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Abstract

Swimming, i.e., being able to advance in the absence of external
forces by performing cyclic shape changes, is particularly demanding
at low Reynolds numbers. This is the regime of interest for micro-
organisms and micro- or nano-robots. We focus in this paper on a
simple yet representative example: the three-sphere swimmer of Najafi
and Golestanian [16]. For this system, we show how to cast the prob-
lem of swimming in the language of control theory, prove global con-
trollability (which implies that the three-sphere swimmer can indeed
swim), and propose a numerical algorithm to compute optimal strokes
(which turn out to be suitably defined sub–Riemannian geodesics).
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1 Introduction

The problem of swimming at low Reynolds numbers has attracted consid-
erable attention in the recent literature, starting from the pioneering works
of Taylor [18], Berg [5] and Purcell [17]. This problem is both puzzling
and relevant e.g., for biological systems and micro- or nano-robots. Indeed,
due to the length and time scales involved, the motion of micro-swimmers
is dominated by viscosity, while inertia is negligible. This implies that mi-
croorganisms, such as bacteria, must adopt swimming strategies completely
different from those employed by larger organisms, such as fish. In particu-
lar, the observation that, in a flow regime obeying Stokes equations, a scallop
cannot advance through the reciprocal motion of its valves is called the “scal-
lop theorem” [17]. The mathematical explanation for this is the symmetry
of the Stokes equations under time reversal: whatever forward motion will
be produced by closing the valves, it will be exactly canceled by a backward
motion upon reopening them.

This leads to the question of finding the simplest mechanisms capable
of self propulsion at this scales. By this we mean the ability to advance by
performing a cyclic shape change - a stroke - in the absence of external forces.
Several proposals have been put forward and analyzed, see e.g., [18, 17, 16,
2, 4]. A particularly simple example, due to Najafi and Golestanian [16], is
the three-sphere swimmer. In its simplest form, it consists of three equal
spheres of radius a moving along a straight line (see Fig. 1).
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Figure 1: Swimmer’s geometry and notation.

We call Ω := ∪3
i=1B

(i) the union of the three open balls B(i), x and y
the two distances between the centers of the balls and c the coordinate of
the global center of mass. The state of our system is thus (x, y, c), its shape
is (x, y) and its position will be c. A brief mathematical description of the
system is the following: each ball is acted upon by a force f (i) (coming from
the other balls) which is transmitted to the surrounding fluid, generating a
flow solution to Stokes equations outside Ω. As a consequence, each ball
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moves at a velocity u(i). The relation between forces and velocities is linear
(Stokes equations are linear) and given by




u(1)

u(2)

u(3)


 = S(x, y)




f (1)

f (2)

f (3)


 (1)

where S is known as the Oseen matrix [16]. In this context, self propulsion
means that the total force acting on the system vanishes

f (1) + f (2) + f (3) = 0. (2)

It turns out that the center of mass c satisfies the ODE

dc

dt
= Vx(x, y)

dx

dt
+ Vy(x, y)

dy

dt
, (3)

where (Vx, Vy) is a vector field that can be computed explicitly from S. The
swimming problem is the following question: can one find force laws f (i) :
[0, T ] → R satisfying (2), which produce T -periodic paths in the space of
shapes (x, y), and such that the average speed of the center of mass

c̄ =
1

T

∫ T

0

dc

dt
dt (4)

does not vanish? A positive answer has been given in the physics literature
[16] in the limiting regime of small spheres and small deformations.

We cast the swimming problem in the language of control theory. The
controls are either the forces f (i) subject to the constraint (2), or the shape
parameters x and y. The positive answer to the swimming problem is a
consequence of the global controllability of the system, i.e., the possibility of
reaching an arbitrary point (x1, y1, c1) of the space of states, starting from
another arbitrary state (x0, y0, c0), through self propulsion.

Theorem 1 The three-sphere swimmer is a globally controllable system.

Granted the possibility of swimming, the next interesting question is how
to swim optimally, namely, to find the optimal stroke.

A classical notion of swimming efficiency is due to Lighthill [13]. It is
defined as the inverse of the ratio between the average power expended by
the swimmer during a stroke starting and ending at the shape (x0, y0) and
the power that an external force would spend to translate the system rigidly
at the same average speed c̄:

Eff−1 =
1
T

∫ T

0

∑
i f

(i)u(i)

6πηAc̄2
. (5)
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Here, η is the viscosity of the fluid, and A = A(x0, y0) is the effective radius
of the swimmer, which tends to 3a when the three spheres are infinitely far
apart (see [16]). Our second main result is a numerical algorithm, namely,
Algorithm 1 in section 4, to compute the force laws that provide, for given
c̄, the stroke requiring minimal expended power, hence yielding maximal
efficiency. We emphasize that, contrary to the standard approach in the
Physics literature, we do not fix a priori the shape of the stroke, and then
optimize over a few scalar parameters. Rather, we let the swimmer free to
choose an optimal “gait”.

The rest of the paper is organized as follows. In section 2 we describe
the setting of the problem in detail. Section 3 contains the proof of Theorem
1. In section 4 we state the problem of optimal swimming and discuss the
numerical strategy for its solution. Some numerical results are presented in
section 5. Future directions are discussed in section 6.

2 Setting of the problem

2.1 Stokes equations

Let Ω = ∪3
i=1B

(i) be the union of the three open balls, and assume that the
flow in R3\Ω satisfies the (static) Stokes equation. This means that for given
vectors f (i) there exists a unique pair (u, p), where the velocity of the fluid u
is constant on each ∂B(i), and p is the pressure which satisfies




−η∆u +∇p = 0 in R3 \ Ω,
divu = 0 in R3 \ Ω,

−
∫

∂B(i)

σn = f (i),

u → 0 at ∞.

(6)

Here σ = η (∇u +∇tu)− pId is the Cauchy stress tensor, and n is the outer
unit normal to the boundary of Ω. The constant trace of u on ∂B(i) represents
the velocity u(i) of the ball B(i).

