse to the forces that the surrounding
medium applies to it ?

(equations of motion of the swimmer)

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 30




Outer Stokes problem

Find u induced in the fluid surrounding swimmer Q by its shape changes:

—nAu+Vp=0 onR3\Q,
div(u) =0 on R\ Q,

U= Vg, ondQ

u—0 at infinity.

on =DNg[vy,] Vviscous “reactive” force p.u. area on Q)

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 31




Equation of motion = Self-propulsion | =
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The motion of the swimmer induced by its shape changes is a-priori unknown.

Equations of motion:

m (X)) = Fio

0 = Fy neglecting swimmer’s inertia
0 = I:ext + |:visc
0 = Fuisc self-propulsion

Similarly, total viscous torque =0.

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 32




Life at low Reynolds numbers

in a flow regime obeying Stokes equations,
a scallop cannot advance through the
reciprocal motion of its valves

The Scallop Theorem —
@ whatever forward motion will be produced

by closing the valves, it will be exactly
canceled by a backward motion upon
reopening them (see Marta’s talk)

GITaylorSwimmers.mpeg

The Flexible oar

< (eukariotic flagella)
S=g= G.l. Taylor, 1951 (cilia) “ @

H. Berg, 1973 (bacterial flagella)
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A. Najafi and R. Golestanian:
Simple swimmer at low Reynolds numbers: three linked spheres,
PRE 69, 062901 (2004)

*F. Alouges, ADS, A. Lefebvre: Optimal strokes of low Reynolds number swimmers: an
example. Journal of Nonlinear Science 18, 277-302 (2008).

 F. Alouges, ADS, A. Lefebvre: Biological fluid dynamics. Springer Encyclopedia of
Complexity and Systems Science (2009).

 F. Alouges, ADS, A. Lefebvre: Optimal strokes of axisymmetric microswimmers.
European Physical Journal E 28, 279-284 (2009).

 F. Alouges, ADS, L. Heltai: Numerical strategies for stroke optimization at low Re
numbers. M3AS 21, 361-397 (2011).
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Mathematical swimming in a nutshell

B B B fl - X(z) — X(l) h
Y 7o\ -y Shape
S N 3
3 &2 c=1) x® position
i=1
Swimming is .....
&,(1), &,(t) periodic of period T executing cyclic shape changes
producing
T
Ac = det 0 net positional change after one period
0 under
) + f@ + f3) =0 no external force (self-propulsion)

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 35
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Hq]'l E_H'Z] Hl’ﬂr
o - (¢ (A vy, Dirichlet data on Q
i II"x_ii-!'I}I h ‘HLI_E..- / ; m_i:}
€1 €2 DN¢[vp;,]=0 n  surface force on 6Q

0=i0[ DNg[vp; ] dA
0Q
= 91(E,€) &L+ 92(&,6) o +@3(&,0) ¢ by transl. inv.

Z#0

Then ¢ is uniquely determined and depends linearly on 51 and 52

dc dé d¢o -
==V 24V < nonlinear dep. on ¢ !
o 1(<) it 2(<) ”

Vi(§) =0 () Pn1(S)

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)
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Swimming with one formula ——

Fe T 08 dE,
Ac=[edt=| (V= 4V, — )t = | cunv dgde,
0 0 w

(notice that it's entirely geometric!)

|« &1 ;l\"‘_ & —1
2O o & c space of states
g, t T
@(ﬁ(wzza» (€10:€20:C1) | @=weizi”
-
space of shapes &1 &% (€10€20C0) space of shapes

Swimming rests on the differential form V,d¢, + V,d¢, not being exact
V(&) summarizes hydrodynamic interactions and swimming capabilities of a swimmer

Swimming = Controllability ; Optimal Swimming = Optimal Control

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 37
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|+
Nonholonomic motion planning vs. steering a control system —®

Controllability (see Jerome’s talk)

|V, (0, 0)