It is convenient to reformulate the problem as one in which the velocities
u(i) are the given data and the forces f (i) are to be calculated, and show that
there is a linear one-to-one correspondence between the u(i) and the f (i). Let
M = L2(R3 \ Ω), and H be the weighted Hilbert space

H =

{
u ∈ D′(R3 \ Ω) : ∇u and

u√
1 + |r|2 ∈ L2(R3 \ Ω) , u|∂B(i) = 0

}
(7)
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endowed with the classical norm || · ||H defined by

||u||2H =

∫

R3\Ω
|∇u|2 , (8)

which is equivalent (see [7, p. 117]) to the natural norm

|||u|||2H =

∫

R3\Ω

( |u(r)|2
1 + |r|2 + |∇u|2(r)

)
dr . (9)

Here r = (x1, x2, x3) is the position vector of a point in R3 \ Ω. Take now
ū ∈ C∞

0 (R3 \ Ω) satisfying the boundary conditions ū|∂B(i) = u(i). It is
well known (see [7, p. 154]) that there exists a unique solution (u, p) to the
variational problem

Find (u, p) ∈ (ū + H)×M such that ∀(v, q) ∈ H ×M,


2

∫

R3\Ω
η D(u) ·D(v)−

∫

R3\Ω
p divv = 0,

∫

R3\Ω
q divu = 0,

(10)

where D(u) = 1
2
(∇u +∇tu). From the solution (u, p) one can compute the

forces exerted on the balls as

f (i) = −
∫

∂B(i)

σn . (11)

It is clear that the f (i) depend linearly on the u(i)

f (i) =
∑

j

Liju
(j) , (12)

and it easy to show that this relation is invertible because the Lij define
a symmetric and positive definite matrix. Indeed, let (u(1), u(2), u(3)) and
(v(1), v(2), v(3)) be two sets of boundary conditions. We solve the correspond-
ing Stokes problems and call the solutions (u, p) and (v, q) respectively. More-
over, we compute the corresponding forces f (i) and g(i) according to (11).
Since u and v are divergence free, integrating by parts we get

∑
ij

(Liju
(j)) · v(i) =

∑
i

f (i) · v(i)

= 2

∫

R3\Ω
η D(u) ·D(v)

=
∑

i

g(i) · u(i)

=
∑
ij

u(j) · (Ljiv
(i)) ,
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and ∑
i

f (i) · u(i) =
∑
ij

(Liju
(j)) · u(i) = 2

∫

R3\Ω
η |D(u)|2. (13)

Finally, we define the solution of (6) for given data f (i) as the unique solution
of (10) corresponding to the only set of Dirichlet data u(i) satisfying (12).

In the geometry of Fig. 1, forces and velocities are all directed along the
axis of motion so that, from now onwards, we will denote by f (i) and u(i)

their scalar components along that axis. Thus, from (12) and the properties
of Lij, we obtain that (1) holds and that the Oseen matrix S is symmetric
and positive definite.

2.2 The ODEs describing swimming

Calling (xi)i the positions of the centers of the three balls, we rewrite (1) as

d

dt




x(1)

x(2)

x(3)


 = S(x, y)




f (1)

f (2)

f (3)


 , (14)

and change variables to x = x(2)− x(1), y = x(3)− x(2), and c = (x(1) + x(2) +
x(3))/3. Setting ex = (−1, 1, 0)t, ey = (0,−1, 1)t, ec = (1/3, 1/3, 1/3)t and

f =
(
f (1), f (2), f (3)

)t
, we obtain




dx

dt
= ex · Sf = Sex · f,

dy

dt
= ey · Sf = Sey · f,

dc

dt
= Sec · f,

(15)

because S is symmetric.
Now, since f satisfies (2), it is always possible to write it as

f = αx
Sey × ec

Sex · (Sey × ec)
− αy

Sex × ec

Sex · (Sey × ec)
. (16)

This is because

1. the two vectors Sey×ec and Sex×ec are obviously orthogonal to ec and
never proportional, for if this were the case, there would exist λ, µ ∈ R
such that

S(λex + µey)× ec = 0.
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But, since ec is orthogonal to both ex and ey, we would have

S(λex + µey) · (λex + µey) = 0,

which is in contradiction with the fact that S is positive definite.

2. Sex · (Sey × ec) never vanishes. Indeed, if this were the case, then both
Sex× ec and Sey × ec would be orthogonal to Sex and Sey. Since from
the preceding remark, Sex and Sey are not collinear, then Sex× ec and
Sey × ec should be collinear, which again from the preceding remark is
not possible.

Using (16), system (15) becomes



dx

dt
= αx,

dy

dt
= αy,

dc

dt
= αx

Sec · (Sey × ec)

Sex · (Sey × ec)
− αy

Sec · (Sex × ec)

Sex · (Sey × ec)

(17)

which leads to
dc

dt
= Vx(x, y)

dx

dt
+ Vy(x, y)

dy

dt
, (18)

with

Vx(x, y) =
Sec · (Sey × ec)

Sex · (Sey × ec)
=

S−1ec · (ec × ey)

S−1ec · (ex × ey)
(19)

Vy(x, y) = −Sec · (Sex × ec)

Sex · (Sey × ec)
= −S−1ec · (ec × ex)

S−1ec · (ex × ey)
. (20)

Therefore, if the system performs a stroke, i.e., it follows a given closed
curve γ = (x, y) in the space of admissible shapes S = (2a, +∞)2 defined by
γ : [0, T ] → S, then it experiences a global displacement of its center of mass
which amounts to

∆c =

∫ T

0

(
Vx(x(t), y(t))

dx

dt
(t) + Vy(x(t), y(t))

dy

dt
(t)

)
dt,

= ±
∮

γ

V · dl

= ±
∫

ω

curl V, (21)

where V = (Vx, Vy) and ω ⊂ S is the region enclosed by γ. Here, curlV =
∂Vy

∂x
− ∂Vx

∂y
and the − sign should be chosen if t 7→ γ(t) induces a clockwise
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orientation of γ. Notice also that the definition of S ensures that the balls
do not overlap.

Thus, we can think of swimming as the problem of controlling shape in
order to produce a net displacement ∆c different from 0 at the end of one
stroke γ. The force laws that are needed to produce an arbitrary path in the
space of shapes γ : [0, T ] → S, are easily recovered from (16) and (17):

f =
dx

dt

Sey × ec

Sex · (Sey × ec)
− dy

dt

Sex × ec

Sex · (Sey × ec)
. (22)

2.3 Swimming as a control problem

It is convenient to rewrite system (17) as

dX

dt
= αx(t)Fx(X) + αy(t)Fy(X), (23)

where X = (x, y, c) ∈ S × R and the vector-fields Fx and Fy are given by

Fx(X) = (1, 0, Vx(x, y)) , Fy(X) = (0, 1, Vy(x, y)) . (24)

In what follows, we will denote by X = S×R the set of admissible states. This
system is globally controllable if, starting from any state X0 = (x0, y0, c0) ∈
X , one can reach any other state X1 = (x1, y1, c1) ∈ X with a solution of (23)
and suitable controls t 7→ (αx(t), αy(t)). The system is locally controllable
at X0 if one can reach any point in a neighborhood of X0. Since swimming
means the ability to connect (x0, y0, c0) and (x0, y0, c1 6= c0) with a solution of
(23), we see that local controllability is a sufficient condition for swimming.
In fact, it turns out that the three-sphere swimmer is globally controllable.

In order to proceed, we need to introduce basic notations and results of
control theory applied to our situation. First, a sufficient condition for local
controllability at X0 is that the Lie algebra Lie(Fx, Fy)(X0) = R3 (see, e.g.,
[1]). In particular this is true if

det(Fx, Fy, [Fx, Fy])(X0) 6= 0, (25)

where [Fx, Fy] = (Fx · ∇)Fy − (Fy · ∇)Fx is the Lie bracket of Fx and Fy. An
easy computation shows that (since neither Fx nor Fy depend on c)

det(Fx, Fy, [Fx, Fy])(X0) = curl V (X0) (26)

and we recover (in view of (21)) that curl V (X0) 6= 0 allows for swimming
with any sufficiently small loop around (x0, y0).
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Introducing the Martinet surface

M = {X ∈ X : det(Fx, Fy, [Fx, Fy])(X) = 0} , (27)

it is clear that the system is locally controllable outside M and therefore
globally controllable on each connected component of X \M.

3 Proof of Theorem 1

For the proof of theorem 1, which states that the three-sphere swimmer is
globally controllable, we need the following two lemmas, the proofs of which
are postponed to the next subsections.

Lemma 1 The vector fields Fx(X) and Fy(X) are analytic functions of X ∈
X .

Lemma 2 The set X \M is not empty.

From the preceding lemmas, it is clear that the Martinet surface M is
locally at most of dimension 2. Indeed, if det(Fx, Fy, [Fx, Fy]) vanished in
a neighborhood of a state X0 ∈ X , then by analyticity, it would vanish
everywhere on X , and M would be equal to X contradicting lemma 2. Now,
since Fx and Fy do not depend on c, the Martinet surface is a cylinder
with vertical axis and since span(Fx(X), Fy(X)) is never a vertical plane, we
deduce that (at least) one of the two vectors Fx(X) or Fy(X) is transverse to
M at X ∈M. The global controllability on the connected components of X \
M and the transverse vector field to pass from one connected component to
another one prove the global controllability of the system and hence theorem
1.

Remark 1 We notice that, in view of the c-invariance of our system, con-
tinuity of curl V could suffice to prove global controllability. However, ana-
lyticity of curl V gives extra information. For instance, we obtain that the
set M is at most two-dimensional and hence its intersection with the space
of shapes S is at most one-dimensional.

3.1 Proof of Lemma 1

In view of formulas (19,20), the fact that Fx(X) and Fy(X) are analytic
functions of X directly follows from the analyticity of S−1(x, y) with respect
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to (x, y) that we prove now. In fact, it is sufficient to show that for any
triplet U = (u(1), u(2), u(3))t, the energy

(
S−1(x, y)U,U

)
= 2

∫

R3\Ω
η |D(u)|2 (28)

is analytic in (x, y) where (u, p) solves Stokes equations with boundary values
u(i) on ∂B(i) 



−η∆u +∇p = 0 on R3 \ Ω ,
div(u) = 0 on R3 \ Ω ,
u|∂B(i) = u(i) for i = 1, 2, 3,
u → 0 at infinity.

(29)

In order to emphasize the dependence of the domain Ω on (x, y) we will
write until the end of the section Ω(x,y) instead of Ω. That u is analytic in
R3 \ Ω(x,y) follows from standard elliptic regularity (see, e.g., [15]), but we
stress that what concerns us here is that u is analytic with respect to (x, y),
i.e., with respect to deformations of the domain of the fluid flow. In order to
proceed, we work near a point (x0, y0), set δx = x− x0, and δy = y− y0, and
recall that a function X with values in a Banach space B is analytic at (0, 0)
if and only if one can write for any δ = (δx, δy) in a suitable neighborhood of
(0, 0)

X(δ) =
∑

α∈N2

δαX(α) , (30)

where X(α) ∈ B satisfy the estimate

∃C > 0, ρ > 0, s.t. ∀α ∈ N2, ||X(α)||B ≤ C

ρ|α|
. (31)

Here, for a multiindex α = (αx, αy) ∈ N2, and δ = (δx, δy) ∈ R2, we have
denoted by δα the quantity δαx

x δ
αy
y , and |α| = αx + αy.

We then recast the Stokes problem on the fixed domain R3 \Ω(x0,y0), but
with variable coefficients. Namely, we solve the following two problems on
R3 \ Ω(x0,y0)




∆φ = 0
φ|∂B(1) = 1 ,
φ|∂B(2) = 0 ,
φ|∂B(3) = 0 ,
φ → 0 at infinity,




∆ψ = 0
ψ|∂B(1) = 0 ,
ψ|∂B(2) = 0 ,
ψ|∂B(3) = 1 ,
ψ → 0 at infinity.

(32)

Since φ and ψ are harmonic, as a consequence of classical elliptic regularity
theory, they are analytic on R3 \ Ω(x0,y0) (see [15]). Moreover, φ, ψ and
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all their derivatives are bounded functions on R3 \ Ω(x0,y0), and satisfy the
following decay estimate at infinity

∀α = (α1, α2, α3) ∈ N3, ∃Cα > 0, s.t. |∂αφ(r)| ≤ Cα

|r||α|+1
. (33)

Now, we set for (x̄1, x̄2, x̄3) ∈ Ω(x0,y0)

θ(x̄1, x̄2, x̄3) = (x̄1 − δxφ(x̄1, x̄2, x̄3) + δyψ(x̄1, x̄2, x̄3), x̄2, x̄3) ,

and define

ū(x̄1, x̄2, x̄3) = u(θ(x̄1, x̄2, x̄3)), ∀(x̄1, x̄2, x̄3) ∈ R3 \ Ω(x0,y0) . (34)

Since for (δx, δy) = (0, 0), θ = Id, and θ is analytic in (δx, δy), θ admits an
inverse ξ which is analytic in (δx, δy) near (0, 0), so that we may rewrite (34)
as

u(x1, x2, x3) = ū(ξ(x1, x2, x3)), ∀(x1, x2, x3) ∈ R3 \ Ω(x,y). (35)

Therefore, the analyticity of u in (δx, δy) is equivalent to the analyticity of
ū. Calling p̄ = p ◦ θ, that (u, p) satisfy Stokes equations on R3 \Ω(x,y) is now
equivalent to (ū, p̄) satisfying




−η
∑
ij

[∑

k

∂̄jkūl∂iξk∂iξj + ∂̄jūl∂iiξj

]
+

∑
j

∂̄j p̄∂lξj = 0

on R3 \ Ω(x0,y0) , for l = 1, 2, 3,∑
ij

∂̄jūi∂iξj = 0 on R3 \ Ω(x0,y0) ,

ū|∂B̄(i) = u(i) for i = 1, 2, 3,

(36)

in which we have used the notations ∂i =
∂

∂xi

, and ∂̄i =
∂

∂x̄i

. Notice that

an explicit formula for the derivatives of ξ can be obtained by differentiation
of ξ ◦ θ = Id. Indeed, one has