&= d_q1:=fl_ 1 0
52:U2 q:dt q2::52 = 0 u1+ 1
C=Vi(§)up +Vo(SHu, —— | dz:=c | [Vi(q,q)
0 9 ~ 0 C=03
[9:,0,] = (6_q d,) 9 _(a_q 9,)9, = 0 1
 curlV(q,,q,) |
det[, | 9, 1[0:, 8]1(ch Gy, Gs) = curl V(g 0,) # 0 I
. €7[9,,9]
The three-spere swimmer

Is globally controllable (Lie-bracket
generating or totally nonholonomic

control system) £,=0,

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)
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Cﬁ%j‘ﬂ% L] [ [ L] - vii

=2%) Swimming at max efficiency (geodesic strokes) et

SISSA : : .
(strokes of max Lighthill efficiency)
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Rescale to unit time interval. Minimize expended power

1 1 1
[[onevdt = [DN[vy,] Wy, dAdt = [ G(6)E £ o stroke “length”
0Q 00Q 0
1 .
atgiven AC= J-V (& = qurl V(&) dé enclosed area
0 w
Euler-Lagrange eqn. c .,
ol R | f?lf.;ff f; qrrien el .(/ ————————— )
—— (G + 5 (;}2{-;5_;; f,) +AcurlV ()& =0 (E10:820.C1) | @z

Optimal paths are sub-riemannian geodesics.

Optimal strokes exist. 3 o)
They can be computed numerically. 1015207~0

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 39
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Optimal stroke

06}

0sf

D4f

E 04
2D_3F EZ
02 Initial shape
= —— Optimal stroke
B ik -===Naive stroke
% o o2 o3 04 o5 o8 o7 08 ; i T T g e - NG stroke
&1 3

Optimal stroke maximizes flux of
Level curves of curl V(&,,¢,) curl V at given energy input,

or minimizes power consumption at given
flux of curl V
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Summary and perspectives

- Self-propulsion yields the key equation(s) giving positional change from shape change
- Swimming problem as a problem of controllability
- Optimal strokes of low Re swimmers computable; sub-riemannian geodesics

- The picture is qualitatively similar for general swimmers with finitely many shape dofs.
(6 ODEs rather than 1 equation of motion. But: rotations !)
- What about the genuinely infinite-dimensional case ?

Eutrep2.mov

Metaboly of Eutreptiella sp.

- What is the biological function of metaboly motion (swimming ???)
- Is there something being optimized by the stroke of this micro-organism ?

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 42




Lecture 6: the infinite-dimensional case =
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G.l. Taylor:
Analysis of the swimming of microscopic organisms,
Proc. Roy. Soc. A 209, 447- 461 (1951).

G. Gray and G.J. Hancock:
The propulsion of sea-urchin spermatozoa,
J. Exp. Biol. 32, 802- 814 (1955).

G. Dal Maso, ADS, M. Morandotti: An existence and unigueness result for the self-
propelled motion of micro-swimmers, SIAM J. Math Analysis 43, 1345-1368 (2011).

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 43




. Wave vector: ke,

Wave speed: w/k

Solve for the fluid velocity u in the surrounding fluid. No-slip plus fluid at rest at infinity.

BCs in a frame moving with the sheet:
Solving the outer Stokes problem:

u{z, hir, t)) = —bwcos(kr —wt)e,,

lim u(z, y) = -U. 1

e U = —swkb’.
where U is the swimming speed of the sheet. =
Wave travels to the right
Transversal (bending/shape) wave: Longitudinal (stretching) wave:
sheet moves to the left sheet moves to the right

(see Ezio’s talk on Monday)
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Swimming direction from drag anisotropy
(heuristics)

h = bsinlkx — wt),

Y N%
net force towards left / \ /\

Wave travels to the right

Transversal (bending/shape) wave: If the sheet is blocked:
sheet moves to the left the sheet pumps fluid towards right
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Gray-Hancock beating flagellum =

mathLab

innevating with mathematics

Local drag approximation (??)
or “resistive force theory”