∇ξ(θ(x̄1, x̄2, x̄3)) =
(∇̄θ(x̄1, x̄2, x̄3)

)−1
, (37)

which can be computed explicitly from

∇̄θ =




1− δx∂̄1φ + δy∂̄1ψ −δx∂̄2φ + δy∂̄2ψ −δx∂̄3φ + δy∂̄3ψ
0 1 0
0 0 1


 . (38)

We insist on the fact that the Jacobian determinant det∇̄θ = 1−δx∂̄1φ+δy∂̄1ψ
does not vanish for (δx, δy) small enough, uniformly in R3 \Ω(x0,y0) due to the
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uniform bound on the derivatives of φ and ψ. Therefore, the coefficients in
the transformed Stokes equation (36) are indeed analytic in (x̄1, x̄2, x̄3, δx, δy).
Setting 


ajk = η

∑
i ∂iξk∂iξj ,

bj = η
∑

i ∂iiξj ,
cjk = ∂jξk ,

(39)

the system (36) rewrites
[

R(δx,δy)(ū, p̄) = 0 ,
ū|∂B̄(i) = u(i) for i = 1, 2, 3,

(40)

where the second order differential operator R(δx,δy) is given by

R(δx,δy) =




D2 0 0
∑

j c1j ∂̄j

0 D2 0
∑

j c2j ∂̄j

0 0 D2

∑
j c3j ∂̄j∑

j c1j ∂̄j

∑
j c2j ∂̄j

∑
j c3j ∂̄j 0


 , (41)

with D2 = −∑
j

[∑
k ajk∂̄jk + bj ∂̄j

]
. Since the coefficients are analytic in δ,

we will write

ajk =
∑

α∈N2

δαa
(α)
jk , (42)

bj =
∑

α∈N2

δαb
(α)
j , (43)

cjk =
∑

α∈N2

δαc
(α)
jk . (44)

Of particuliar importance for the sequel is the behavior of the functions a
(α)
jk ,

b
(α)
j , c

(α)
jk , as (x̄1, x̄2, x̄3) tends to infinity. We get from (33), (37), (38), and

(39) the following estimates

∃C > 0, ρ > 0, s.t.



||a(α)

jk ||L∞ , ||c(α)
jk ||L∞ , ||

√
1 + |r|2b(α)

j ||L∞ ≤ C

ρ|α|
,

||
√

1 + |r|2∂̄la
(α)
jk ||L∞ , ||

√
1 + |r|2∂̄lc

(α)
jk ||L∞ ≤

C

ρ|α|
.

(45)
Now, in order to deal with the non homogeneous boundary conditions,

we consider a map Ū analytic in R3 \ Ω(x0,y0) which obeys the boundary
conditions for instance by solving

[ −∆Ū = 0, on R3 \ Ω(x0,y0) ,
Ū |∂B̄(i) = u(i) for i = 1, 2, 3,

(46)
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and seek the solution as ū = Ū + v̄. Hence, v̄ is solution of

[
R(δx,δy)(v̄, p̄) = −R(δx,δy)(Ū , 0)
v̄|∂B̄(i) = 0 for i = 1, 2, 3.

(47)

Unfortunately, the operator R(δx,δy) does not map H ×M into itself and
therefore, we rewrite our system as

[
R−1

(0,0)R(δx,δy)(v̄, p̄) = −R−1
(0,0)R(δx,δy)(Ū , 0) on R3 \ Ω(x0,y0) ,

v̄|∂B̄(i) = 0 for i = 1, 2, 3,
(48)

where by R−1
(0,0)(f, g) we mean the solution to the Dirichlet problem

[
R(0,0)(w̄, q̄) = (f, g), on R3 \ Ω(x0,y0)

w̄|∂B̄(i) = 0 for i = 1, 2, 3.
(49)

That R−1
(0,0)R(δx,δy) is invertible on H × M is clear. We now show that it

depends on δ = (δx, δy) analytically (near (0, 0)). Using the expansions
(42,43,44) leads to

R−1
(0,0)R(δx,δy) =

∑

α∈N2

δαR−1
(0,0)R

(α), (50)

where the operators R(α) are given by

R(α) =




D
(α)
2 0 0

∑
j c

(α)
1j ∂̄j

0 D
(α)
2 0

∑
j c

(α)
2j ∂̄j

0 0 D
(α)
2

∑
j c

(α)
3j ∂̄j∑

j c
(α)
1j ∂̄j

∑
j c

(α)
2j ∂̄j

∑
j c

(α)
3j ∂̄j 0


 , (51)

with D
(α)
2 = −∑

j

[∑
k a

(α)
jk ∂̄jk + b

(α)
j ∂̄j

]
, and it is sufficient to show that R(α)

satisfies (31). But, we have

||R−1
(0,0)R

(α)||L(H×M) ≤ ||R−1
(0,0)||L(H′×M,H×M)||R(α)||L(H×M,H′×M)

and we can estimate

||R(α)||L(H×M,H′×M) ≤ C
( ∑

jk

||a(α)
jk ∂̄jk||L(H,H′) +

∑
j

||b(α)
j ∂̄j||L(H,H′) +

∑
ij

||c(α)
ij ∂̄j||L(H,M) +

∑
ij

||c(α)
ij ∂̄j||L(M,H′)

)
.
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We consider each of the four terms separately.

||a(α)
jk ∂̄jk||L(H,H′) = sup

u,v∈H

∣∣∣
∫

a
(α)
jk ∂̄ju∂̄kv + ∂̄ka

(α)
jk ∂̄ju v

∣∣∣
||u||H ||v||H

≤ sup
u,v∈H

||a(α)
jk ||L∞||∂̄ju||L2||∂̄kv||L2

||u||H ||v||H

+
||
√

1 + |r|2∂̄ka
(α)
jk ||L∞||∂̄ju||L2|| v√

1+|r|2 ||L2

||u||H ||v||H
≤ C

(
||a(α)

jk ||∞ + ||
√

1 + |r|2∂̄ka
(α)
jk ||∞

)
.

Similarly,

||b(α)
j ∂̄j||L(H,H′) ≤ ||

√
1 + |r|2b(α)

j ||L∞
||c(α)

ij ∂̄j||L(H,M) ≤ ||c(α)
ij ||L∞

||c(α)
ij ∂̄j||L(M,H′) ≤ ||c(α)

ij ||L∞ + ||
√

1 + |r|2∂̄jc
(α)
ij ||L∞

Therefore, from the fact that the coefficients ajk, bj and cjk satisfy (45), we
deduce that R−1

(0,0)R(δx,δy) is analytic in δ.

Moreover, since R−1
(0,0)R

(0,0) = Id, (here, R(0,0) stands for R(α) with α =

(0, 0)) the theorem on analytic inverse implies that the inverse
(
R−1

(0,0)R(δx,δy)

)−1

also satisfies (30,31) for δ sufficiently small, which means that it is analytic
in δ as well.

Since (Ū , 0) is smooth, we infer that R−1
(0,0)R(δx,δy)(Ū , 0) is analytic in δ

(with values in H×M), which leads to the analyticity of (v̄, p̄) in δ = (δx, δy)
and hence to the desired result.

3.2 Proof of Lemma 2

The proof of lemma 2 consists of two steps. In the first, we prove the estimate

∃C > 0, x0 > 0, s.t. ∀x, y > x0, ||S(x, y)− S∞(x, y)|| < C

min(x, y)2
(52)

for the error term E in the asymptotic expansion for (1)




u(1)

u(2)

u(3)


 = S(x, y)




f (1)

f (2)

f (3)


 = (S∞(x, y) + E(x, y))




f (1)

f (2)

f (3)


 (53)
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where the matrix S∞(x, y) is given by

S∞(x, y) =
1

πη




1

6a

1

4x

1

4(x + y)
1

4x

1

6a

1

4y
1

4(x + y)

1

4y

1

6a




. (54)

We give an explicit short proof, in the interest of the reader, to keep the paper
self-contained. Formulas like (52,54) are not new, and we first encountered
them in [9]. More refined asymptotics show that, in fact, the error decay
rate is cubic for the off-diagonal terms, and quartic for the diagonal ones, see
[3]. In the second step, we construct a stroke for which we can prove, using
(52), that the displacement of the center of mass is nonzero, making M = X
impossible.
Step 1. We note that for x, y sufficiently large, the matrix S∞(x, y) is
uniformly diagonal dominant and therefore there exist α > 0, x0 > 0 such
that ∥∥∥∥∥∥

S∞(x, y)




f (1)

f (2)

f (3)




∥∥∥∥∥∥
≥ α

∥∥∥∥∥∥




f (1)

f (2)

f (3)




∥∥∥∥∥∥
, ∀x, y > x0 . (55)

Next, we recall that if u satisfies the homogeneous Stokes equations outside
Ω, with u|∂B(i) = u(i) a constant, then u can be written as

u(r) =
3∑

i=1

∫

∂B(i)

G(r − r′)t(i)(r′) dr′ . (56)

Here the Stokeslet

G(r) =
1

8πη

(
1

|r| +
r ⊗ r

|r|3
)

(57)

is the fundamental solution of Stokes equation and t(i) = σn|∂B(i) is the force
per unit area on ∂B(i).

We now construct an approximate solution to the three–sphere Stokes
problem by using, as a building block, the solution to the outer Stokes
problem with uniform Dirichlet data on one sphere (one–sphere Stokes so-
lution). Let γ the boundary of a smooth bounded domain and consider the

space H(Γ) = H− 1
2 (Γ,R3)/R, where R is the equivalence relation tR t′ iff

t − t′ = λn with λ ∈ R and n the unit normal to Γ (this is needed be-
cause the interior pressure p inside Γ is defined to within a constant, see [7,
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p. 157]). We define the map Φ from H(∂B(1)) × H(∂B(2)) × H(∂B(3)) to

H
1
2 (∂B(1),R3)×H

1
2 (∂B(2),R3)×H

1
2 (∂B(3),R3) given by




v(1)

v(2)

v(3)


 = Φ




g(1)

g(2)

g(3)


 =




T
(11)
0 T

(12)
−x T

(13)
−(x+y)

T
(21)
x T

(22)
0 T

(23)
−y

T
(31)
(x+y) T

(32)
y T

(33)
0







g(1)

g(2)

g(3)


 , (58)

where the operators T
(ij)
z : H(∂B(j)) → H

1
2 (∂B(i),R3) are defined by

T (ij)
z g(j)(r) =

∫

∂B(j)

G(z~ı + r − r′)g(j)(r′) dr′ for r ∈ ∂B(i). (59)

where ~ı is the unit vector along the horizontal axis, see Fig. 1. It is clear
from (56) that

Φ(t(1), t(2), t(3)) = (u|∂B(1) , u|∂B(2) , u|∂B(3))

= (u(1), u(2), u(3)).

Moreover, Φ defines an isomorphism because the Stokes problem is well posed
and the integral representation (56) is unique. We shall see that Φ is also
uniformly coercive for (x, y) sufficiently large.

It is well-known (see [7, eq. (5.31)] that T
(ii)
0 is coercive on H(∂B(i)),

meaning that there exists α0 > 0 such that

∀g ∈ H(∂B(i)),
〈
g, T

(ii)
0 g

〉
H− 1

2 (∂B(i)),H
1
2 (∂B(i))

≥ α0||g||2H(∂B(i)), (60)

while an easy estimate gives (due to the decay of G at infinity) for z >> a,

||T (ij)
z ||L�H(∂B(j)),H

1
2 (∂B(i))

� ≤ C

|z| . (61)

The coerciveness of T0 (60) together with the estimate (61) give the following
uniform coerciveness estimate for Φ : ∃X > 0, s.t. ∀x, y > X,

〈
(g(1), g(2), g(3)), Φ(g(1), g(2), g(3))

〉 ≥ α
∥∥(g(1), g(2), g(3))

∥∥2
. (62)

Now, for a given velocity V of the ball B, we call uV the one–sphere Stokes
solution outside B, namely, the solution of the homogeneous Stokes equations
which vanishes at infinity and whose trace on ∂B is equal to V . Stokes
formula gives the drag force FV generated in this case as

FV = −
∫

∂B

σ(uV )n = 6πaηV. (63)
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For the three values U = (u(1), u(2), u(3))t of the velocity of the spheres, we
compute the drags F = (F (1), F (2), F (3))t solutions to the system S∞(x, y)F =

U , and the corresponding velocities V (i) =
F (i)

6πaη
. We then compute

(w(1), w(2), w(3)) = Φ(t(1) − σ(uV (1))n, t(2) − σ(uV (2))n, t(3) − σ(uV (3))n) (64)

and get



w(1)(r) = u(1) − V (1) − uV (2)(−x~ı + r)− uV (3)(−(x + y)~ı + r),
w(2)(r) = u(2) − V (2) − uV (1)(x~ı + r)− uV (3)(−y~ı + r),
w(3)(r) = u(3) − V (3) − uV (1)((x + y)~ı + r)− uV (2)(y~ı + r).