. i i
i‘——n.,"l.l|—~., 11

Eg. of motion:

hz,t) = bsin(kz — wt). Fhead + J"f =0

[_IE'_ - l';'| ) J;JL Jflh" dr
c'.:,|l£- -I—n";l'_ll'.'i L

Solve for the unknown swimming velocity: U=

.':-_ == g;l L-l..'uiu:l!!.r-2
28, 14 (Loa)/(& L)

Average over one period of oscillation: (U} =—

Remark: get back Taylor’s formula with L > > a (head radius) and & ; =2 (??)
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¢,=1.8 E”

BullSpermCell.mov

B.M. Friedrich et al., High precision tracking of sperm swimming fine structure provides strong test of resistive force theory.
J. Exp. Biol. 213, 1226-1234 (2010).
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= e — Velocity at points of swimmer:

7 o “‘“\\ ) e / -\\.' current
: A | i ' ‘confipuration igid . shaper - 5
\ J Q\ ¥ figurat Vﬂmi 0 4is vV pes AR i
rcfcrm:i \H__ ) ’f/; ey . A, i LYt .fl s i ) il # J
configuration . d
AN ( i T f,r’"
\E\\._h__ '. N @) =y R
shape change \ - Y rigid motion
BN ) Polar Decompostition
= r 0 5 =
JE R IR Vo(X) = R Uy
unknowns  data = Vrt VSt (XO)

Data are infinite dimensional, while the unknowns are finite

dimensional.
};?'isc L. K; Cf_ Rf_ 0 7 L. F!s,hape
M;.’isc = f__.r_f J; () Rir W M?h e

Eqg. of motion: total viscous force and torque =0

Theorem: for any suff. smooth (Lip w/r to t) s,
there exist a unique (AC w/r to t) rigid motion r, generated by s,
(see also Jerome’s talk)

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY) 48




References

* D.A. Fletcher and J.A. Theriot, An introduction to celluler motility for the physical scientist,
Phys. Biol. 1, T1-T10 (2004).

* E.M. Purcell: Life at low Reynolds numbers, Am. J. Physics 45, 3-11 (1977).

 S. Childress: Mechanics of swimming and flying, Cambridge University Press, 1981.

e E. Lauga and T.R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog.
Phys. 72 096601 (2009).

* G.l. Taylor, Analysis of the swimming of microscopic organisms, Proc. Roy. Soc. A 209 (1951).

* A. Najafi and R. Golestanian: Simple swimmer at low Reynolds numbers: three linked
spheres, PRE 69, 062901 (2004).

* A. Shapere and F. Wilczeck: Self-propulsion al low Reynolds numbers, PRL 58, 2051 (1987)

* G. Galdi, A. Bressan et al., M. Tucsnak et al., (Function spaces, Well-posedness, Control)

* F. Alouges, A. DeSimone, A. Lefebvre: Optimal strokes of low Reynolds number swimmers:
an example. Journal of Nonlinear Science 18, 277-302 (2008).

* F. Alouges, A. DeSimone, A. Lefebvre: Biological fluid dynamics. Springer Encyclopedia of
Complexity and Systems Science (2009).

* F. Alouges, A. DeSimone, A. Lefebvre: Optimal strokes of axisymmetric microswimmers.
European Physical Journal E 28, 279-284 (2009).

* F. Alouges, A. DeSimone, L. Heltai: Numerical strategies for stroke optimization at low Re
numbers. M3AS 21, 361-397 (2011).

* G. Dal Maso, A. DeSimone, M. Morandotti: An existence and uniqueness result for the self-
propelled motion of micro-swimmers. SIAM J. Math. Analysis 43, 1345-1368 (2011).

Ravello course on motility at microscopic scales. Antonio DeSimone, SISSA (Trieste, ITALY)

49