(65)

Moreover, using (56), we infer for r ∈ ∂B and |z| >> a (since uV = V u1)

uV (z~ı + r) =

∫

∂B

G(z~ı + r − r′)σ(uV )(r′)n(r′) dr′

= G(z~ı)

∫

∂B

σ(uV )(r′)n(r′) dr′ + O

( |V |
z2

)

=
FV

4πη|z| + O

( |V |
z2

)

from the analytic expression of G and (63). Since S∞F = U , plugging these
expressions into (65) leads to the uniform estimate

∃C > 0, s.t. ∀r ∈ ∂B(i), |w(i)(r)| ≤ C||(V (1), V (2), V (3))||
min(x, y)2

. (66)

Since Φ satisfies the uniform coerciveness estimate (62), one deduces that

α||t(i) − σ(uV (i))n||2H(∂B(i)) ≤
3∑

j=1

〈
t(j) − σ(uV (j))n,w(j)

〉
H− 1

2 (∂B(j)),H
1
2 (∂B(j))

≤
3∑

j=1

||t(j) − σ(uV (j))n||H(∂B(j))||w(j)||
H

1
2 (∂B(j))

,

from which we obtain

|f (i) − F (i)| =

∣∣∣∣
∫

t(i) − σ(uV (i))n

∣∣∣∣
≤ ||t(i) − σ(uV (i))n||H(∂B(i))||1||H 1

2 (∂B(i))

≤ C

3∑
j=1

||w(j)||
H

1
2 (∂B(j))

≤ C||(F (1), F (2), F (3))||
min(x, y)2

,
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from (66) and Vi =
Fi

6πaη
. Writing

||S − S∞|| = || − S(S−1 − S−1
∞ )S∞||

≤ ||S|| ||S−1 − S−1
∞ || ||S∞|| ,

for the matricial norm ||.|| establishes (52).
Step 2. Let L and K be two numbers which are meant to tend to infinity
with the constraint that

1 << K << L. (67)

We consider the square loop in the space of shapes described by (x, y):
(L,L) → (L + K,L) → (L + K,L + K) → (L,L + K) → (L, L). The
displacement of the center of mass generated by such a stroke is given by
(21)

∆c =

∫ L+K

L

Vx(x, L)+

∫ L+K

L

Vy(L+K, y)+

∫ L

L+K

Vx(x, L+K)+

∫ L

L+K

Vy(L, y).

(68)
From symmetry, it is not difficult to see that Vx(x, y) = −Vy(y, x) for all
x, y > r, which implies
∫ L+K

L

Vx(x, L) =

∫ L

L+K

Vy(L, y) and

∫ L+K

L

Vy(L+K, y) =

∫ L

L+K

Vx(x, L+K),

(69)
and leads to

∆c = 2

∫ L+K

L

(Vx(x, L)− Vx(x, L + K)) dx. (70)

But, since Vx(x, y) =
det(S(x, y)ec, S(x, y)ey, ec)

det(S(x, y)ex, S(x, y)ey, ec)
, and using estimate (52) of

S(x, y) for large (x, y), we get

Vx(x, y) =
a

6

(
−1

x
− 1

x + y
+

2

y

)
+ O

(
1

min(x, y)2

)
.

Therefore,

6

a
∆c = 2

∫ L+K

L

− 1

x + L
+

1

x + L + K
+

2

L
− 2

L + K
+ O

(
1

L2

)

= 2 ln

(
1 + K

L(
1 + K

2L

)2

)
+

4K2

L(L + K)
+ O

(
K

L2

)

=
7K2

2L2
+ O

(
K

L2

)
.
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Taking K =
√

L leads, for L sufficiently large, to a non zero displacement
∆c proving lemma 2.

4 A numerical algorithm for computing opti-

mal strokes

In this section, we propose an algorithm for the computation of a stroke of
maximal efficiency. We recall that

Eff−1 =
1
T

∫ T

0
(f, u)

6πηAc̄2
, (71)

where we have set (f, u) =
∑

i f
(i)u(i), and remark that Eff is a non-dimensional

quantity, invariant under an affine change of parametrization of time. Thus,
we can set T = 1s and c̄ = ∆c. The problem we intend to solve numerically
is to find optimal strokes. By this we mean to find, for each given initial
shape (x0, y0) ∈ S, the stroke γ : [0, 1] → S with

γ(0) = γ(1) = (x0, y0), (72)

which performs a given displacement

∆c =

∫ 1

0

V (γ) · dγ (73)

with maximal efficiency. In view of (71), this means to solve the following
constrained minimization problem:

min
γ∈A(x0,y0,∆c)

∫ 1

0

(f(γ(τ)), u(γ(τ))) dτ, (74)

where

A(x0, y0, ∆c) =
{

γ : [0, 1] → S s.t. γ(0) = γ(1) = (x0, y0)

and

∫ 1

0

V · dγ = ∆c
}

. (75)

From (16), one has f = αxUx + αyUy with

Ux =
Sey × ec

Sex · (Sey × ec)
, Uy = − Sex × ec

Sex · (Sey × ec)
. (76)
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Since γ̇ = (αx, αy),

(f, u) = (f, Sf)

= gxxα
2
x + 2gxyαxαy + gyyα

2
y

= (Gγ̇, γ̇)

where the symmetric and positive definite matrix G is given by

G(x, y) =

(
gxx gxy

gyx gyy

)
=

(
(SUx, Ux) (SUx, Uy)
(SUy, Ux) (SUy, Uy)

)
. (77)

Introducing the Lagrange multiplier λ associated with the constraint (73),
the Euler-Lagrange equation for (74) is

− ˙
(Gγ̇) +

1

2

(
(∂xGγ̇, γ̇)
(∂yGγ̇, γ̇)

)
+ λcurl V (γ)γ̇⊥ = 0. (78)

where ∂xG and ∂yG stand for the x and y derivatives of the matrix G.

Remark 2 We wish to point out an interesting connection with sub–Rieman-
nian geometry, which has guided our analysis, see [11]. Introducing for any
path γ ∈ S

c(s) = c0 +

∫ s

0

V (γ(τ)) · γ̇(τ) dτ , ∀s ∈ [0, 1] , (79)

then X = (γ, c) describes a curve in the three-dimensional space X whose tan-
gent Ẋ is constrained to belong to a two-dimensional plane TX = span(Fx, Fy).
The dissipation rate (f, u) gives, in the local basis (Fx, Fy) the square of the
length of Ẋ.

Therefore, with the metric given by (77) defined on TX , our optimal
strokes describe the shortest sub–Riemannian geodesics in X joining (x0, y0, c0)
to (x0, y0, c0+∆c). Equation (78) is the general equation for sub-Riemannian
geodesics, along which the Hamiltonian (Gγ̇, γ̇) is constant. The existence
of a minimizing geodesic joining any two points in state space follows from
general theorems. Indeed, the system (23) being analytic and globally con-
trollable, the Lie algebra Lie(Fx, Fy) is of dimension 3 everywhere in state
space (see [1]). This in turn implies the existence of minimizing geodesics
[14, Theorem 1.19].

We now describe our algorithm for solving (74). It is based on the solution
of the Cauchy problem for (78), with given trial value for λ, and a suitable
shooting method. Namely, for given initial shape (x0, y0), and given trial
initial velocity (ẋ0, ẏ0), we compute the unique solution (x(t), y(t)) of the
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second order ODE (78) with a classical Runge-Kutta method. The functions
V (x, y) and G(x, y) which appear as coefficients in (78) are computed at
several points of S using a 3D axisymmetric finite element Stokes solver and
then interpolated (see below for further details). In order to enforce the
constraints (72) and (73), we introduce the function Ψ : R3 → X defined by

Ψ(ẋ0, ẏ0, λ) =

(
x(1), y(1),

∫ 1

0

(Vx(x, y)ẋ + Vy(x, y)ẏ) dτ

)
, (80)

and rewrite the original problem (74) as

Find a triplet (ẋ0, ẏ0, λ) such that Ψ(ẋ0, ẏ0, λ) = (x0, y0, ∆c). (81)

This is solved with the following algorithm.

Algorithm 1 (shooting method)

0. Provide a target Z̄ = (x0, y0, ∆c) and a parameter N

1. Compute the values of V and G at several points of the space of shapes
and interpolate the values

2. Start with an initial guess θ0 = (ẋ0, ẏ0, λ)

3. Loop for n = 0 · · ·N − 1

– Compute Zn = Ψ(θn) by solving (78) with a Runge-Kutta method

– Compute θn+1 = θn + DΨ(θn)−1
(

Z̄−Zn

N−n

)

4. (Newton’s method) Loop for n ≥ N until θn converges to θ∞

– Compute Zn = Ψ(θn) by solving (78) with a Runge-Kutta method

– Compute θn+1 = θn + DΨ(θn)−1
(
Z̄ − Zn

)

5. Compute the (optimal) stroke γ∞ from θ∞

6. Compute the force laws from γ∞ and (22)

After the initializations, step 3. of the algorithm is a Newton type method for
which the gap between initial guess and unknown target has been subdivided
into N increments. A suitably large value has been chosen for N in order
to obtain convergence of the algorithm. Moreover, steps 3. and 4. require
the solution of a linear system at each iteration with coefficients given by the
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3 × 3 matrix DΨ(θn). The matrix DΨ(θ) is obtained by finite differences
from the approximation

DΨ(θ)δθ ∼ Ψ(θ + δθ)−Ψ(θ), (82)

by setting δθ = (ε, 0, 0), (0, ε, 0) and (0, 0, ε) with ε small.
Depending on the initial guess θ0 in step 2., the algorithm produces dif-

ferent geodesic strokes. Among the computed geodesic strokes, the one with
maximal efficiency is selected as the optimal stroke.

5 Examples of optimal strokes

In this section we describe some numerical experiments demonstrating the
significance of our approach and the reliability of the algorithm. For our
tests, we have taken parameter N of Algorithm 1 equal to 30. For what
concerns geometric and material parameters, our simulations describe, say,
spheres of radius a = 0.05 mm swimming in a medium with the kinematic
viscosity of water (ν = η

ρ
= 1 mm2s−1). Setting T = 1 s, this results in a

Reynolds number of the order Re = a2ν = 0.0025. The interpolation stage
(step 1. of Algorithm 1) has been done by computing the quantities V (x, y)
and G(x, y) at 50×50 equally spaced points in the region [0.125 mm, 0.7 mm]2

of the space of shapes S with an axisymmetric finite element Stokes solver
(based on FREEFEM [8]). The simulation domain has been restricted to a
large bounding box of size 5 mm×5 mm around Ω on the boundary of which
we have taken homogeneous Dirichlet boundary condition for the velocity.
In fact, we only take forces that satisfy (2), hence the velocity is expected to
decay like 1/|r|2 as r tends to infinity. We have then found the polynomial
in (1/x, 1/y) giving the best least square fit of these values (a polynomial of
degree 4 in each variable proved to be sufficient). Eventually, curlV has been
computed by exact differentiation of this polynomial. The numerical results
of this section have been validated by comparing with the results of direct
finite element simulations, with an error in the predicted power consumption
not exceeding one percent.

5.1 Optimal strokes versus square loops

For a given initial shape (x0, y0) = (0.3 mm, 0.3 mm), and two different given
displacements ∆c1 = 0.001 mm and ∆c2 = 0.01 mm we have compared the
efficiency of our optimal strokes with the square one proposed by Najafi and
Golestanian (NG stroke) [16]. In addition, we show the performance of a
square loop in which the distances between the balls are increased, instead
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of being decreased, in the first two legs of the loop. The expended energy
in all cases are given in Table 1 while the strokes are shown in Fig. 2. The
optimal strokes are shown superimposed on the graph of curlV in Fig. 3.

∆c(mm) Optimal stroke NG stroke Naive stroke
0.001 0.0307 0.0405 0.0589
0.010 0.229 0.278 0.914

Table 1: Energy consumption (J).
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Figure 2: Optimal strokes and square strokes which induce the same dis-
placement ∆c = 0.01 mm (left) and ∆c = 0.001 mm (right) in T = 1 s.

The optimal stroke gives a noticeable efficiency improvement. It is re-
markable that, in our regime, there is a drastic difference, for a given initial
shape, between the two square loops. By contrast, in the limiting regimes of
small spheres or small deformations, this difference disappears.

5.2 Multiplicity of geodesic strokes

As already mentioned, depending on the initial parameters θ0 in our algo-
rithm, one can converge to different geodesic strokes. This is due to the fact
that the geodesics joining two points in X are not unique. These geodesics,
when projected on S give more and more involved strokes, and the shortest
one gives best efficiencies. In Fig. 4 we have shown three of them for the
same parameters as before which have been named according to their shape.
The corresponding expended energies are given in Table 2.

We remark that, for small ∆c, curl V (x, y) and G(x, y) are essentially
constant and equal to their values at (x0, y0). In this case, it is well known
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Figure 3: Optimal strokes (for ∆c = 0.01 mm and ∆c = 0.001 mm in T = 1 s)
and equally spaced level curves of curlV .

∆c(mm) Drop Bean Pretzel
0.001 0.0307 0.0387 0.0637
0.010 0.229 0.451 0.529

Table 2: Energy consumption (J).

(from sub–Riemannian geometry) that geodesics project to ellipses. There-
fore, in the small ∆c regime, all geodesic strokes collapse to ellipses.

5.3 Swimming with many strokes

One can move of an amount ∆c in time T = 1 s by executing n identi-
cal strokes, with each of which one moves by ∆c/n. We have investigated
the difference in terms of power consumption with respect to n and again
(x0, y0, ∆c) = (0.3 mm, 0.3 mm, 0.01 mm). To this aim, we have computed
the energy consumption of the n-stroke movement relative to the one using
a single stroke. The results are summarized in Fig. 5 where it is shown that
this relative energy consumption reaches an asymptotic value for large n. As
expected, the fewer the strokes, the bigger the efficiency, and reaching the
target in just one stroke is the most preferable strategy, whenever possible.
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Figure 4: Three geodesic strokes (obtained by projecting geodesics onto the
space of shapes S) with ∆c = 0.01 mm (left) and ∆c = 0.001 mm (right) in
T = 1 s.

The opposite one, namely, performing many small shape changes around
(x0, y0) is most inefficient.

If the shape of the system is constrained to lie in a subset S̄ ⊂ S, say,
for biological or technological reasons, then the optimal swimming strategy
requires exploring the largest allowed shape changes in S̄ leaving (x0, y0, ∆c)
as adjustable parameters. Resolving the hydrodynamic interactions in this
regime cannot be based on asymptotic formulas such as (54), and it calls for
numerical tools such as the ones we have used in this section.

6 Discussion

We have shown how to formulate and solve numerically the problem of find-
ing optimal strokes for low Reynolds number swimmers by focussing on the
three-sphere swimmer of Najafi and Golestanian (a simple, yet representative
example).

The theoretical part of our analysis shows how to address quantitatively
swimming as the problem of controlling shape in order to produce a net dis-
placement at the end of one stroke. By casting the problem in the language
of control theory, we reduce the problem of swimming to the controllabil-
ity of the system, and the search of optimal strokes to an optimal control
problem leading to the computation of suitable sub–Riemannian geodesics.
The numerical solution we find for the optimal stroke leads to an increase of
efficiency exceeding 300% with respect to more naive proposals.
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Figure 5: Relative expended energy versus number of strokes.

Much remains to be done. On the one hand, if one is interested in the
optimal swimming strategy to reach a given target from a given initial po-
sition, the choice of a shape around which to fluctuate and the distance
traveled with each stroke are parameters, to be optimized subject to suit-
able constraints. On the other hand, the three-sphere swimmer is just an
example. Its simplicity enables us to carry out the analysis by using explicit
formulas, while the study of biologically relevant swimmers will require more
abstract mathematical tools.

We are working on extensions of our work in both of these two directions.
However, we believe that our paper provides a significant head start. For
both the questions of adjusting the stroke to a global optimality criterion,
and of optimizing the stroke of complex swimmers, combining the numerical
approach we advocate with the use of tools from sub–Riemannian geometry
may prove extremely valuable. Useful inspiration can come from the sizable
literature on the related field of control of swimmers in a perfect fluid, see
e.g. [10] and the many references cited therein, and [6]. The literature on
low Reynolds number swimmers is, by comparison, smaller, but growing at
a fast pace, see e.g. [12, 19].
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Métivier, V. Šverák, and E. Trélat for very helpful discussions. This work
was carried out during visits of FA to SISSA and of ADS to Paris XI. The

27



financial support of these institutions is gratefully acknowledged. Additional
support came from the EU through the MULTIMAT Marie Curie Research
Training Network MRTN-CT-2004-505226 and the italian INdAM through
the research project “Mathematical Challenges in Nanomechanics”. Finally,
we wish to thank the three anonymous referees for their many valuable com-
ments, and A. Garroni and the staff of the library of the Mathematics De-
partment ‘G. Castelnuovo’ of the University of Roma ‘La Sapienza’ for their
kind assistance.

References

[1] A. Agrachev and Y. Sachkov, Control Theory from the Geometric View-
point, Encyclopaedia of Mathematical Sciences , Vol. 87, Control Theory
and Optimization, Springer (2004)

[2] J. E. Avron, O. Kenneth and D. H. Oakmin, Pushmepullyou: an efficient
micro-swimmer, New Journal of Physics 7, 234–1–8 (2005)

[3] G. K. Batchelor, Brownian diffusion of particles with hydrodynamic in-
teractions, J. Fluid Mech. 74, 1–29 (1976)

[4] L. E. Becker, S. A. Koehler, and H. A. Stone, On self-propulsion of
micro-machines at low Reynolds numbers: Purcell’s three-link swimmer,
J. Fluid Mechanics 490, 15–35 (2003)

[5] H. C. Berg and R. Anderson, Bacteria swim by rotating their flagellar
filaments, Nature 245, 380–382 (1973)

[6] A. Bressan, Impulsive Control of Lagrangian Systems and Locomotion
in Fluids, preprint (2006)

[7] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Meth-
ods for Science and Technology, Vol. 4, Springer-Verlag (1990)

[8] Freefem, http://www.freefem.org/

[9] R. Golestanian, personal communication to ADS

[10] E. Kanso, J. E. Marsden, C. W. Rowley, and J. B. Melli-Huber Loco-
motion of Articulated Bodies in a Perfect Fluid, J. Nonlinear Sci. 15,
255–289 (2005)

[11] J. Koiller, K. Ehlers, and R. Montgomery, Problems and Progress in
Microswimming, J. Nonlinear Sci. 6, 507–541 (1996)

28



[12] A. M. Leshansky, O. Kenneth, O. Gat, and J. E. Avron, A frictionless
microswimmer, preprint (2007)

[13] M. J. Lighthill, On the Squirming Motion of Nearly Spherical De-
formable Bodies through Liquids at Very Small Reynolds Numbers,
Comm. Pure Appl. Math. 5, 109–118 (1952)

[14] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics
and Applications, AMS Mathematical Surveys and Monographs 91, 2002

[15] C. B. Morrey and L. Niremberg, On the analyticity of the solutions
of linear elliptic systems of partial differential equations, Comm. Pure
Appl. Math. 10, 271–290 (1957)

[16] A. Najafi and R. Golestanian, Simple swimmer at low Reynolds numbers:
Three linked spheres, Phys. Rev. E 69, 062901–1–4 (2004)

[17] E. M. Purcell, Life at low Reynolds numbers, Am. J. Phys. 45, 3–11
(1977)

[18] G. I. Taylor, Analysis of the swimming of microscopic organisms, Proc.
Roy. Soc. Lond. A 209, 447–461 (1951)

[19] J. Wilkening and A. E. Hosoi, Shape optimization of swimming sheets,
preprint (2007)

29


